资源类型

期刊论文 5

年份

2021 1

2016 1

2015 1

2014 1

2010 1

关键词

检索范围:

排序: 展示方式:

Solar photocatalytic decomposition of two azo dyes on multi-walled carbon nanotubes (MWCNTs)/TiO 2 composites

Huilong WANG, Shuqin LIU, Hui WANG, Wenfeng JIANG,

《环境科学与工程前沿(英文)》 2010年 第4卷 第3期   页码 311-320 doi: 10.1007/s11783-010-0237-7

摘要: Multi-walled carbon nanotubes (MWCNTs)/TiO composite photocatalysts with high photoactivity were prepared by sol-gel process and further characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FT-IR), and UV-vis absorption spectra. Compared to pure TiO, the combination of MWCNTs with titania could cause a significant absorption shift toward the visible region. The photocatalytic performances of the MWCNTs/TiO composite catalysts were evaluated for the decomposition of Reactive light yellow K-6G (K-6G) and Mordant black 7 (MB 7) azo dyes solution under solar light irradiation. The results showed that the addition of MWCNTs enhanced the adsorption and photocatalytic activity of TiO for the degradation of azo dyes K-6G and MB 7. The effect of MWCNTs content, catalyst dosage, pH, and initial dye concentration were examined as operational parameters. The kinetics of photocatalytic degradation of two dyes was found to follow a pseudo-first-order rate law. The photocatalyst was used for seven cycles with photocatalytic degradation efficiency still higher than 98%. A plausible mechanism is also proposed and discussed on the basis of experimental results.

关键词: sol-gel     multi-walled carbon nanotubes (MWCNTs)/TiO2 composite     photocatalysis     azo dye     solar irradiation    

Catalytic wet air oxidation of phenol, nitrobenzene and aniline over the multi-walled carbon nanotubes (MWCNTs

Shaoxia YANG,Yu SUN,Hongwei YANG,Jiafeng WAN

《环境科学与工程前沿(英文)》 2015年 第9卷 第3期   页码 436-443 doi: 10.1007/s11783-014-0681-x

摘要: Wet air oxidation (WAO) is one of effective technologies to eliminate hazardous, toxic and highly concentrated organic compounds in the wastewater. In the paper, multi-walled carbon nanotubes (MWCNTs), functionalized by O , were used as catalysts in the absence of any metals to investigate the catalytic activity in the catalytic wet air oxidation (CWAO) of phenol, nitrobenzene (NB) and aniline at the mild operating conditions (reaction temperature of 155°C and total pressure of 2.5 MPa) in a batch reactor. The MWCNTs were characterized with scanning electron microscopy (SEM), transmission electron microscopy (TEM), gas adsorption measurements (BET), fourier transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS). The functionalized MWCNTs showed good catalytic performance. In the CWAO of phenol over the functionalized MWCNTs, total phenol removal was obtained after 90 min run, and the reaction apparent activation energy was ca. 40 kJ·mol . The NB was not removed in the CWAO of single NB, while ca. 97% NB removal was obtained and 40% NB removal was attributed to the catalytic activity after 180 min run in the presence of phenol. Ca. 49% aniline conversion was achieved after 120 min run in the CWAO of aniline.

关键词: catalytic wet air oxidation (CWAO)     carbon nanotubes (CNTs)     phenol     nitrobenzene     aniline    

Advanced cement based nanocomposites reinforced with MWCNTs and CNFs

Emmanuel E. GDOUTOS,Maria S. KONSTA-GDOUTOS,Panagiotis A. DANOGLIDIS,Surendra P. SHAH

《结构与土木工程前沿(英文)》 2016年 第10卷 第2期   页码 142-149 doi: 10.1007/s11709-016-0342-1

摘要: Cementitious materials reinforced with well dispersed multiwall carbon nanotubes (MWCNTs) and carbon nanofibers (CNFs) at the nanoscale were fabricated and tested. The MWCNTs and CNFs were dispersed by the application of ultrasonic energy and the use of a superplasticizer. Mechanical and fracture properties including flexural strength, Young’s modulus, flexural and fracture toughness were measured and compared with similarly processed reference cement based mixes without the nano-reinforcement. The MWCNTs and CNFs reinforced mortars exhibited superior properties demonstrated by a significant improvement in flexural strength (106%), Young’s modulus (95%), flexural toughness (105%), effective crack length (30%) and fracture toughness (120%).

关键词: multi-walled carbon nanotubes     carbon nanofibers     mortars     toughness     Young’s modulus    

Vibration analysis of multi-walled carbon nanotubes embedded in elastic medium

Pattabhi R. BUDARAPU,Sudhir Sastry YB,Brahmanandam JAVVAJI,D. Roy MAHAPATRA

《结构与土木工程前沿(英文)》 2014年 第8卷 第2期   页码 151-159 doi: 10.1007/s11709-014-0247-9

摘要: We propose a method to estimate the natural frequencies of the multi-walled carbon nanotubes (MWCNTs) embedded in an elastic medium. Each of the nested tubes is treated as an individual bar interacting with the adjacent nanotubes through the inter-tube Van der Waals forces. The effect of the elastic medium is introduced through an elastic model. The mathematical model is finally reduced to an eigen value problem and the eigen value problem is solved to arrive at the inter-tube resonances of the MWCNTs. Variation of the natural frequencies with different parameters are studied. The estimated results from the present method are compared with the literature and results are observed to be in close agreement.

关键词: natural frequencies     multi-walled carbon nanotubes (MWCNTS)     elastic medium    

A low-density polyethylene composite with phosphorus-nitrogen based flame retardant and multi-walled carbon nanotubes for enhanced electrical conductivity and acceptable flame retardancy

Yong Luo, Yuhui Xie, Renjie Chen, Ruizhi Zheng, Hua Wu, Xinxin Sheng, Delong Xie, Yi Mei

《化学科学与工程前沿(英文)》 2021年 第15卷 第5期   页码 1332-1345 doi: 10.1007/s11705-021-2035-0

摘要: Design and exploitation of flame retardant polymers with high electrical conductivity are desired for polymer applications in electronics. Herein, a novel phosphorus-nitrogen intumescent flame retardant was synthesized from pentaerythritol octahydrogen tetraphosphate, phenylphosphonyl dichloride, and aniline. Low-density polyethylene was combined with the flame retardant and multi-walled carbon nanotubes to form a nanocomposite material via a ball-milling and hot-pressing method. The electrical conductivity, mechanical properties, thermal performance, and flame retardancy of the composites were investigated using a four-point probe instrument, universal tensile machine, thermogravimetric analysis, and cone calorimeter tests, respectively. It was found that the addition of multi-walled carbon nanotubes can significantly improve the electrical conductivity and mechanical properties of the low-density polyethylene composites. Furthermore, the combination of multi-walled carbon nanotubes and phosphorus–nitrogen flame retardant remarkably enhances the flame retardancy of matrixes with an observed decrease of the peak heat release rate and total heat release of 49.8% and 51.9%, respectively. This study provides a new and effective methodology to substantially enhance the electrical conductivity and flame retardancy of polymers with an attractive prospect for polymer applications in electrical equipment.

关键词: MWCNTs     PEPA     electrical conductivity     flame retardant     low density polyethylene    

标题 作者 时间 类型 操作

Solar photocatalytic decomposition of two azo dyes on multi-walled carbon nanotubes (MWCNTs)/TiO 2 composites

Huilong WANG, Shuqin LIU, Hui WANG, Wenfeng JIANG,

期刊论文

Catalytic wet air oxidation of phenol, nitrobenzene and aniline over the multi-walled carbon nanotubes (MWCNTs

Shaoxia YANG,Yu SUN,Hongwei YANG,Jiafeng WAN

期刊论文

Advanced cement based nanocomposites reinforced with MWCNTs and CNFs

Emmanuel E. GDOUTOS,Maria S. KONSTA-GDOUTOS,Panagiotis A. DANOGLIDIS,Surendra P. SHAH

期刊论文

Vibration analysis of multi-walled carbon nanotubes embedded in elastic medium

Pattabhi R. BUDARAPU,Sudhir Sastry YB,Brahmanandam JAVVAJI,D. Roy MAHAPATRA

期刊论文

A low-density polyethylene composite with phosphorus-nitrogen based flame retardant and multi-walled carbon nanotubes for enhanced electrical conductivity and acceptable flame retardancy

Yong Luo, Yuhui Xie, Renjie Chen, Ruizhi Zheng, Hua Wu, Xinxin Sheng, Delong Xie, Yi Mei

期刊论文