期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2022年 第19卷 第12期 doi: 10.1016/j.eng.2021.07.014

丹参酮IIA通过Beclin-1介导的自噬性凋亡抑制非小细胞肺癌

a School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
b State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China
c Cardiothoracic Surgery Department, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510006, China

# These authors contributed equally to this work.

收稿日期: 2021-05-06 修回日期: 2021-06-28 录用日期: 2020-07-06 发布日期: 2021-09-09

下一篇 上一篇

摘要

肺癌是癌症死亡的主要原因,因此有必要制定一种新的治疗策略。丹参酮IIA(Tan IIA)是常用中药丹参的一种有效成分,为开发治疗肺癌的新策略提供了新方向。Tan IIA 在体外和体内均可通过诱导自噬性细胞凋亡从而抑制肺癌。Tan IIA 在人类非小细胞肺癌(NSCLC)细胞系中增加凋亡细胞以及剪切型-半
胱氨酸天冬氨酸蛋白水解酶(cleaved caspase)3 和cleaved caspase 9 的表达,降低B淋巴细胞瘤(Bcl-2)与Bcl-2 相关X蛋白(Bax)的比值;自噬激活剂雷帕霉素可促进此过程,而自噬抑制剂3-甲基腺嘌呤(3-MA)减弱此作用。Tan IIA 诱导更多的自噬体,上调轻链3β(LC-3B)I 和LC-3B II,减少螯合体1(SQSTM1/p62)的表达,caspase 3 拮抗剂未能减弱此作用。此外,LC-3B基因(LC3B)过表达和白噬基因5(ATG-5)下调细胞株的实验结果进一步证实Tan IIA 诱导NSCLC细胞发生了自噬相关调亡。过表达和沉默Beclin-1都明显减弱Tan IIA 的作用,提示Tan IIA 诱导的自噬相关调亡依赖于Beclin-1。总之,研究证明Tan IIA是一种潜在的新的抗癌治疗选择。

补充材料

图片

图1

图2

图3

图4

图5

图6

图7

参考文献

[ 1 ] Siegel RL, Miller KD, Goding Sauer A, Fedewa SA, Butterly LF, Anderson JC, et al. Colorectal cancer statistics, 2020. CA Cancer J Clin 2020;70(3):145‒64. 链接1

[ 2 ] Forouzanfar MH, Afshin A, Alexander LT, Anderson HR, Bhutta ZA, Biryukov S, et al.; 2015 Risk Factors Collaborators. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990‒2015: a systematic analysis for the global burden of disease study 2015. Lancet 2016;388(10053):1659‒724.

[ 3 ] Liao X, Bu Y, Jia Q. Traditional Chinese medicine as supportive care for the management of liver cancer: past, present, and future. Genes Dis 2020;7(3):370‒9. 链接1

[ 4 ] Li Z, Zhang F, Li G. Traditional Chinese medicine and lung cancer—from theory to practice. Biomed Pharmacother 2021;137:111381. 链接1

[ 5 ] Smith ME, Bauer-Wu S. Traditional Chinese medicine for cancer-related symptoms. Semin Oncol Nurs 2012;28(1):64‒74. 链接1

[ 6 ] Zhang Z, Zhao X, Gao Q, Zhao Y, Zhai L, Jia S, et al. Investigation and study on the TCM syndrome distribution of malignant tumor. World J Integr Tradit West Med 2019;14(2):261‒7. Chinese.

[ 7 ] Yang XB, Long SQ, Deng H, Liu W, He WF, Pan ZQ, et al. Distribution characteristics of syndrome types in TCM in patients with advanced non-small cell lung cancer (NSCLC). J Liaoning Univ TCM 2013;15(3):188‒90. Chinese.

[ 8 ] Zhu P, Li ZG, Dong CW. Progress on lung cancer with syndrome differentiation in traditional Chinese medicine. J Pract Tradit Chin Intern Med 2017;31(3):91‒3. Chinese.

[ 9 ] Xiang Y, Guo Z, Zhu P, Chen J, Huang Y. Traditional Chinese medicine as a cancer treatment: modern perspectives of ancient but advanced science. Cancer Med 2019;8(5):1958‒75. 链接1

[10] Zhao LN, Yang YQ, Wang WW, Li Q, Xiao H. The effects of traditional Chinese medicine combined with chemotherapy on immune function and quality of life in patients with non-small cell lung cancer: a protocol for systematic review and meta-analysis. Medicine 2020;99(45):e22859. 链接1

[11] Lee YW, Chen TL, Shih YR, Tsai CL, Chang CC, Liang HH, et al. Adjunctive traditional Chinese medicine therapy improves survival in patients with advanced breast cancer: a population-based study. Cancer 2014;120(9):1338‒44. 链接1

[12] Wan AKS, Leung SWS, Zhu DY, Man RYK. Vascular effects of different lipophilic components of “Danshen”, a traditional Chinese medicine, in the isolated porcine coronary artery. J Nat Prod 2008;71(11):1825‒8. 链接1

[13] Ren J, Fu L, Nile SH, Zhang J, Kai GY. Salvia miltiorrhiza in treating cardiovascular diseases: a review on its pharmacological and clinical applications. Front Pharmacol 2019;10:753. 链接1

[14] Liao S, Han L, Zheng X, Wang X, Zhang P, Wu J, et al. Tanshinol borneol ester, a novel synthetic small molecule angiogenesis stimulator inspired by botanical formulations for angina pectoris. Brit J Pharmacol 2019;176(17):3143‒60. 链接1

[15] Gao H, Sun W, Zhao J, Wu X, Lu JJ, Chen X, et al. Tanshinones and diethyl blechnics with anti-inflammatory and anti-cancer activities from Salvia miltiorrhiza Bunge (Danshen). Sci Rep 2016;6:33720. 链接1

[16] Wang LQ, Hua DF, Li XM, Li J, Guan Y. Salvianolic acid-A induces apoptosis, mitochondrial membrane potential loss and DNA damage in small cell lung cancer cell lines. Trop J Pharm Res 2015;14(8):1399‒404. 链接1

[17] Tang XL, Yan L, Zhu L, Jiao DM, Chen J, Chen QY. Salvianolic acid A reverses cisplatin resistance in lung cancer a549 cells by targeting c-met and attenuating Akt/mTOR pathway. J Pharmacol Sci 2017;135(1):1‒7. 链接1

[18] Guan Y, Zhu JP, Shen J, Jia YL, Jin YC, Dong XW, et al. Salvianolic acid B improves airway hyperresponsiveness by inhibiting MUC5AC overproduction associated with Erk1/2/P38 signaling. Eur J Pharmacol 2018;824:30‒9. 链接1

[19] Ye YT, Zhong W, Sun P, Wang D, Wang C, Hu LM, et al. Apoptosis induced by the methanol extract of Salvia miltiorrhiza Bunge in non-small cell lung cancer through PTEN-mediated inhibition of PI3K/Akt pathway. J Ethnopharmacol 2017;200:107‒16. 链接1

[20] Guo R, Li L, Su J, Li S, Duncan SE, Liu ZH, et al. Pharmacological activity and mechanism of Tanshinone IIA in related diseases. Drug Des Dev Ther 2020;14:4735‒48. 链接1

[21] Zhang Y, Jiang P, Ye M, Kim SH, Jiang C, Lu JX, et al. Tanshinones: sources, pharmacokinetics and anti-cancer activities. Int J Mol Sci 2012;13(10):13621‒66. 链接1

[22] Zhang Y, Geng Y, He JT, Wu D, Zhang T, Xue L, et al. Tanshinone IIA induces apoptosis and autophagy in acute monocytic leukemia via downregulation of PI3K/Akt pathway. Am J Transl Res 2019;11(5):2995‒3006.

[23] Wang X, Shao M, Wang Y. GW29-e0760 Tanshinone IIA protects H9c2 cells from reactive oxygen species through inhabiting excessive autophagy via activation of PI3K/Akt/mTOR signaling pathway. J Am Coll Cardiol 2018;72(16):C24. 链接1

[24] Ding L, Wang S, Qu X, Wang J. Tanshinone IIA sensitizes oral squamous cell carcinoma to radiation due to an enhanced autophagy. Environ Toxicol Pharmacol 2016;46:264‒9. 链接1

[25] Onorati AV, Dyczynski M, Ojha R, Amaravadi RK. Targeting autophagy in cancer. Cancer 2018;124(16):3307‒18. 链接1

[26] White E, Mehnert JM, Chan CS. Autophagy, metabolism, and cancer. Clin Cancer Res 2015;21(22):5037‒46. 链接1

[27] Mulcahy Levy JM, Thorburn A. Autophagy in cancer: moving from understanding mechanism to improving therapy responses in patients. Cell Death Differ 2020;27(3):843‒57. 链接1

[28] Levy JMM, Towers CG, Thorburn A. Targeting autophagy in cancer. Nat Rev Cancer 2017;17(9):528‒42. 链接1

[29] Amaravadi RK, Kimmelman AC, Debnath J. Targeting autophagy in cancer: recent advances and future directions. Cancer Discov 2019;9(9):1167‒81. 链接1

[30] Qiu Y, Li C, Wang Q, Zeng X, Ji P. Tanshinone IIA induces cell death via Beclin-1-dependent autophagy in oral squamous cell carcinoma SCC-9 cell line. Cancer Med 2018;7(2):397‒407. 链接1

[31] Yun SM, Jung JH, Jeong SJ, Sohn EJ, Kim B, Kim SH. Tanshinone IIA induces autophagic cell death via activation of AMPK and ERK and inhibition of mTOR and p70 S6K in KBM-5 leukemia cells. Phytother Res 2014;28(3):458‒64. 链接1

[32] Mattiuzzi C, Lippi G. Current cancer epidemiology. J Epidemiol Glob Health 2019;9(4):217‒22. 链接1

[33] Feng RM, Zong YN, Cao SM, Xu RH. Current cancer situation in China: good or bad news from the 2018 global cancer statistics? Cancer Commun 2019;39(1):1‒12. 链接1

[34] Denton D, Kumar S. Autophagy-dependent cell death. Cell Death Differ 2019;26:605‒16. 链接1

[35] Kroemer G, Levine B. Autophagic cell death: the story of a misnomer. Nat Rev Mol Cell Biol 2008;9:1004‒10. 链接1

[36] Maiuri MC, Zalckvar E, Kimchi A, Kroemer G. Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol 2007;8:741‒52. 链接1

[37] Kroemer G, Galluzzi L, Vandenabeele P, Abrams J, Alnemri ES, Baehrecke EH, et al. Classification of cell death: recommendations of the nomenclature committee on cell death 2009. Cell Death Differ 2009;16:3‒11. 链接1

[38] Longo DL, Mizushima N, Levine B. Autophagy in human diseases. N Engl J Med 2020;383:1564‒76. 链接1

[39] Shintani T, Klionsky DJ. Autophagy in health and disease: a double-edged sword. Science 2004;306(5698):990‒5. 链接1

[40] Shen S, Kepp O, Michaud M, Martins I, Minoux H, Métivier D, et al. Association and dissociation of autophagy, apoptosis and necrosis by systematic chemical study. Oncogene 2011;30:4544‒56. 链接1

[41] Galluzzi L, Vitale I, Abrams JM, Alnemri ES, Baehrecke EH, Blagosklonny MV, et al. Molecular definitions of cell death subroutines: recommendations of the nomenclature committee on cell death 2012. Cell Death Differ 2012;19:107‒20. 链接1

[42] Luciani MF, Giusti C, Harms B, Oshima Y, Kikuchi H, Kubohara Y, et al. Atg1 allows second-signaled autophagic cell death in Dictyostelium. Autophagy 2011;7(5):501‒8. 链接1

[43] Tasdemir E, Galluzzi L, Maiuri MC, Criollo A, Vitale I, Hangen E, et al. Methods for assessing autophagy and autophagic cell death. Methods Mol Biol 2008;445:29‒76. 链接1

[44] Kocaturk NM, Akkoc Y, Kig C, Bayraktar O, Gozuacik D, Kutlu O. Autophagy as a molecular target for cancer treatment. Eur J Pharm Sci 2019;134:116‒37. 链接1

[45] Burikhanov R, Hebbar N, Noothi SK, Shukla N, Sledziona J, Araujo N, et al. Chloroquine-inducible Par-4 secretion is essential for tumor cell apoptosis and inhibition of metastasis. Cell Rep 2017;18(2):508‒19. 链接1

[46] Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000;100:57‒70. 链接1

[47] Yamamoto K, Venida A, Yano J, Biancur DE, Kakiuchi M, Gupta S, et al. Autophagy promotes immune evasion of pancreatic cancer by degrading MHC-I. Nature 2020;581:100‒5. 链接1

[48] Sun M, Hu K, Yang X, Chen Q, Liu Y, Zhou T, et al. Effect and metabolism of high-dose Danshen and Chuanxiong on tumor invasive and metastasis in Lewis lung cancer mouse. World J Integr Tradit West Med 2018;13:4. Chinese.

[49] Ding G, Song MZ, Yu EX. Study on the mechanism of Danshen, Chishao affecting walker 256 liver metastasis in experimental rats. Chin Oncol 2001;11(4):364‒6. Chinese.

[50] Cai W, Xu G, Hu Y, Gu X, Yan J, Qin D, et al. Long-term results of combination of radiation with destagnation in the treatment of nasopharyngeal carcinoma (NPC)—a prospective randomized trial on 188 cases. Chin J Radiat Oncol 1992;1(1):8‒10. Chinese.

[51] Wang HZ, Liang XY, Leng X, An J, Wu DL, Qiu SJ. The effect of blood-activating and stasis-removing Chinese medicine on the changes of white matter microstructure of patients with nasopharyngeal carcinoma after radiation therapy: an DTI-TBSS study. J Clin Radiol 2020;39(7):1273‒7. Chinese.

[52] Zang W, Bian H, Huang X, Yin G, Zhang C, Han LI, et al. Traditional Chinese medicine (TCM) Astragalus membranaceus and Curcuma wenyujin promote vascular normalization in tumor-derived endothelial cells of human hepatocellular carcinoma. Anticancer Res 2019;39(6):2739‒47. 链接1

[53] Wang WQ, Liu L, Sun HC, Fu YL, Xu HX, Chai ZT, et al. Tanshinone IIA inhibits metastasis after palliative resection of hepatocellular carcinoma and prolongs survival in part via vascular normalization. J Hematol Oncol 2012;5:69. 链接1

[54] Zhang Y, Tie MH, Bi F, Wang K. Tanshinone II improves distribution and anti-tumor efficacy of pegylated liposomal doxorubicin via normalizing the structure and function of tumor vasculature in Hepa1-6 hepatoma mice model. J Tradit Chin Med 2018;38(6):815‒22. 链接1

[55] Yu L, Alva A, Su H, Dutt P, Freundt E, Welsh S, et al. Regulation of an ATG7-Beclin 1 programof autophagic cell deathby caspase-8. Science2004;304(5676):1500‒2. 链接1

[56] Kang R, Zeh HJ, Lotze MT, Tang D. The Beclin 1 network regulates autophagy and apoptosis. Cell Death Differ 2011;18:571‒80. 链接1

[57] Pattingre S, Tassa A, Qu X, Garuti R, Liang XH, Mizushima N, et al. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 2005;122(6):927‒39. 链接1

[58] Xu HD, Qin ZH. Beclin 1, Bcl-2 and autophagy. Adv Exp Med Biol 2019;1206:109‒26.

[59] Li P, Shi M, Maique J, Shaffer J, Yan S, Moe OW, et al. Beclin 1/Bcl-2 complex-dependent autophagy activity modulates renal susceptibility to ischemia-reperfusion injury and mediates renoprotection by klotho. Am J Physiol Renal Physiol 2020;318(3):F772‒92. 链接1

[60] Toton E, Lisiak N, Sawicka P, Rybczynska M. Beclin-1 and its role as a target for anticancer therapy. J Physiol Pharmacol 2014;65(4):459‒67.

[61] Takahashi Y, Coppola D, Matsushita N, Cualing HD, Sun M, Sato Y, et al. Bif-1 interacts with Beclin 1 through UVRAG and regulates autophagy and tumorigenesis. Nat Cell Biol 2007;9:1142‒51. 链接1

相关研究