期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2023年 第20卷 第1期 doi: 10.1016/j.eng.2021.09.019

基于平板热管的新型直膨式辐射可调节供暖末端

a Department of Building Science, Tsinghua University, Beijing 100084, China
b Key Laboratory of Eco Planning & Green Building, Ministry of Education, Tsinghua University, Beijing 100084, China

收稿日期: 2021-05-10 修回日期: 2021-08-25 录用日期: 2021-09-01 发布日期: 2022-01-04

下一篇 上一篇

摘要

建筑供暖电气化是实现碳中和目标的有效途径。作为一种清洁和可持续的电气化供暖技术,空气源热泵被广泛应用于缺乏集中供暖的地区。然而,现有末端形式存在难以同时实现间歇性和舒适性,且作为主要构件尚未较好地与空气源热泵匹配等问题。因此,本研究提出了一种与空气源热泵结合的新型辐射可调节供暖末端,以实现电气化节能减碳、间歇性和更好的热舒适性。针对辐射供暖末端目前存在三个主要问题,分别是峰值供热量受限、可调节性受限以及难以与空气源热泵结合,本文通过改进末端结构设计(改进A~E)提供了有效解决方案。研究结果表明,新末端能够将峰值供热量提升23.6%,并为使用者提供从10.1%到30.9%的可调辐射比。在此基础上,巧妙地借助平板热管减少了原有直膨式辐射供暖末端的制冷剂管路长度,进而改善了供暖末端的稳定性(利于回油)、间歇性(降低热惯性)和安全性(降低制冷剂泄漏风险)。此外,本文基于新末端提出了一种新的分阶段运行策略,可进一步提升末端的可调节性。本研究可以为电气化供暖助力建筑低碳提供一定参考。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

图10

图11

图12

图13

图14

图15

图16

图17

图18

图19

图20

图21

参考文献

[ 1 ] Cao X, Dai X, Liu J. Building energy-consumption status worldwide and the state-of-the-art technologies for zero-energy buildings during the past decade. Energy Build 2016;128:198‒213. 链接1

[ 2 ] Building Energy Saving Research Center of Tsinghua University. Annual report on China building energy efficiency. Report. Beijing: China Architecture and Building Press; 2020. Chinese.

[ 3 ] Krausmann F, Wiedenhofer D, Haberl H. Growing stocks of buildings, infrastructures and machinery as key challenge for compliance with climate targets. Glob Environ Change 2020;61:102034. 链接1

[ 4 ] Sovacool BK, Cabeza LF, Pisello AL, Colladon AF, Larijani HM, Dawoud B, et al. Decarbonizing household heating: reviewing demographics, geography and low-carbon practices and preferences in five European countries. Renew Sustain Energy Rev 2021;139:110703. 链接1

[ 5 ] Romanchenko D, Nyholm E, Odenberger M, Johnsson F. Impacts of demand response from buildings and centralized thermal energy storage on district heating systems. Sustain Cities Soc 2021;64:102510. 链接1

[ 6 ] Bloess A, Schill WP, Zerrahn A. Power-to-heat for renewable energy integration: a review of technologies, modeling approaches, and flexibility potentials. Appl Energy 2018;212:1611‒26. 链接1

[ 7 ] Thomaßen G, Kavvadias K, Jiménez Navarro JP. The decarbonisation of the EU heating sector through electrification: a parametric analysis. Energy Policy 2021;148(A):111929. 链接1

[ 8 ] Duan M, Wu Y, Sun H, Yang Z, Shi W, Lin B. Intermittent heating performance of different terminals in hot summer and cold winter zone in China based on field test. J Build Eng 2021;43:102546. 链接1

[ 9 ] Guo S, Yan D, Peng C, Cui Y, Zhou X, Hu S. Investigation and analyses of residential heating in the HSCW climate zone of China: status quo and key features. Build Environ 2015;94(2):532‒42. 链接1

[10] Hu B, Wang RZ, Xiao B, He L, Zhang W, Zhang S. Performance evaluation of different heating terminals used in air source heat pump system. Int J Refrig 2019;98:274‒82. 链接1

[11] Hemadri VA, Gupta A, Khandekar S. Thermal radiators with embedded pulsating heat pipes: infra-red thermography and simulations. Appl Therm Eng 2011;31(6‒7):1332‒46.

[12] Wang D, Wu C, Liu Y, Chen P, Liu J. Experimental study on the thermal performance of an enhanced-convection overhead radiant floor heating system. Energy Build 2017;135:233‒43. 链接1

[13] Chae YT, Strand RK. Thermal performance evaluation of hybrid heat source radiant system using a concentrate tube heat exchanger. Energy Build 2014;70:246‒57. 链接1

[14] Li T, Liu Y, Chen Y, Wang D, Wang Y. Experimental study of the thermal performance of combined floor and Kang heating terminal based on differentiated thermal demands. Energy Build 2018;171:196‒208. 链接1

[15] Li Z, Zhang D, Li C. Experimental evaluation of indoor thermal environment with modularity radiant heating in low energy buildings. Int J Refrig 2021;123:159‒68. 链接1

[16] Zhao M, Gu ZL, Kang WB, Liu X, Zhang LY, Jin LW, et al. Experimental investigation and feasibility analysis on a capillary radiant heating system based on solar and air source heat pump dual heat source. Appl Energy 2017;185:2094‒105. 链接1

[17] Ding P, Li Y, Long E, Zhang Y, Liu Q. Study on heating capacity and heat loss of capillary radiant floor heating systems. Appl Therm Eng 2020;165:114618. 链接1

[18] World bank group climate change action plan 2016‒2020. Report. Washington, DC: World Bank; 2017. 链接1

[19] Grafakos S, Viero G, Reckien D, Trigg K, Viguie V, Sudmant A, et al. Integration of mitigation and adaptation in urban climate change action plans in Europe: a systematic assessment. Renew Sustain Energy Rev 2020;121:109623. 链接1

[20] Calderón C, Underwood C, Yi J, Mcloughlin A, Williams B. An area-based modelling approach for planning heating electrification. Energy Policy 2019;131:262‒80. 链接1

[21] Carroll P, Chesser M, Lyons P. Air source heat pumps field studies: a systematic literature review. Renew Sustain Energy Rev 2020;134:110275. 链接1

[22] Vorushylo I, Keatley P, Shah N, Green R, Hewitt N. How heat pumps and thermal energy storage can be used to manage wind power: a study of Ireland. Energy 2018;157:539‒49. 链接1

[23] Xiao B, He L, Zhang S, Kong T, Hu B, Wang RZ. Comparison and analysis on airto- air and air-to-water heat pump heating systems. Renew Energy 2020;146:1888‒96. 链接1

[24] Lin B, Wang Z, Sun H, Zhu Y, Ouyang Q. Evaluation and comparison of thermal comfort of convective and radiant heating terminals in office buildings. Build Environ 2016;106:91‒102. 链接1

[25] Yoshino H, Guan S, Lun YF, Mochida A, Shigeno T, Yoshino Y, et al. Indoor thermal environment of urban residential buildings in China: winter investigation in five major cities. Energy Build 2004;36(12):1227‒33. 链接1

[26] Shao S, Zhang H, You S, Zheng W, Jiang L. Thermal performance analysis of a new refrigerant-heated radiator coupled with air-source heat pump heating system. Appl Energy 2019;247:78‒88. 链接1

[27] Dong J, Zhang L, Deng S, Yang B, Huang S. An experimental study on a novel radiant-convective heating system based on air source heat pump. Energy Build 2018;158:812‒21. 链接1

[28] Xu S, Ding R, Niu J, Ma G. Investigation of air-source heat pump using heat pipes as heat radiator. Int J Refrig 2018;90:91‒8. 链接1

[29] Yang B, Dong J, Zhang L, Song M, Jiang Y, Deng S. Heating and energy storage characteristics of multi-split air source heat pump based on energy storage defrosting. Appl Energy 2019;238:303‒10. 链接1

[30] Zhang H, Jiang L, Zheng W, You S, Jiang T, Shao S, et al. Experimental study on a novel thermal storage refrigerant-heated radiator coupled with air source heat pump heating system. Build Environ 2019;164:106341. 链接1

[31] Wang T, Zhao Y, Diao Y, Ma C, Zhang Y, Lu X. Experimental investigation of a novel thermal storage solar air heater (TSSAH) based on flat micro-heat pipe arrays. Renew Energy 2021;173:639‒51. 链接1

[32] Weng C, Wang Z, Xiang J, Zhao X, Chen F, Zheng S, et al. Numerical and experimental investigations of the micro-channel flat loop heat pipe (MCFLHP) heat recovery system for data centre cooling and heat recovery. J Build Eng 2021;35:102088. 链接1

[33] Jouhara H, Almahmoud S, Chauhan A, Delpech B, Bianchi G, Tassou SA, et al. Experimental and theoretical investigation of a flat heat pipe heat exchanger for waste heat recovery in the steel industry. Energy 2017;141:1928‒39. 链接1

[34] Tan R, Zhang Z. Heat pipe structure on heat transfer and energy saving performance of the wall implanted with heat pipes during the heating season. Appl Therm Eng 2016;102:633‒40. 链接1

[35] Xin F, Ma T, Wang Q. Thermal performance analysis of flat heat pipe with graded mini-grooves wick. Appl Energy 2018;228:2129‒39. 链接1

[36] Sun H, Wu Y, Lin B, Duan M, Lin Z, Li H. Experimental investigation on the thermal performance of a novel radiant heating and cooling terminal integrated with a flat heat pipe. Energy Build 2020;208: 109646. 链接1

[37] Li J, Li X, Zhou G, Liu Y. Development and evaluation of a supersized aluminum flat plate heat pipe for natural cooling of high power telecommunication equipment. Appl Therm Eng 2021;184:116278. 链接1

[38] Wu Y, Sun H, Duan M, Lin B, Zhao H. Dehumidification-adjustable cooling of radiant cooling terminals based on a flat heat pipe. Build Environ 2021;194:107716. 链接1

[39] Song Z, Ji J, Cai J, Li Z, Han K. Performance analyses on a novel heat pump with a hybrid condenser combined with flat plate micro-channel heat pipe plus TEG and FPV evaporator. Energy Convers Manage 2021;228: 113606. 链接1

[40] Kline SJ, McClintock FA. Describing uncertainties in single sample experiments. Mech Eng 1953;75:3‒8.

相关研究