资源类型

期刊论文 438

年份

2024 1

2023 30

2022 27

2021 27

2020 24

2019 22

2018 18

2017 19

2016 19

2015 16

2014 17

2013 13

2012 15

2011 21

2010 16

2009 20

2008 21

2007 19

2006 13

2005 16

展开 ︾

关键词

全寿命周期 2

可持续发展 2

多目标 2

强度理论 2

无氢渗碳 2

Au/Ti双功能催化剂 1

Casimir力 1

Dirac理论 1

D区 1

FHW 1

GDMS 1

H2有效利用率 1

MOF基催化剂 1

Maxwell方程组 1

Mie散射 1

PET酶 1

PET降解 1

Proca方程组 1

Rough集 1

展开 ︾

检索范围:

排序: 展示方式:

Integration of molecular dynamic simulation and free volume theory for modeling membrane VOC/gas separation

Bo Chen, Yan Dai, Xuehua Ruan, Yuan Xi, Gaohong He

《化学科学与工程前沿(英文)》 2018年 第12卷 第2期   页码 296-305 doi: 10.1007/s11705-018-1701-3

摘要: Gas membrane separation process is highly unpredictable due to interacting non-ideal factors, such as composition/pressure-dependent permeabilities and real gas behavior. Although molecular dynamic (MD) simulation can mimic those complex effects, it cannot precisely predict bulk properties due to scale limitations of calculation algorithm. This work proposes a method for modeling a membrane separation process for volatile organic compounds by combining the MD simulation with the free volume theory. This method can avoid the scale-up problems of the MD method and accurately simulate the performance of membranes. Small scale MD simulation and pure gas permeation data are employed to correlate pressure-irrelevant parameters for the free volume theory; by this approach, the microscopic effects can be directly linked to bulk properties (non-ideal permeability), instead of being fitted by a statistical approach. A lab-scale hollow fiber membrane module was prepared for the model validation and evaluation. The comparison of model predictions with experimental results shows that the deviations of product purity are reduced from 10% to less than 1%, and the deviations of the permeate and residue flow rates are significantly reduced from 40% to 4%, indicating the reliability of the model. The proposed method provides an efficient tool for process engineering to simulate the membrane recovery process.

关键词: membrane vapor separation     membrane process modeling     process engineering     free volume theory     volatile organic compound    

Recovery of free volume in PIM-1 membranes through alcohol vapor treatment

Faiz Almansour, Monica Alberto, Rupesh S. Bhavsar, Xiaolei Fan, Peter M. Budd, Patricia Gorgojo

《化学科学与工程前沿(英文)》 2021年 第15卷 第4期   页码 872-881 doi: 10.1007/s11705-020-2001-2

摘要: Physical aging is currently a major obstacle for the commercialization of PIM-1 membranes for gas separation applications. A well-known approach to reversing physical aging effects of PIM-1 membranes at laboratory scale is soaking them in lower alcohols, such as methanol and ethanol. However, this procedure does not seem applicable at industrial level, and other strategies must be investigated. In this work, a regeneration method with alcohol vapors (ethanol or methanol) was developed to recover permeability of aged PIM-1 membranes, in comparison with the conventional soaking-in-liquid approach. The gas permeability and separation performance, before and post the regeneration methods, were assessed using a binary mixture of CO and CH (1:1, v:v). Our results show that an 8-hour methanol vapor treatment was sufficient to recover the original gas permeability, reaching a CO permeability>7000 barrer.

关键词: polymer of intrinsic microporosity (PIM)     PIM-1     physical aging     gas separation     vapor-phase regeneration    

Molecular dynamics study of water diffusion in an amphiphilic block copolymer with large difference in the blocks’ glass transition temperatures

Yang Zhou, Phillip Choi

《化学科学与工程前沿(英文)》 2017年 第11卷 第3期   页码 440-447 doi: 10.1007/s11705-017-1626-2

摘要: Isothermal-isobaric molecular dynamics simulation was used to study the diffusion mechanism of water in polyurethane- -poly( -isopropyl acrylamide) (PU- -PNIPAm) with a hydrophobic PU/hydrophilic PNIPAm mass ratio of 1.4 to 1 at 298 K and 450 K. Here, the experimental glass transition temperature ( ) of PU is 243 K while that of PNIPAm is 383 K. Different amounts of water up to 15 wt-% were added to PU- -PNIPAm. We were able to reproduce the specific volumes and glass transition temperatures (250 K and 390 K) of PU- -PNIPAm. The computed self-diffusion coefficient of water increased exponentially with increasing water concentration at both temperatures (i.e., following the free volume model of Fujita). It suggested that water diffusion in PU- -PNIPAm depends only on its fractional free volume despite the free volume inhomogeneity. It is noted that at 298 K, PU is rubbery while PNIPAm is glassy. Regardless of temperature, radial distribution functions showed that water formed clusters with sizes in the range of 0.2–0.4 nm in PU- -PNIPAm. At low water concentrations, more clusters were found in the PU domain but at high water concentrations, more in the PNIPAm domain. It is believed that water molecules diffuse as clusters rather than as individual molecules.

关键词: molecular dynamics simulation     amphiphilic block copolymer     free volume     water diffusivity     fujita model    

洞察无有机模板合成沸石分子筛催化材料

王叶青,吴勤明,孟祥举,肖丰收

《工程(英文)》 2017年 第3卷 第4期   页码 567-574 doi: 10.1016/J.ENG.2017.03.029

摘要:

作为当前最重要的工业催化材料之一,沸石分子筛的合成一般是在有机模板存在的条件下水热合成的,但是该合成过程会产生大量的有害气体和废水,不仅污染环境,还增加了生产成本。本文旨在概述有机模板在沸石分子筛合成过程中的角色,并据此分别设计沸石晶种和导向剂溶液导向的无有机模板条件下合成沸石分子筛的路线。在此基础上,总结并揭示了在无有机模板的Na+ 体系中合成的沸石分子筛的微孔体积与Si/Al 比值的关系,即微孔体积越大,Si/Al 比值越小,这对于无有机模板条件下合成Si/Al 比值可调控的沸石分子筛和设计它们的合成路线具有重要意义。

关键词: 无有机模板合成     沸石分子筛     沸石晶种     沸石导向剂溶液     Si/Al 比值    

Assessment of liver volume variation to evaluate liver function

null

《医学前沿(英文)》 2012年 第6卷 第4期   页码 421-427 doi: 10.1007/s11684-012-0223-5

摘要:

In order to assess the value of liver volumetry in cirrhosis and acute liver failure (ALF) patients, we explored the correlation between hepatic volume and severity of the hepatic diseases. The clinical data of 48 cirrhosis patients with 60 normal controls and 39 ALF patients were collected. Computed tomography-derived liver volume (CTLV) and body surface area (BSA) of normal controls were calculated to get a regression formula for standard liver volume (SLV) and BSA. Then CTLV and SLV of all patients were calculated and grouped by Child-Turcotte-Pugh classification for cirrhosis patients and assigned according to prognosis of ALF patients for further comparison. It turned out that the mean liver volume of the control group was 1 058±337 cm3. SLV was correlated with BSA according to the regression formula. The hepatic volume of cirrhosis patients in Child A, B level was not reduced, but in Child C level it was significantly reduced with the lowest liver volume index (CTLV/SLV). Likewise, in the death group of ALF patients, the volume index was significantly lower than that of the survival group. Based on volumetric study, we proposed an ROC (receiver operating characteristic) analysis to predict the prognosis of ALF patients that CTLV/SLV<83.9% indicates a poor prognosis. In conclusion, the CTLV/SLV ratio, which reflects liver volume variations, correlates well with the liver function and progression of cirrhosis and ALF. It is also a very useful marker for predicting the prognosis of ALF.

关键词: liver volume variation     cirrhosis     acute liver failure (ALF)    

ultrafiltration membrane fouling behavior under different pH conditions: interface adhesion force and XDLVO theory

Xudong WANG,Miao ZHOU,Xiaorong MENG,Lei WANG,Danxi HUANG

《环境科学与工程前沿(英文)》 2016年 第10卷 第4期 doi: 10.1007/s11783-016-0855-9

摘要: pH values of the BSA solution significantly impact the process of membrane fouling. Dramatic flux decline is caused by membrane–BSA adhesion force at start of filtration. XDLVO theory shows the polar or Lewis acid–base interaction plays a major role in membrane fouling. To further determine the fouling behavior of bovine serum albumin (BSA) on different hydrophilic PVDF ultrafiltration (UF) membranes over a range of pH values, self-made atomic force microscopy (AFM) colloidal probes were used to detect the adhesion forces of membrane–BSA and BSA–BSA, respectively. Results showed that the membrane–BSA adhesion interaction was stronger than the BSA–BSA adhesion interaction, and the adhesion force between BSA–BSA-fouled PVDF/PVA membranes was similar to that between BSA–BSA-fouled PVDF/PVP membranes, which indicated that the fouling was mainly caused by the adhesion interaction between membrane and BSA. At the same pH condition, the PVDF/PVA membrane–BSA adhesion force was smaller than that of PVDF/PVP membrane–BSA, which illustrated that the more hydrophilic the membrane was, the better antifouling ability it had. The extended Derjaguin–Landau–Verwey–Overbeek (XDLVO) theory predicts that the polar or Lewis acid–base (AB) interaction played a dominant role in the interfacial free energy of membrane–BSA and BSA–BSA that can be affected by pH. For the same membrane, the pH values of a BSA solution can have a significant impact on the process of membrane fouling by changing the AB component of free energy.

关键词: PVDF membrane     Membrane fouling     Adhesion force     Protein     Interfacial free energy    

Dynamics simulation of bottom high-sediment sea water movement under waves

Xueyi YOU , Wei LIU , Houpeng XIAO ,

《结构与土木工程前沿(英文)》 2009年 第3卷 第3期   页码 312-315 doi: 10.1007/s11709-009-0037-y

摘要: The movement of bottom high-sediment sea water under water waves, especially that of the high-sediment water layer close to the sea bottom, is important to the resuspension and settlement of sediment. Supposing that the high-sediment sea water is a Newtonian fluid, based on Navier-Stokes (N-S) theory, the movement of the interfaces of air-water and water-sediment water was tracked by the volume of fluid (VOF) method. The velocity field of sediment water was simulated by considering the effect of water waves. The results show that the movement of sediment water is very different from that of sea water, which provides a solid basis for understanding the resuspension and settlement of sediment and the formation of bottom stripe, and the VOF method can trace the movement of the two interfaces simultaneously; the movement of the air-water interface has a strong effect on that of the water-sediment water interface, while the effect of the water-sediment water interface movement on the air-water interface is not obvious.

关键词: volume of fluid (VOF) method     high sediment sea water     numerical simulation     interface trace     Navier-Stokes (N-S) theory    

Destructive and non-destructive evaluation of concrete for optimum sand to aggregate volume ratio

《结构与土木工程前沿(英文)》 2021年 第15卷 第6期   页码 1400-1414 doi: 10.1007/s11709-021-0779-8

摘要: Aggregates are the biggest contributor to concrete volume and are a crucial parameter in dictating its mechanical properties. As such, a detailed experimental investigation was carried out to evaluate the effect of sand-to-aggregate volume ratio (s/a) on the mechanical properties of concrete utilizing both destructive and non-destructive testing (employing UPV (ultrasonic pulse velocity) measurements). For investigation, standard cylindrical concrete samples were made with different s/a (0.36, 0.40, 0.44, 0.48, 0.52, and 0.56), cement content (340 and 450 kg/m3), water-to-cement ratio (0.45 and 0.50), and maximum aggregate size (12 and 19 mm). The effect of these design parameters on the 7, 14, and 28 d compressive strength, tensile strength, elastic modulus, and UPV of concrete were assessed. The careful analysis demonstrates that aggregate proportions and size need to be optimized for formulating mix designs; optimum ratios of s/a were found to be 0.40 and 0.44 for the maximum aggregate size of 12 and 19 mm, respectively, irrespective of the W/C (water-to-cement) and cement content.

关键词: aggregates     non-destructive testing     sand-to-aggregate volume ratio (s/a)     maximum aggregate size (MAS)    

Free vibration analysis of laminated FG-CNT reinforced composite beams using finite element method

T. VO-DUY, V. HO-HUU, T. NGUYEN-THOI

《结构与土木工程前沿(英文)》 2019年 第13卷 第2期   页码 324-336 doi: 10.1007/s11709-018-0466-6

摘要: In the present study, the free vibration of laminated functionally graded carbon nanotube reinforced composite beams is analyzed. The laminated beam is made of perfectly bonded carbon nanotubes reinforced composite (CNTRC) layers. In each layer, single-walled carbon nanotubes are assumed to be uniformly distributed (UD) or functionally graded (FG) distributed along the thickness direction. Effective material properties of the two-phase composites, a mixture of carbon nanotubes (CNTs) and an isotropic polymer, are calculated using the extended rule of mixture. The first-order shear deformation theory is used to formulate a governing equation for predicting free vibration of laminated functionally graded carbon nanotubes reinforced composite (FG-CNTRC) beams. The governing equation is solved by the finite element method with various boundary conditions. Several numerical tests are performed to investigate the influence of the CNTs volume fractions, CNTs distributions, CNTs orientation angles, boundary conditions, length-to-thickness ratios and the numbers of layers on the frequencies of the laminated FG-CNTRC beams. Moreover, a laminated composite beam combined by various distribution types of CNTs is also studied.

关键词: free vibration analysis     laminated FG-CNTRC beam     finite element method     first-order shear deformation theory     composite material    

Static and dynamic analysis of functionally graded fluid-infiltrated porous skew and elliptical nanoplates using an isogeometric approach

《结构与土木工程前沿(英文)》 2023年 第17卷 第3期   页码 477-502 doi: 10.1007/s11709-023-0918-5

摘要: The analysis of static bending and free and forced vibration responses of functionally graded fluid-infiltrated porous (FGFP) skew and elliptical nanoplates placed on Pasternak’s two-parameter elastic foundation is performed for the first time using isogeometric analysis (IGA) based on the non-uniform rational B-splines (NURBSs) basis function. Three types of porosity distributions affect the mechanical characteristics of materials: symmetric distribution, upper asymmetric distribution, and lower asymmetric distribution. The stress–strain relationship for Biot porous materials was determined using the elastic theory. The general equations of motion of the nanoplates were established using the four-unknown shear deformation plate theory in conjunction with the nonlocal elastic theory and Hamilton’s principle. A computer program that uses IGA to determine the static bending and free and forced vibration of a nanoplate was developed on MATLAB software platform. The accuracy of the computational program was validated via numerical comparison with confidence assertions. This set of programs presents the influence of the following parameters on the static bending and free and forced vibrations of nanoplates: porosity distribution law, porosity coefficient and geometrical parameters, elastic foundation, deviation angle, nonlocal coefficient, different boundary conditions, and Skempton coefficients. The numerical findings demonstrated the uniqueness of the FGFP plate’s behavior when the porosities are saturated with liquid compared with the case without liquid. The findings of this study have significant implications for engineers involved in the design and fabrication of the aforementioned type of structures. Furthermore, this can form the basis for future research on the mechanical responses of the structures.

关键词: static bending     free and forced vibrations     nonlocal theory     isogeometric analysis     fluid-infiltrated porous nanoplates    

Cell-free systems in the new age of synthetic biology

Fernando Villarreal,Cheemeng Tan

《化学科学与工程前沿(英文)》 2017年 第11卷 第1期   页码 58-65 doi: 10.1007/s11705-017-1610-x

摘要: The advent of synthetic biology has ushered in new applications of cell-free transcription-translation systems. These cell-free systems are reconstituted using cellular proteins, and are amenable to modular control of their composition. Here, we discuss the historical advancement of cell-free systems, as well as their new applications in the rapid design of synthetic genetic circuits and components, directed evolution of biomolecules, diagnosis of infectious diseases, and synthesis of vaccines. Finally, we present our vision on the future direction of cell-free synthetic biology.

关键词: cell-free system     application    

V-shaped substrate for surface and volume enhanced Raman spectroscopic analysis of microplastics

《环境科学与工程前沿(英文)》 2022年 第16卷 第11期 doi: 10.1007/s11783-022-1578-8

摘要:

● V-shaped substrate was obtained for SERS analysis of microplastics (diameter ≈ 1 μm).

关键词: SERS     V-shaped     AAO     Microplastic     Atmospheric aerosol    

Modeling limit force capacities of high force to volume lead extrusion dampers

《结构与土木工程前沿(英文)》 2021年 第15卷 第3期   页码 609-622 doi: 10.1007/s11709-021-0724-x

摘要: Lead extrusion dampers are supplemental energy-dissipation devices that are used to mitigate seismic structural damage. Small volumetric sizes and high force capacities define high-force-to-volume (HF2V) devices, which can absorb significant response energy without sacrificial damage. However, the design of such devices for specific force capacities has proven difficult based on the complexities of their internal reaction mechanisms, leading to the adoption of empirical approaches. This study developed upper- and lower-bound force capacity estimates from analytical mechanics based on direct and indirect metal extrusion for guiding design. The derived equations are strictly functions of HF2V device geometric parameters, lead material properties, and extrusion mechanics. The upper-bound estimates from direct and indirect extrusion are denoted as (FUB,1, FUB,2) and (FUB,3, FUB,4), respectively, and the lower-bound estimates are denoted as (FLB, FLB,1) based on the combination of extrusion and friction forces. The proposed models were validated by comparing the predicted bounds to experimental force capacity data from 15 experimental HF2V device tests. The experimental device forces all lie above the lower-bound estimates (FLB, FLB,1) and below the upper-bound estimates (FUB,1, FUB,2, FUB,4). Overall, the (FLB, FUB,2) pair provides wider bounds and the (FLB,1, FUB,4/FUB,1) pair provides narrower bounds. The (FLB,1, FUB,1) pair has a mean lower-bound gap of 36%, meaning the lower bound was 74% of the actual device force on average. The mean upper-bound gap was 33%. The bulge area and cylinder diameter of HF2V devices are key parameters affecting device forces. These relatively tight bounds provide useful mechanics-based predictive design guides for ensuring that device forces are within the targeted design range after manufacturing.

关键词: extrusion     lead dampers     upper and lower bound     analytical modelling     limit force    

Lamellar thickness transition of melt-crystallized polybuten-1 tetragonal phase: configurational change in chain folding directions

Motoi YAMASHITA

《化学科学与工程前沿(英文)》 2009年 第3卷 第1期   页码 26-32 doi: 10.1007/s11705-009-0002-2

摘要: Lamellar crystal thickness of isotactic polybutene-1 ( -PB1) have been investigated for crystallization in the melt over a wide range of crystallization temperature from 40°C to 90°C by small angle X-ray scattering experiments and density measurements. The crystal thickness demonstrates two linear dependences on inverse supercooling and a transition from one dependence to the other has been observed around = 65°C. Each of the two dependences obeys the nucleation theory in the high and low supercooling ranges, respectively. Chain folding free energy determined from the low supercooling range is larger than that determined from the high supercooling range. Possible mechanisms for the transition are discussed taking account of entropy of chain folding directions.

关键词: isotactic polybutene-1     tetragonal phase     crystal thickness     melt growth     chain folding     small angle X-ray scattering     nucleation theory     end surface free energy    

Recent advances in cycloaddition of CO with epoxides: halogen-free catalysis and mechanistic insights

《化学科学与工程前沿(英文)》 2023年 第17卷 第12期   页码 1879-1894 doi: 10.1007/s11705-023-2354-4

摘要: The atom-economical cycloaddition of CO2 with epoxides to synthesize cyclic carbonates is a promising route for valuable utilization of CO2. Halogenide such as alkali metal halides and quaternary ammonium salt have been developed as the efficient catalysts. However, the spilled halogen causes equipment corrosion and affects the product purity. To address these concerns, the halogen-free cycloaddition of CO2 with epoxides has always been desired. In this review, we systematically discussed the halogen-free catalysis for cycloaddition of CO2 with epoxides from the mechanistic insights, aiming to promote the development of efficient halogen-free catalysts. Two types of catalysts, i.e., alternatives of halogen nucleophiles for epoxide activation, and bifunctional catalysts with Lewis acid-base sites for synergistic activation of CO2 and epoxides are summarized and emphasized. Specially, metal oxides as the potential halogen-free catalysts are highlighted due to their flexible acid-base sites for synergistic activation of CO2 and epoxides, facile preparation, and low cost.

关键词: carbon dioxide     halogen-free catalysis     cyclic carbonate     mechanistic insight    

标题 作者 时间 类型 操作

Integration of molecular dynamic simulation and free volume theory for modeling membrane VOC/gas separation

Bo Chen, Yan Dai, Xuehua Ruan, Yuan Xi, Gaohong He

期刊论文

Recovery of free volume in PIM-1 membranes through alcohol vapor treatment

Faiz Almansour, Monica Alberto, Rupesh S. Bhavsar, Xiaolei Fan, Peter M. Budd, Patricia Gorgojo

期刊论文

Molecular dynamics study of water diffusion in an amphiphilic block copolymer with large difference in the blocks’ glass transition temperatures

Yang Zhou, Phillip Choi

期刊论文

洞察无有机模板合成沸石分子筛催化材料

王叶青,吴勤明,孟祥举,肖丰收

期刊论文

Assessment of liver volume variation to evaluate liver function

null

期刊论文

ultrafiltration membrane fouling behavior under different pH conditions: interface adhesion force and XDLVO theory

Xudong WANG,Miao ZHOU,Xiaorong MENG,Lei WANG,Danxi HUANG

期刊论文

Dynamics simulation of bottom high-sediment sea water movement under waves

Xueyi YOU , Wei LIU , Houpeng XIAO ,

期刊论文

Destructive and non-destructive evaluation of concrete for optimum sand to aggregate volume ratio

期刊论文

Free vibration analysis of laminated FG-CNT reinforced composite beams using finite element method

T. VO-DUY, V. HO-HUU, T. NGUYEN-THOI

期刊论文

Static and dynamic analysis of functionally graded fluid-infiltrated porous skew and elliptical nanoplates using an isogeometric approach

期刊论文

Cell-free systems in the new age of synthetic biology

Fernando Villarreal,Cheemeng Tan

期刊论文

V-shaped substrate for surface and volume enhanced Raman spectroscopic analysis of microplastics

期刊论文

Modeling limit force capacities of high force to volume lead extrusion dampers

期刊论文

Lamellar thickness transition of melt-crystallized polybuten-1 tetragonal phase: configurational change in chain folding directions

Motoi YAMASHITA

期刊论文

Recent advances in cycloaddition of CO with epoxides: halogen-free catalysis and mechanistic insights

期刊论文