期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2015年 第1卷 第1期 doi: 10.15302/J-ENG-2015013

双金属电子束选区熔化的硬件开发与成形实验

1 Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
2 Key Laboratory for Advanced Materials Processing Technology (Ministry of Education of China), Tsinghua University, Beijing 100084, China
3 Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Tsinghua University, Beijing 100084, China

# These authors contributed equally to this work.

收稿日期: 2015-02-16 修回日期: 2015-03-25 录用日期: 2015-03-25 发布日期: 2015-03-31

下一篇 上一篇

摘要

电子束选区熔化(EBSM)是一种利用电子束扫描、熔化金属粉末逐层制造三维实体零件的增材制造技术。近年来,EBSM已经成功应用于多种材料的增材制造。现有EBSM工艺方面的研究主要聚焦于单种材料的成形,本研究提出一种能够利用两种粉末材料成形梯度结构的EBSM工艺,提出基于振动的粉末供给方法,并实现了两种粉末材料独立供给并混合。利用Ti6Al4V和Ti47Al2Cr2Nb两种材料进行成形。Ti6Al4V在室温下有很好的强度与塑性,而Ti47Al2Cr2Nb在高温下性能优良,但有很大的室温脆性。本研究提出的双金属EBSM工艺成功制备了Ti6Al4V/Ti47Al2Cr2Nb梯度结构,并利用光学显微镜、扫描电子显微镜、电子微探针分析等方法研究了该梯度结构的微观组织和化学成分。结果显示,梯度结构的截面厚度约为300 μm,没有裂纹,化学成分在界面处呈阶梯式变化。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

图10

图11

图12

图13

图14

图15

图16

参考文献

[ 1 ] Y. N. Yan, H. B. Qi, F. Lin, W. He, H. R. Zhang, R. J. Zhang. Produced three-dimensional metal parts by electron beam selective melting. Chin. J. Mech. Eng., 2007, 43(6): 87–92 (in Chinese)

[ 2 ] D. Cormier, O. L. A. Harrysson, T. Mahale, H. A. West. Freeform fabrication of titanium aluminide via electron beam melting using prealloyed and blended powders. Adv. Mater. Sci. Eng., 2008, 2007: 6822–6825

[ 3 ] L. E. Murr, Metal fabrication by additive manufacturing using laser and electron beam melting technologies. J. Mater. Sci. Technol., 2012, 28(1): 1–14

[ 4 ] L. E. Murr, Microstructures of Rene 142 nickel-based superalloy fabricated by electron beam melting. Acta Mater., 2013, 61(11): 4289–4296 链接1

[ 5 ] S. H. Sun, Y. Koizumi, S. Kurosu, Y. P. Li, H. Matsumoto, A. Chiba. Build direction dependence of microstructure and high-temperature tensile property of Co-Cr-Mo alloy fabricated by electron beam melting. Acta Mater., 2014, 64: 154–168 链接1

[ 6 ] Y. Chen, C. Zeng, M. Yan. Research process of Ti base functional gradient materials. Mater. Rev., 2012, 26(S1): 267–270 (in Chinese)

[ 7 ] R. Banerjee, D. Bhattacharyya, P. C. Collins, G. B. Viswanathan, H. L. Fraser. Precipitation of grain boundary a in a laser deposited compositionally graded Ti-8Al-xV alloy—An orientation microscopy study. Acta Mater., 2004, 52(2): 377–385 链接1

[ 8 ] H. Sahasrabudhe, R. Harrison, C. Carpenter, A. Bandyopadhyay. Stainless steel to titanium bimetallic structure using LENSTM. Addit. Manuf., 2015, 5: 1–8 链接1

[ 9 ] Y. Liang, X. Tian, Y. Zhu, J. Li, H. Wang. Compositional variation and microstructural evolution in laser additive manufactured Ti/Ti-6Al-2Zr-1Mo-1V graded structural material. Mater. Sci. Eng. A, 2014, 599: 242–246

[10] H. P. Qu, P. Li, S. Q. Zhang, A. Li, H. M. Wang. Microstructure and mechanical property of laser melting deposition (LMD) Ti/TiAl structural gradient material. Mater. Des., 2010, 31(1): 574–582 链接1

[11] Z. H. Liu, D. Q. Zhang, S. L. Sing, C. K. Chua, L. E. Loh. Interfacial characterization of SLM parts in multi-material processing: Metallurgical diffusion between 316L stainless steel and C18400 copper alloy. Mater. Charact., 2014, 94: 116–125 链接1

[12] N. Hrabe, T. Quinn. Effects of processing on microstructure and mechanical properties of a titanium alloy (Ti-6Al-4V) fabricated using electron beam melting (EBM), part 1: Distance from build plate and part size. Mater. Sci. Eng. A, 2013, 573: 264–270

相关研究