期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《信息与电子工程前沿(英文)》 >> 2015年 第16卷 第7期 doi: 10.1631/FITEE.1400410

Analyzing the service availability of mobile cloud computing systems by fluid-flow approximation

College of Computer Science and Technology, Harbin Engineering University, Harbin 150001, China

发布日期: 2015-07-20

下一篇 上一篇

摘要

Mobile cloud computing (MCC) has become a promising technique to deal with computation- or data-intensive tasks. It overcomes the limited processing power, poor storage capacity, and short battery life of mobile devices. Providing continuous and on-demand services, MCC argues that the service must be available for users at anytime and anywhere. However, at present, the service availability of MCC is usually measured by some certain metrics of a real-world system, and the results do not have broad representation since different systems have different load levels, different deployments, and many other random factors. Meanwhile, for large-scale and complex types of services in MCC systems, simulation-based methods (such as Monte-Carlo simulation) may be costly and the traditional state-based methods always suffer from the problem of state-space explosion. In this paper, to overcome these shortcomings, fluid-flow approximation, a breakthrough to avoid state-space explosion, is adopted to analyze the service availability of MCC. Four critical metrics, including response time of service, minimum sensing time of devices, minimum number of nodes chosen, and action throughput, are defined to estimate the availability by solving a group of ordinary differential equations even before the MCC system is fully deployed. Experimental results show that our method costs less time in analyzing the service availability of MCC than the Markov- or simulation-based methods.

相关研究