期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2015年 第1卷 第3期 doi: 10.15302/J-ENG-2015077

光纤微针装置中增强对流药物输注的热强化表征

1 Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
2 Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24060, USA
3 School of Biomedical Engineering, Virginia Tech, Blacksburg, VA 24060, USA
4 Department of Mechanical Engineering, University of Texas, Austin, TX 78712, USA

收稿日期: 2015-08-01 修回日期: 2015-08-21 录用日期: 2015-09-04 发布日期: 2015-09-30

下一篇 上一篇

摘要

增强对流输注 (CED) 是一项颇具前景的技术,其借助压力驱动流来增强输注药物进入细胞间隙的穿透力。为进一步提升CED的药物分布容积,笔者发明了一种可产生局部亚致死热量的光纤微针装置。本文试图在琼脂糖组织模型中对该技术进行定量表征。在15 °C、20 °C、25 °C和30 °C的恒温条件下,染料的输注在质量分数为0.6%的琼脂糖组织模型中进行分析。输注指标通过自定义阴影成像技术和图像处理算法进行定量。利用所获数据构建一个分布容积的经验预测时序模型作为组织模型温度的函数。接下来通过一组概念验证实验来评估液体输注时新型光纤装置产生局部光加热的能力。恒温输注显示温度和分布容积呈正相关,在100 min时,在30 °C恒温条件下体积扩散是在15 °C恒温条件下的7倍。在光加热 (1064 nm,500 mW) 过程中,输注呈现相似的效果:与对照组 (0 mW) 相比,输注体积在4 h时增大了3.5倍。本文的分析和结果为体积扩散的热介导增强提供了特征描述及新思路。

图片

图1

图2

图3

图4

图5

图6

参考文献

[ 1 ] C. V. Pardeshi, V. S. Belgamwar. Direct nose to brain drug delivery via integrated nerve pathways bypassing the blood-brain barrier: An excellent platform for brain targeting. Expert Opin. Drug Deliv., 2013, 10(7): 957–972 链接1

[ 2 ] B. S. Bleier, R. E. Kohman, R. E. Feldman, S. Ramanlal, X. Han. Permeabilization of the blood-brain barrier via mucosal engrafting: Implications for drug delivery to the brain. PLoS One, 2013, 8(4): e61694 链接1

[ 3 ] M. Aryal, C. D. Arvanitis, P. M. Alexander, N. McDannold. Ultrasound-mediated blood-brain barrier disruption for targeted drug delivery in the central nervous system. Adv. Drug Deliv. Rev., 2014, 72: 94–109 链接1

[ 4 ] F. Dilnawaz, A. Singh, S. Mewar, U. Sharma, N. R. Jagannathan, S. K. Sahoo. The transport of non-surfactant based paclitaxel loaded magnetic nanoparticles across the blood brain barrier in a rat model. Biomaterials, 2012, 33(10): 2936–2951 链接1

[ 5 ] P. A. Garcia, 7.0-T magnetic resonance imaging characterization of acute blood-brain-barrier disruption achieved with intracranial irreversible electroporation. PLoS One, 2012, 7(11): e50482 链接1

[ 6 ] D. W. Laske, R. J. Youle, E. H. Oldfield. Tumor regression with regional distribution of the targeted toxin TF-CRM107 in patients with malignant brain tumors. Nat. Med., 1997, 3(12): 1362–1368 链接1

[ 7 ] R. H. Bobo, D. W. Laske, A. Akbasak, P. F. Morrison, R. L. Dedrick, E. H. Oldfield. Convection-enhanced delivery of macromolecules in the brain. Proc. Natl. Acad. Sci. U.S.A., 1994, 91(6): 2076–2080 链接1

[ 8 ] K. S. Bankiewicz, Convection-enhanced delivery of AAV vector in parkinsonian monkeys; in vivo detection of gene expression and restoration of dopaminergic function using pro-drug approach. Exp. Neurol., 2000, 164(1): 2–14 链接1

[ 9 ] L. C. Vazquez, Polymer-coated cannulas for the reduction of backflow during intraparenchymal infusions. J. Mater. Sci. Mater. Med., 2012, 23(8): 2037–2046

[10] S. S. Gill, Direct brain infusion of glial cell line-derived neurotrophic factor in Parkinson disease. Nat. Med., 2003, 9(5): 589–595 链接1

[11] M. A. Rogawski. Convection-enhanced delivery in the treatment of epilepsy. Neurotherapeutics, 2009, 6(2): 344–351 链接1

[12] J. H. Sampson, Intracerebral infusate distribution by convection-enhanced delivery in humans with malignant gliomas: Descriptive effects of target anatomy and catheter positioning. Neurosurgery, 2007, 60(2 Suppl 1): ONS89-98; discussion ONS98-9

[13] J. F. Hamilton, Heparin coinfusion during convection-enhanced delivery (CED) increases the distribution of the glial-derived neurotrophic factor (GDNF) ligand family in rat striatum and enhances the pharmacological activity of neurturin. Exp. Neurol., 2001, 168(1): 155–161 链接1

[14] A. A. Kanner. Convection-enhanced delivery.In: G. H. Barnett, ed. High-Grade Gliomas: Diagnosis and Treatment. Totowa, NJ: Humana Press, 2007: 303–314

[15] W. A. Vandergrift, S. J. Patel, J. S. Nicholas, A. K. Varma. Convection-enhanced delivery of immunotoxins and radioisotopes for treatment of malignant gliomas. Neurosurg. Focus, 2006, 20(4): E13 链接1

[16] M. Bettag, Stereotactic laser therapy in cerebral gliomas. Acta Neurochir. Suppl. (Wien), 1991, 52: 81–83 链接1

[17] A. Carpentier, MR-guided laser-induced thermal therapy (LITT) for recurrent glioblastomas. Lasers Surg. Med., 2012, 44(5): 361–368 链接1

[18] H. J. Schwarzmaier, I. V. Yaroslavsky, A. N. Yaroslavsky, V. Fiedler, F. Ulrich, T. Kahn. Treatment planning for MRI-guided laser-induced interstitial thermotherapy of brain tumors—The role of blood perfusion. J. Magn. Reson. Imaging, 1998, 8(1): 121–127 链接1

[19] A. Carpentier, Real-time magnetic resonance-guided laser thermal therapy for focal metastatic brain tumors. Neurosurgery, 2008, 63(1 Suppl 1): ONS21-8; discussion ONS28-9

[20] R. J. Stafford, D. Fuentes, A. A. Elliott, J. S. Weinberg, K. Ahrar. Laser-induced thermal therapy for tumor ablation. Crit. Rev. Biomed. Eng., 2010, 38(1): 79–100 链接1

[21] C. G. Hadjipanayis, EGFRvIII antibody-conjugated iron oxide nanoparticles for magnetic resonance imaging-guided convection-enhanced delivery and targeted therapy of glioblastoma. Cancer Res., 2010, 70(15): 6303–6312 链接1

[22] J. H. Sampson, , and PRECISE Trial Investigators. Poor drug distribution as a possible explanation for the results of the PRECISE trial. J. Neurosurg., 2010, 113(2): 301–309 链接1

[23] R. Hamazoe, M. Maeta, N. Kaibara. Intraperitoneal thermochemotherapy for prevention of peritoneal recurrence of gastric cancer. Final results of a randomized controlled study. Cancer, 1994, 73(8): 2048–2052 链接1

[24] Y. Liu, Ultrasound-induced hyperthermia increases cellular uptake and cytotoxicity of P-glycoprotein substrates in multi-drug resistant cells. Pharm. Res., 2001, 18(9): 1255–1261 链接1

[25] A. H. Saad, G. M. Hahn. Ultrasound-enhanced effects of adriamycin against murine tumors. Ultrasound Med. Biol., 1992, 18(8): 715–723 链接1

[26] J. B. Block, P. A. Harris, A. Peale. Preliminary observations on temperature-enhanced drug uptake by leukemic leukocytes in vitro. Cancer Chemother. Rep., 1975, 59(5): 985–988

[27] M. R. DeWitt, A. M. Pekkanen, J. Robertson, C. G. Rylander, M. Nichole Rylander. Influence of hyperthermia on efficacy and uptake of carbon nanohorn-cisplatin conjugates. J. Biomech. Eng., 2014, 136(2): 021003 链接1

[28] R. L. Hood, R. T. Andriani Jr., S. Emch, J. L. Robertson, C. G. Rylander, J. H. Rossmeisl Jr. Fiberoptic microneedle device facilitates volumetric infusate dispersion during convection-enhanced delivery in the brain. Lasers Surg. Med., 2013, 45(7): 418–426 链接1

[29] M. A. Kosoglu, R. L. Hood, Y. Chen, Y. Xu, M. N. Rylander, C. G. Rylander. Fiber optic microneedles for transdermal light delivery: Ex vivo porcine skin penetration experiments. J. Biomech. Eng., 2010, 132(9): 091014 链接1

[30] M. A. Kosoglu, Fiberoptic microneedles for microscale interstitial delivery of therapeutic light. Laser. Surg. Med., 2011, 43(9): 914–920 链接1

[31] R. L. Hood, M. A. Kosoglu, M. Parker, C. G. Rylander. Effects of microneedle design parameters on hydraulic resistance. J. Med. Device., 2011, 5(3): 31012–31016 链接1

[32] Z. J. Chen, A realistic brain tissue phantom for intraparenchymal infusion studies. J. Neurosurg., 2004, 101(2): 314–322 链接1

[33] T. Gill, In vitro and in vivo testing of a novel recessed-step catheter for reflux-free convection-enhanced drug delivery to the brain. J. Neurosci. Methods, 2013, 219(1): 1–9 链接1

[34] R. L. Hood, T. Ecker, R. Andriani, J. Robertson, J. Rossmeisl, C. G. Rylander. Augmenting convection-enhanced delivery through simultaneous co-delivery of fluids and laser energy with a fiberoptic microneedle device. In: I. Gannot, ed. Proceedings of SPIE 8576: Optical Fibers and Sensors for Medical Diagnostics and Treatment Applications XIII. San Francisco, CA, USA, 2013

[35] F. Casanova, P. R. Carney, M. Sarntinoranont. Influence of needle insertion speed on backflow for convection-enhanced delivery. J. Biomech. Eng., 2012, 134(4): 041006 链接1

[36] W. Martanto, J. S. Moore, T. Couse, M. R. Prousnitz. Mechanism of fluid infusion during microneedle insertion and retraction. J. Contrd. Release, 2006, 112(37): 357–361 链接1

[37] Z. J. Chen, W. C. Broaddus, R. R. Viswanathan, R. Raghavan, G. T. Gillies. Intraparenchymal drug delivery via positive-pressure infusion: Experimental and modeling studies of poroelasticity in brain phantom gels. IEEE Trans. Biomed. Eng., 2002, 49(2): 85–96 链接1

[38] Z. J. Chen, W. C. Broaddus, R. R. Viswanathan, R. Raghavan, G. T. Gillies. Intraparenchymal drug delivery via positive-pressure infusion: Experimental and modeling studies of poroelasticity in brain phantom gels. IEEE Trans. Biomed. Eng., 2002, 49(2): 85–96 链接1

[39] G. T. Gillies, J. H. Smith, J. A. Humphrey, W. C. Broaddus. Positive pressure infusion of therapeutic agents into brain tissues: Mathematical and experimental simulations. Technol. Health Care, 2005, 13(4): 235–243

[40] S. J. Panse, H. L. Fillmore, Z. J. Chen, G. T. Gillies, W. C. Broaddus. A novel coaxial tube catheter for central nervous system infusions: Performance characteristics in brain phantom gel. J. Med. Eng. Technol., 2010, 34(7−8): 408–414

相关研究