资源类型

期刊论文 187

年份

2023 14

2022 16

2021 8

2020 7

2019 17

2018 5

2017 10

2016 10

2015 7

2014 6

2013 4

2012 11

2011 5

2010 8

2009 17

2008 9

2007 13

2006 2

2005 1

2004 2

展开 ︾

关键词

内燃机 2

柴油机 2

Matlab 1

PNT体系;卫星导航;不依赖卫星导航;技术融合;体系发展 1

YAG激光淬火 1

三峡工程 1

三相异步电机 1

串并联谐振变换器;全桥;半桥;变频;移相;宽范围输入电压 1

举国体制模式 1

乘用车 1

二冲程发动机 1

交交变频 1

交流调速 1

交直交变频 1

人工智能 1

介观尺度模型 1

优化 1

优化调度 1

传播动力学模型 1

展开 ︾

检索范围:

排序: 展示方式:

Smart product design for automotive systems

A. Galip ULSOY

《机械工程前沿(英文)》 2019年 第14卷 第1期   页码 102-112 doi: 10.1007/s11465-019-0527-0

摘要: Automobiles evolved from primarily mechanical to electro-mechanical, or mechatronic, vehicles. For example, carburetors have been replaced by fuel injection and air-fuel ratio control, leading to order of magnitude improvements in fuel economy and emissions. Mechatronic systems are pervasive in modern automobiles and represent a synergistic integration of mechanics, electronics and computer science. They are smart systems, whose design is more challenging than the separate design of their mechanical, electronic and computer/control components. In this review paper, two recent methods for the design of mechatronic components are summarized and their applications to problems in automotive control are highlighted. First, the combined design, or co-design, of a smart artifact and its controller is considered. It is shown that the combined design of an artifact and its controller can lead to improved performance compared to sequential design. The coupling between the artifact and controller design problems is quantified, and methods for co-design are presented. The control proxy function method, which provides ease of design as in the sequential approach and approximates the performance of the co-design approach, is highlighted with application to the design of a passive/active automotive suspension. Second, the design for component swapping modularity (CSM) of a distributed controller for a smart product is discussed. CSM is realized by employing distributed controllers residing in networked smart components, with bidirectional communication over the network. Approaches to CSM design are presented, as well as applications of the method to a variable-cam-timing engine, and to enable battery swapping in a plug-in hybrid electric vehicle.

关键词: mechatronics     automotive control     co-design     component swapping modularity     active suspensions     variable camshaft timing engine     plug-in hybrid electric vehicle    

一种混合电磁气门驱动机构设计 Article

Jawad ASLAM, Xing-hu LI, Faira Kanwal JANJUA

《信息与电子工程前沿(英文)》 2017年 第18卷 第10期   页码 1635-1643 doi: 10.1631/FITEE.1601215

摘要: 提出一种应用于可变气门正时技术无凸轮轴发动机的新型电磁驱动机构。该机构具有轴对称结构,且采用永磁(permanent magnet, PM)和电磁(electro magnet, EM)两种力混合驱动;可提供较大磁动势但保持较低能耗,且改善了瞬态响应,具有较低线圈电感、永磁退磁隔离等优点。仿真和试验结果证实,该机构在平衡位置处可产生约200 N作用力(线圈通电),在电枢底座可以产生500 N作用力(线圈不通电)。对该机构同双电磁阀驱动机构(double solenoid valve actuator,DSVA)进行了比较分析。所提机构和DSVA有限元设计方法经过自主制作的试验样机验证。

关键词: 永磁;电磁;可变气门正时;无凸轮轴发动机;磁动势    

Timing decision-making method of engine blades for predecisional remanufacturing based on reliability

Le CHEN, Xianlin WANG, Hua ZHANG, Xugang ZHANG, Binbin DAN

《机械工程前沿(英文)》 2019年 第14卷 第4期   页码 412-421 doi: 10.1007/s11465-019-0551-0

摘要: A timing decision-making method for predecisional remanufacturing is presented. The method can effectively solve the uncertainty problem of remanufacturing blanks. From the perspective of reliability, this study analyzes the timing decision-making interval for predecisional remanufacturing of mechanical products during the service period and constructs an optimal timing model based on energy consumption and cost. The mapping relationships between time and energy consumption are predicted by using the characteristic values of performance degradation of products combined with the least squares support vector regression algorithm. Application of game theory reveals that when the energy consumption and cost are comprehensively optimal, this moment is the best time for predecisional remanufacturing. Used engine blades are utilized as an example to demonstrate the validity and effectiveness of the proposed method.

关键词: predecisional remanufacturing     reliability     least squares support vector regression (LS-SVR)     game theory    

Comprehensive kinetostatic modeling and morphology characterization of cable-driven continuum robots for aero-engine

《机械工程前沿(英文)》 2023年 第18卷 第3期 doi: 10.1007/s11465-023-0756-0

摘要: In-situ maintenance is of great significance for improving the efficiency and ensuring the safety of aero-engines. The cable-driven continuum robot (CDCR) with twin-pivot compliant mechanisms, which is enabled with flexible deformation capability and confined space accessibility, has emerged as a novel tool that aims to promote the development of intelligence and efficiency for in-situ aero-engine maintenance. The high-fidelity model that describes the kinematic and morphology of CDCR lays the foundation for the accurate operation and control for in-situ maintenance. However, this model was not well addressed in previous literature. In this study, a general kinetostatic modeling and morphology characterization methodology that comprehensively contains the effects of cable-hole friction, gravity, and payloads is proposed for the CDCR with twin-pivot compliant mechanisms. First, a novel cable-hole friction model with the variable friction coefficient and adaptive friction direction criterion is proposed through structure optimization and kinematic parameter analysis. Second, the cable-hole friction, all-component gravities, deflection-induced center-of-gravity shift of compliant joints, and payloads are all considered to deduce a comprehensive kinetostatic model enabled with the capacity of accurate morphology characterization for CDCR. Finally, a compact continuum robot system is integrated to experimentally validate the proposed kinetostatic model and the concept of in-situ aero-engine maintenance. Results indicate that the proposed model precisely predicts the morphology of CDCR and outperforms conventional models. The compact continuum robot system could be considered a novel solution to perform in-situ maintenance tasks of aero-engines in an invasive manner.

关键词: kinetostatic modeling     morphology characterization     variable friction     continuum robots     in-situ maintenance    

Optimal Timing and Recycling Operation Mode for Electro-Mechanical Products Active Remanufacturing

Wang Gao,Tao Li,Shi-tong Peng,Liang Wang,Hong-chao Zhang

《工程管理前沿(英文)》 2016年 第3卷 第2期   页码 115-122 doi: 10.15302/J-FEM-2016019

摘要: The uncertainties of remanufactured products in multi-life cycle service, such as injury and restoration process route, are comprehensively analyzed in the present study from perspectives of cost and the environment. Based on life cycle assessment method and the life cycle cost analysis, the optimal timing model of active remanufacturing for electro-mechanical products is established considering these uncertainties. In addition, regarding the active remanufacturing as its guidance, this study explores the economic efficiency and corresponding operation mode of electro-mechanical products when recycling in the optimal timing. To validate the optimal timing model for electro-mechanical products active remanufacturing, a specific type of product is taken as a case study with mathematical statistics method and Monte Carlo simulation.

关键词: electro-mechanical products     active remanufacturing     optimal timing     reverse logistics     recycling mode    

Effects of fuel combination and IVO timing on combustion and emissions of a dual-fuel HCCI combustionengine

Xin LIANG, Jianyong ZHANG, Zhongzhao LI, Jiabo ZHANG, Zhen HUANG, Dong HAN

《能源前沿(英文)》 2020年 第14卷 第4期   页码 778-789 doi: 10.1007/s11708-020-0698-8

摘要: This paper experimentally and numerically studied the effects of fuel combination and intake valve opening (IVO) timing on combustion and emissions of an n-heptane and gasoline dual-fuel homogeneous charge compression ignition (HCCI) engine. By changing the gasoline fraction (GF) from 0.1 to 0.5 and the IVO timing from –15°CA ATDC to 35°CA ATDC, the in-cylinder pressure traces, heat release behaviors, and HC and CO emissions were investigated. The results showed that both the increased GF and the retarded IVO timing delay the combustion phasing, lengthen the combustion duration, and decrease the peak heat release rate and the maximum average combustion temperature, whereas the IVO timing has a more obvious influence on combustion than GF. HC and CO emissions are decreased with reduced GF, advanced IVO timing and increased operational load.

关键词: homogeneous charge compression ignition     dual-fuel     n-heptane     gasoline     intake valve opening timing    

Life-cycle cost analysis of optimal timing of pavement preservation

Zilong WANG,Hao WANG

《结构与土木工程前沿(英文)》 2017年 第11卷 第1期   页码 17-26 doi: 10.1007/s11709-016-0369-3

摘要: Optimal application of pavement preservation or preventive maintenance is critical for highway agencies to allocate the limited budget for different treatments. This study developed an integrated life-cycle cost analysis (LCCA) model to quantify the impact of pavement preservation on agency cost and vehicle operation cost (VOC) and analyzed the optimal timing of preservation treatments. The international roughness index (IRI) data were extracted from the long-term pavement performance (LTPP) program specific pavement studies 3 (SPS-3) to determine the long-term effectiveness of preservation treatments on IRI deterioration. The traffic loading and the initial IRI value significantly affects life extension and the benefit of agency cost caused by pavement preservation. The benefit in VOC is one to two orders greater in magnitude as compared to the benefit in agency cost. The optimal timing calculated based on VOC is always earlier than the optimal timing calculated based on agency cost. There are considerable differences among the optimal timing of three preservation treatments.

关键词: pavement preservation     life-cycle cost analysis     agency cost     vehicle operation cost    

Design and modeling of a free-piston engine generator

《能源前沿(英文)》   页码 811-821 doi: 10.1007/s11708-022-0848-2

摘要: Free-piston engine generators (FPEGs) can be applied as decarbonized range extenders for electric vehicles because of their high thermal efficiency, low friction loss, and ultimate fuel flexibility. In this paper, a parameter-decoupling approach is proposed to model the design of an FPEG. The parameter-decoupling approach first divides the FPEG into three parts: a two-stroke engine, an integrated scavenging pump, and a linear permanent magnet synchronous machine (LPMSM). Then, each of these is designed according to predefined specifications and performance targets. Using this decoupling approach, a numerical model of the FPEG, including the three aforementioned parts, was developed. Empirical equations were adopted to design the engine and scavenging pump, while special considerations were applied for the LPMSM. A finite element model with a multi-objective genetic algorithm was adopted for its design. The finite element model results were fed back to the numerical model to update the LPMSM with increased fidelity. The designed FPEG produced 10.2 kW of electric power with an overall system efficiency of 38.5% in a stable manner. The model provides a solid foundation for the manufacturing of related FPEG prototypes.

关键词: free-piston engine generator     linear permanent magnet synchronous machine     system design     numerical model     finite element method    

Mechanical design, modeling, and identification for a novel antagonistic variable stiffness dexterous

《机械工程前沿(英文)》 2022年 第17卷 第3期 doi: 10.1007/s11465-022-0691-5

摘要: This study traces the development of dexterous hand research and proposes a novel antagonistic variable stiffness dexterous finger mechanism to improve the safety of dexterous hand in unpredictable environments, such as unstructured or man-made operational errors through comprehensive consideration of cost, accuracy, manufacturing, and application. Based on the concept of mechanical passive compliance, which is widely implemented in robots for interactions, a finger is dedicated to improving mechanical robustness. The finger mechanism not only achieves passive compliance against physical impacts, but also implements the variable stiffness actuator principle in a compact finger without adding supererogatory actuators. It achieves finger stiffness adjustability according to the biologically inspired stiffness variation principle of discarding some mobilities to adjust stiffness. The mechanical design of the finger and its stiffness adjusting methods are elaborated. The stiffness characteristics of the finger joint and the actuation unit are analyzed. Experimental results of the finger joint stiffness identification and finger impact tests under different finger stiffness presets are provided to verify the validity of the model. Fingers have been experimentally proven to be robust against physical impacts. Moreover, the experimental part verifies that fingers have good power, grasping, and manipulation performance.

关键词: multifingered hand     mechanism design     robot safety     variable stiffness actuator    

Effect of variable heat capacities on performance of an irreversible Miller heat engine

Xingmei YE

《能源前沿(英文)》 2012年 第6卷 第3期   页码 280-284 doi: 10.1007/s11708-012-0203-0

摘要: Based on the variable heat capacities of the working fluid, the irreversibility coming from the compression and expansion processes, and the heat leak losses through the cylinder wall, an irreversible cycle model of the Miller heat engine was established, from which expressions for the efficiency and work output of the cycle were derived. The performance characteristic curves of the Miller heat engine were generated through numerical calculation, from which the optimal regions of some main parameters such as the work output, efficiency and pressure ratio were determined. Moreover, the influence of the compression and expansion efficiencies, the variable heat capacities and the heat leak losses on the performance of the cycle was discussed in detail, and consequently, some significant results were obtained.

关键词: Miller cycle     variable heat capacity     irreversibility     parametric optimization    

A neural network-based production process modeling and variable importance analysis approach in corn

《化学科学与工程前沿(英文)》 2023年 第17卷 第3期   页码 358-371 doi: 10.1007/s11705-022-2190-y

摘要: Corn to sugar process has long faced the risks of high energy consumption and thin profits. However, it’s hard to upgrade or optimize the process based on mechanism unit operation models due to the high complexity of the related processes. Big data technology provides a promising solution as its ability to turn huge amounts of data into insights for operational decisions. In this paper, a neural network-based production process modeling and variable importance analysis approach is proposed for corn to sugar processes, which contains data preprocessing, dimensionality reduction, multilayer perceptron/convolutional neural network/recurrent neural network based modeling and extended weights connection method. In the established model, dextrose equivalent value is selected as the output, and 654 sites from the DCS system are selected as the inputs. LASSO analysis is first applied to reduce the data dimension to 155, then the inputs are dimensionalized to 50 by means of genetic algorithm optimization. Ultimately, variable importance analysis is carried out by the extended weight connection method, and 20 of the most important sites are selected for each neural network. The results indicate that the multilayer perceptron and recurrent neural network models have a relative error of less than 0.1%, which have a better prediction result than other models, and the 20 most important sites selected have better explicable performance. The major contributions derived from this work are of significant aid in process simulation model with high accuracy and process optimization based on the selected most important sites to maintain high quality and stable production for corn to sugar processes.

关键词: big data     corn to sugar factory     neural network     variable importance analysis    

Study of engine performance, emission and combustion characteristics fueled with diesel-like fuel producedfrom waste engine oil and waste plastics

V. Edwin Geo, Ankit Sonthalia, Fethi Aloui, Femilda Josephin J. S.

《环境科学与工程前沿(英文)》 2018年 第12卷 第4期 doi: 10.1007/s11783-018-1063-6

摘要:

To derive liquid fuel from waste engine oil and plastics thorough pyrolysis process

To make equal blend of waste engine oil and plastics with diesel fuel

To find the suitability of fuel from waste in diesel engine through performance, emission and combustion characteristics

关键词: Waste engine oil     Waste plastic oil     Diesel fuel     Pyrolysis     Compression ignition engine    

On the improvement design of dynamic characteristics for the roller follower of a variable-speed plate

Hui Ching FAN, Hong Sen YAN

《机械工程前沿(英文)》 2012年 第7卷 第1期   页码 5-15 doi: 10.1007/s11465-012-0310-y

摘要:

Without modifying the cam contour, a cam mechanism with a variable input speed trajectory offers an alternative solution to flexibly achieve kinematic and dynamic characteristics, and then decrease the follower’s residual vibration. Firstly, the speed trajectory of cam is derived by employing Bezier curve, and motion continuity conditions are investigated. Then the motion characteristics between the plate cam and its roller follower are derived. To analyze the residual vibration, a single degree of freedom dynamic model of the elastic cam-follower system is introduced. Based on the motion equation derived from the dynamic model, the residual vibration of the follower is yielded. The design procedure to improve the kinematic and dynamic motion characteristics is presented and two design examples with discussions are provided. Finally, the simulations of the kinematic and dynamic models by ADAMS are carried out and verified that the design models as well as the performances of the mechanism are feasible.

关键词: cam mechanism     variable input speed     kinematic design     dynamic design     optimal design    

Effect of ignition timing and hydrogen fraction on combustion and emission characteristics of naturalgas direct-injection engine

WANG Jinhua, HUANG Zuohua, LIU Bing, ZENG Ke, YU Jinrong, JIANG Deming

《能源前沿(英文)》 2008年 第2卷 第2期   页码 194-201 doi: 10.1007/s11708-008-0035-0

摘要: An experimental study on the combustion and emission characteristics of a direct-injection spark-ignited engine fueled with natural gas/hydrogen blends under various ignition timings was conducted. The results show that ignition timing has a significant influence on engine performance, combustion and emissions. The interval between the end of fuel injection and ignition timing is a very important parameter for direct-injection natural gas engines. The turbulent flow in the combustion chamber generated by the fuel jet remains high and relative strong mixture stratification is introduced when decreasing the angle interval between the end of fuel injection and ignition timing giving fast burning rates and high thermal efficiencies. The maximum cylinder gas pressure, maximum mean gas temperature, maximum rate of pressure rise and maximum heat release rate increase with the advancing of ignition timing. However, these parameters do not vary much with hydrogen addition under specific ignition timing indicating that a small hydrogen fraction addition of less than 20% in the present experiment has little influence on combustion parameters under specific ignition timing. The exhaust HC emission decreases while the exhaust CO concentration increases with the advancing of ignition timing. In the lean combustion condition, the exhaust CO does not vary much with ignition timing. At the same ignition timing, the exhaust HC decreases with hydrogen addition while the exhaust CO and CO do not vary much with hydrogen addition. The exhaust NO increases with the advancing of ignition timing and the behavior tends to be more obvious at large ignition advance angle. The brake mean effective pressure and the effective thermal efficiency of natural gas/hydrogen mixture combustion increase compared with those of natural gas combustion when the hydrogen fraction is over 10%.

Mechanical design and analysis of a novel variable stiffness actuator with symmetrical pivot adjustment

《机械工程前沿(英文)》 2021年 第16卷 第4期   页码 711-725 doi: 10.1007/s11465-021-0647-1

摘要: The safety of human–robot interaction is an essential requirement for designing collaborative robotics. Thus, this paper aims to design a novel variable stiffness actuator (VSA) that can provide safer physical human–robot interaction for collaborative robotics. VSA follows the idea of modular design, mainly including a variable stiffness module and a drive module. The variable stiffness module transmits the motion from the drive module in a roundabout manner, making the modularization of VSA possible. As the key component of the variable stiffness module, a stiffness adjustment mechanism with a symmetrical structure is applied to change the positions of a pair of pivots in two levers linearly and simultaneously, which can eliminate the additional bending moment caused by the asymmetric structure. The design of the double-deck grooves in the lever allows the pivot to move freely in the groove, avoiding the geometric constraint between the parts. Consequently, the VSA stiffness can change from zero to infinity as the pivot moves from one end of the groove to the other. To facilitate building a manipulator in the future, an expandable electrical system with a distributed structure is also proposed. Stiffness calibration and control experiments are performed to evaluate the physical performance of the designed VSA. Experiment results show that the VSA stiffness is close to the theoretical design stiffness. Furthermore, the VSA with a proportional–derivative feedback plus feedforward controller exhibits a fast response for stiffness regulation and a good performance for position tracking.

关键词: variable stiffness actuator     variable stiffness module     drive module     symmetrical structure     double-deck grooves     expandable electrical system    

标题 作者 时间 类型 操作

Smart product design for automotive systems

A. Galip ULSOY

期刊论文

一种混合电磁气门驱动机构设计

Jawad ASLAM, Xing-hu LI, Faira Kanwal JANJUA

期刊论文

Timing decision-making method of engine blades for predecisional remanufacturing based on reliability

Le CHEN, Xianlin WANG, Hua ZHANG, Xugang ZHANG, Binbin DAN

期刊论文

Comprehensive kinetostatic modeling and morphology characterization of cable-driven continuum robots for aero-engine

期刊论文

Optimal Timing and Recycling Operation Mode for Electro-Mechanical Products Active Remanufacturing

Wang Gao,Tao Li,Shi-tong Peng,Liang Wang,Hong-chao Zhang

期刊论文

Effects of fuel combination and IVO timing on combustion and emissions of a dual-fuel HCCI combustionengine

Xin LIANG, Jianyong ZHANG, Zhongzhao LI, Jiabo ZHANG, Zhen HUANG, Dong HAN

期刊论文

Life-cycle cost analysis of optimal timing of pavement preservation

Zilong WANG,Hao WANG

期刊论文

Design and modeling of a free-piston engine generator

期刊论文

Mechanical design, modeling, and identification for a novel antagonistic variable stiffness dexterous

期刊论文

Effect of variable heat capacities on performance of an irreversible Miller heat engine

Xingmei YE

期刊论文

A neural network-based production process modeling and variable importance analysis approach in corn

期刊论文

Study of engine performance, emission and combustion characteristics fueled with diesel-like fuel producedfrom waste engine oil and waste plastics

V. Edwin Geo, Ankit Sonthalia, Fethi Aloui, Femilda Josephin J. S.

期刊论文

On the improvement design of dynamic characteristics for the roller follower of a variable-speed plate

Hui Ching FAN, Hong Sen YAN

期刊论文

Effect of ignition timing and hydrogen fraction on combustion and emission characteristics of naturalgas direct-injection engine

WANG Jinhua, HUANG Zuohua, LIU Bing, ZENG Ke, YU Jinrong, JIANG Deming

期刊论文

Mechanical design and analysis of a novel variable stiffness actuator with symmetrical pivot adjustment

期刊论文