资源类型

期刊论文 12

年份

2023 1

2022 1

2021 2

2020 1

2019 1

2017 1

2016 2

2013 1

2008 1

2007 1

展开 ︾

关键词

Fe、Co、Ru 碳化物 1

尺寸效应 1

晶相结构 1

费托合成 1

展开 ︾

检索范围:

排序: 展示方式:

The modification of titanium in mesoporous silica for Co-based FischerTropsch catalysts

《化学科学与工程前沿(英文)》 2022年 第16卷 第8期   页码 1224-1236 doi: 10.1007/s11705-022-2139-1

摘要: Ordered SBA-15 mesoporous silica with incorporated titanium was successfully synthesized via a one-pot hydrothermal crystallization method. The characterization including powder X-ray diffraction, Brunauer–Emmett–Teller, transmission electron microscope, temperature-programmed reduction, temperature-programmed desorption, Fourier transform infrared and ultraviolet-visible-near infrared spectrometer was performed to explore the physical and chemical structures of both the supports and the catalysts. The results showed that titanium was successfully incorporated into the mesoporous silica framework with a limited amount of titanium (Si/Ti > 20), and the mesoporous structure was retained. However, the increased titanium content inevitably resulted in the formation of anatase TiO 2 particles on the support surface. The increased incorporated titanium strengthened the interactions between cobalt species and supports, which was favorable for the cobalt species dispersion, despite the limited cobalt oxide reducibility. The enhanced metal-support interactions were beneficial for the CO/H2 ratio at the active cobalt sites, which facilitated the formation of more C5+ hydrocarbons. This study provides a promising method for support modification with incorporated-heteroatoms for the rational development of Fischer–Tropsch catalysts.

关键词: Fischer–Tropsch synthesis     titanium incorporation     mesoporous silica     metal-support interactions     C5+ selectivity    

Research Trends in Fischer--Tropsch Catalysis for Coal to Liquids Technology

Emiel J. M. Hensen,Peng Wang,Wayne Xu

《工程管理前沿(英文)》 2016年 第3卷 第4期   页码 321-330 doi: 10.15302/J-FEM-2016051

摘要: Fischer–Tropsch Synthesis (FTS) constitutes catalytic technology that converts synthesis gas to synthetic liquid fuels and chemicals. While synthesis gas can be obtained from any carbonaceous feedstock, current industrial FTS operations are almost exclusively based on natural gas. Due to the energy structure of China where cheap coal is abundant, coal to liquids (CTL) technology involving coal gasification, FTS and syncrude upgrading is increasingly being considered as a viable option to convert coal to clean transportation fuels. In this brief paper, we review some pertinent issues about Fe- and Co-based FTS catalysts. Fe is better suited to convert synthesis gas derived from coal gasification into fuels. The authors limit themselves to noting some important trends in the research on Fe-based catalysts. They focus on the preparation of phase-pure carbides and innovative cheap synthesis methods for obtaining active and stable catalysts. These approaches should be augmented by (1) computational investigations that are increasingly able to predict not only mechanism, reaction rates and selectivity but also optimum catalyst composition, as well as (2) characterization of the catalytic materials under conditions close to the operation in real reactors.

关键词: Fischer–Tropsch     FTS     CTL     Fe catalyst     iron carbide     computational modeling    

Effects of Fischer-Tropsch diesel fuel on combustion and emissions of direct injection diesel engine

HUANG Yongcheng, WANG Shangxue, ZHOU Longbao

《能源前沿(英文)》 2008年 第2卷 第3期   页码 261-267 doi: 10.1007/s11708-008-0062-x

摘要: Effects of Fischer-Tropsch (F-T) diesel fuel on the combustion and emission characteristics of a single-cylinder direct injection diesel engine under different fuel delivery advance angles were investigated. The experimental results show that F-T diesel fuel exhibits shorter ignition delay, lower peak values of premixed burning rate, lower combustion pressure and pressure rise rate, and higher peak value of diffusion burning rate than conventional diesel fuel when the engine remains unmodified. In addition, the unmodified engine with F-T diesel fuel has lower brake specific fuel consumption and higher effective thermal efficiency, and presents lower HC, CO, NO and smoke emissions than conventional diesel fuel. When fuel delivery advance angle is retarded by 3 crank angle degrees, the combustion duration is obviously shortened; the peak values of premixed burning rate, the combustion pressure and pressure rise rate are further reduced; and the peak value of diffusion burning rate is further increased for F-T diesel fuel operation. Moreover, the retardation of fuel delivery advance angle results in a further significant reduction in NO emissions with no penalty on specific fuel consumption and with much less penalty on HC, CO and smoke emissions.

关键词: combustion pressure     further     HC     operation     single-cylinder    

Combustion characteristics of a direct-injection diesel engine fueled with Fischer-Tropsch diesel

HUANG Yongcheng, ZHOU Longbao, PAN Keyu

《能源前沿(英文)》 2007年 第1卷 第2期   页码 239-244 doi: 10.1007/s11708-007-0033-7

摘要: Fischer-Tropsch (F-T) diesel fuel is characterized by a high cetane number, a near-zero sulphur content and a very low aromatic level. On the basis of the recorded incylinder pressures and injector needle lifts, the combustion characteristics of an unmodified single-cylinder direct-injection diesel engine operating on F-T diesel fuel are analyzed and compared with those of conventional diesel fuel operation. The results show that F-T diesel fuel exhibits a slightly longer injection delay and injection duration, an average of 18.7% shorter ignition delay, and a comparable total combustion duration when compared to those of conventional diesel fuel. Meanwhile, F-T diesel fuel displays an average of 26.8% lower peak value of premixed burning rate and a higher peak value of diffusive burning rate. In addition, the F-T diesel engine has a slightly lower peak combustion pressure, a far lower rate of pressure rise, and a lower mechanical load and combustion noise than the conventional diesel engine. The brake specific fuel consumption is lower and the effective thermal efficiency is higher for F-T diesel fuel operation.

NICE’s Indirect Coal-to-Liquid Process for Producing Clean Transportation Fuels Using Fischer-Tropsch

Omar M. Basha,Li Weng,Zhuo-wu Men,Wayne Xu,Badie I. Morsi

《工程管理前沿(英文)》 2016年 第3卷 第4期   页码 362-376 doi: 10.15302/J-FEM-2016049

摘要: China is currently the world’s top coal consumer and the largest oil importer to sustain its rising economy and meet the mounting demand for transportation fuels. However, the increasing emissions due to the huge fossil fuels consumption, coupled with oil market instability, could derail China’s economic growth and jeopardize its national energy security. To face such a hurdle, China has been aggressively supporting low-carbon businesses opportunuties over the past decade, has recently announced several plans to cap coal utilization, and is currently the biggest investor in clean energy technologies. Coal-to-Liquid (CTL) is one of the most promising clean coal technologies, offering an ideal solution that can meet China’s energy demands and environmental expectations. It is widely known that the Shenhua Group has pioneered and is currently leading the commercialization of the Direct Coal Liquefaction (DCL) process in China. This paper highlights a part of the joint research effort undertaken by the National Institute of Clean-and-Low-Carbon Energy (NICE) and University of Pittsburgh in order to develop and commercialize the Indirect Coal Liquefaction (ICL) process. In this mission, NICE has built and operated an ICL plant including a large-scale (5.8-m ID and 30-m height) Slurry-Bubble-Column Reactor (SBCR) for Fischer-Tropsch synthesis using iron catalyst. The research, conducted at the University of Pittsburgh over the past few years, allowed building a user-friendly Simulator, based on a comprehensive SBCR model integrated with Aspen Plus and is validated using data from the NICE actual ICL plant. In this paper, the Simulator predictions of the performance of the NICE SBCR, operating with iron and cobalt catalysts under four different tail gas recycle strategies: (1) direct recycle; (2) using a Pressure Swing Adsorption (PSA) unit; (3) using a reformer; and (4) using a Chemical looping Combustion (CLC) process, are presented. It should be mentioned also that our joint research effort has laid the foundation for the design of a commercial-scale SBCR for producing one-million tons per annum of environmentally friendly and ultraclean (no sulfur, no nitrogen and virtually no aromatics) transportation fuels, which could greatly contribute to ensuring China’s national energy security while curbing its lingering emission problems.

关键词: Fischer-Tropsch synthesis     tail gas recycle     simulations     process design    

Controllable Fe/HCS catalysts in the Fischer-Tropsch synthesis: Effects of crystallization time

Yifei Wang, Shouying Huang, Xinsheng Teng, Hongyu Wang, Jian Wang, Qiao Zhao, Yue Wang, Xinbin Ma

《化学科学与工程前沿(英文)》 2020年 第14卷 第5期   页码 802-812 doi: 10.1007/s11705-019-1866-4

摘要: The Fischer–Tropsch synthesis (FTS) continues to be an attractive alternative for producing a broad range of fuels and chemicals through the conversion of syngas (H and CO), which can be derived from various sources, such as coal, natural gas, and biomass. Among iron carbides, Fe C, as an active phase, has barely been studied due to its thermodynamic instability. Here, we fabricated a series of Fe C embedded in hollow carbon sphere (HCS) catalysts. By varying the crystallization time, the shell thickness of the HCS was manipulated, which significantly influenced the catalytic performance in the FTS. To investigate the relationship between the geometric structure of the HCS and the physic-chemical properties of Fe species, transmission electron microscopy, X-ray diffraction, N physical adsorption, X-ray photoelectron spectroscopy, hydrogen temperature-programmed reduction, Raman spectroscopy, and Mössbauer spectroscopy techniques were employed to characterize the catalysts before and after the reaction. Evidently, a suitable thickness of the carbon layer was beneficial for enhancing the catalytic activity in the FTS due to its high porosity, appropriate electronic environment, and relatively high Fe C content.

关键词: Fischer–Tropsch synthesis     Fe-based catalyst     Fe2C     hollow carbon sphere     crystallization time    

Fischer-Tropsch synthesis by reduced graphene oxide nanosheets supported cobalt catalysts: Role of support

Hasan Oliaei Torshizi, Ali Nakhaei Pour, Ali Mohammadi, Yahya Zamani, Seyed Mehdi Kamali Shahri

《化学科学与工程前沿(英文)》 2021年 第15卷 第2期   页码 299-309 doi: 10.1007/s11705-020-1925-x

摘要: In this paper, a series of cobalt catalysts supported on reduced graphene oxide (rGO) nanosheets with the loading of 5, 15 and 30 wt-% were provided by the impregnation method. The activity of the prepared catalysts is evaluated in the Fischer-Tropsch synthesis (FTS). The prepared catalysts were carefully characterized by nitrogen adsorption-desorption, hydrogen chemisorption, X-ray diffraction, Fourier transform infrared spectroscopy, Raman spectroscopy, temperature programmed reduction, transmission electron microscopy, and field emission scanning electron microscopy techniques to confirm that cobalt particles were greatly dispersed on the rGO nanosheets. The results showed that with increasing the cobalt loading on the rGO support, the carbon defects are increased and as a consequence, the reduction of cobalt is decreased. The FTS activity results showed that the cobalt-time yield and turnover frequency passed from a maximum for catalyst with the Co average particle size of 15 nm due to the synergetic effect of cobalt reducibility and particle size. The products selectivity results indicated that the methane selectivity decreases, whereas the C selectivity raises with the increasing of the cobalt particle size, which can be explained by chain propagation in the primary chain growth reactions.

关键词: cobalt catalyst     cobalt particle size     Fischer-Tropsch synthesis     reduced graphene oxide     supported catalyst    

Gold modified cobalt-based Fischer-Tropsch catalysts for conversion of synthesis gas to liquid fuels

Alan J. McCue, Jura Aponaviciute, Richard P.K. Wells, James A. Anderson

《化学科学与工程前沿(英文)》 2013年 第7卷 第3期   页码 262-269 doi: 10.1007/s11705-013-1334-5

摘要: The addition of Au as a promoter/modifier for alumina supported Co catalyst has been studied by combined high temperature, high pressure Fourier transform infrared (FTIR) and on-line gas chromatography. The combination of these tools permitted the state of the active catalyst surface to be monitored while following the elution of reaction products during the first 5–7 h on stream of the catalyst. The catalysts under study were a 10%Co/Al O and a 2.5%Au/10%Co/Al O Samples were characterised before use using Raman and temperature programmed reduction (TPR). During the initial stages of reaction, hydrocarbons were built up on the surface of the catalyst as monitored by FTIR and the nature and amount of these species were assessed in terms of CH /CH ratio and the density of these alkyl fragments by employing absorption coefficients for the individual components. The nature and reducibility of the Co particles were modified by the presence of Au while the later also shifted the CO/H balance by acting as an effective water-gas shift catalyst during the early stages of reaction. This characteristic was lost during reaction as a consequence of redistribution of the two metallic phases.

关键词: gold modified catalyst     conversion of synthesis gas    

费托合成催化剂的尺寸与晶相效应

Liu Jin-Xun,Wang Peng,Xu Wayne,Hensen Emiel J. M.

《工程(英文)》 2017年 第3卷 第4期   页码 467-476 doi: 10.1016/J.ENG.2017.04.012

摘要:

费托合成(FTS)是近年来越发重要的能源转化途径,它可将一氧化碳和氢气的合成气转化为液态燃料和化学品,合成气的原料来自煤炭、天然气或生物质。在费托合成反应中,分散的过渡金属纳米粒子作为催化剂,用于催化以碳- 碳键生成为基础的反应。催化剂的催化活性和选择性与纳米粒子的电子结构和几何结构密切相关,具体取决于纳米粒子的尺寸、形态和晶相。在本文中,我们将回顾近期关于费托合成反应催化剂的体相和表面敏感性方面的工作。通过深入理解以上参数对不同催化剂行为的影响,有助于指导设计开发出更高活性、稳定性以及更优选择性的催化剂。

关键词: 费托合成     Fe、Co、Ru 碳化物     尺寸效应     晶相结构    

环境信息系统——为水管理数字化(Water 4.0)铺平道路

Olaf Kolditz, Karsten Rink, Erik Nixdorf, Thomas Fischer, Lars Bilke, Dmitri Naumov, Zhenliang Liao,

《工程(英文)》 2019年 第5卷 第5期   页码 828-832 doi: 10.1016/j.eng.2019.08.002

声场驱动的微操作技术及其生物医学应用

Zhichao Ma, Peer Fischer

《工程(英文)》 2023年 第24卷 第5期   页码 13-16 doi: 10.1016/j.eng.2022.06.006

Improved degradation of azo dyes by lignin peroxidase following mutagenesis at two sites near the catalytic pocket and the application of peroxidase-coated yeast cell walls

Prodanović, Aleksandra Đurđević Đelmaš, Nikolina Popović, Rainer Fischer

《环境科学与工程前沿(英文)》 2021年 第15卷 第2期 doi: 10.1007/s11783-020-1311-4

摘要: Abstract • Mutations in Lignin peroxidase Trp171 environment improved azo dyes degradation. • Expression on yeast cell surface and cell lysis allowed reusability of biocatalyst. • Aga2-LiP chimeric variants were characterized. The enzymatic degradation of azo dyes is a promising alternative to ineffective chemical and physical remediation methods. Lignin peroxidase (LiP) from Phanerochaete chrysosporium is a heme-containing lignin-degrading oxidoreductase that catalyzes the peroxide-dependent oxidation of diverse molecules, including industrial dyes. This enzyme is therefore ideal as a starting point for protein engineering. Accordingly, we subjected two positions (165 and 264) in the environment of the catalytic Trp171 residue to saturation mutagenesis, and the resulting library of 104 independent clones was expressed on the surface of yeast cells. This yeast display library was used for the selection of variants with the ability to break down structurally-distinct azo dyes more efficiently. We identified mutants with up to 10-fold greater affinity than wild-type LiP for three diverse azo dyes (Evans blue, amido black 10B and Guinea green) and up to 13-fold higher catalytic activity. Additionally, cell wall fragments displaying mutant LiP enzymes were prepared by toluene-induced cell lysis, achieving significant increases in both enzyme activity and stability compared to a whole-cell biocatalyst. LiP-coated cell wall fragments retained their initial dye degradation activity after 10 reaction cycles each lasting 8 h. The best-performing mutants removed up to 2.5-fold more of each dye than the wild-type LiP in multiple reaction cycles.

关键词: Bioremediation     Enzyme immobilization     Protein engineering     Yeast surface display.    

标题 作者 时间 类型 操作

The modification of titanium in mesoporous silica for Co-based FischerTropsch catalysts

期刊论文

Research Trends in Fischer--Tropsch Catalysis for Coal to Liquids Technology

Emiel J. M. Hensen,Peng Wang,Wayne Xu

期刊论文

Effects of Fischer-Tropsch diesel fuel on combustion and emissions of direct injection diesel engine

HUANG Yongcheng, WANG Shangxue, ZHOU Longbao

期刊论文

Combustion characteristics of a direct-injection diesel engine fueled with Fischer-Tropsch diesel

HUANG Yongcheng, ZHOU Longbao, PAN Keyu

期刊论文

NICE’s Indirect Coal-to-Liquid Process for Producing Clean Transportation Fuels Using Fischer-Tropsch

Omar M. Basha,Li Weng,Zhuo-wu Men,Wayne Xu,Badie I. Morsi

期刊论文

Controllable Fe/HCS catalysts in the Fischer-Tropsch synthesis: Effects of crystallization time

Yifei Wang, Shouying Huang, Xinsheng Teng, Hongyu Wang, Jian Wang, Qiao Zhao, Yue Wang, Xinbin Ma

期刊论文

Fischer-Tropsch synthesis by reduced graphene oxide nanosheets supported cobalt catalysts: Role of support

Hasan Oliaei Torshizi, Ali Nakhaei Pour, Ali Mohammadi, Yahya Zamani, Seyed Mehdi Kamali Shahri

期刊论文

Gold modified cobalt-based Fischer-Tropsch catalysts for conversion of synthesis gas to liquid fuels

Alan J. McCue, Jura Aponaviciute, Richard P.K. Wells, James A. Anderson

期刊论文

费托合成催化剂的尺寸与晶相效应

Liu Jin-Xun,Wang Peng,Xu Wayne,Hensen Emiel J. M.

期刊论文

环境信息系统——为水管理数字化(Water 4.0)铺平道路

Olaf Kolditz, Karsten Rink, Erik Nixdorf, Thomas Fischer, Lars Bilke, Dmitri Naumov, Zhenliang Liao,

期刊论文

声场驱动的微操作技术及其生物医学应用

Zhichao Ma, Peer Fischer

期刊论文

Improved degradation of azo dyes by lignin peroxidase following mutagenesis at two sites near the catalytic pocket and the application of peroxidase-coated yeast cell walls

Prodanović, Aleksandra Đurđević Đelmaš, Nikolina Popović, Rainer Fischer

期刊论文