资源类型

期刊论文 7

年份

2023 1

2022 1

2021 2

2020 1

2019 1

2012 1

关键词

力学性能 1

斜拉桥 1

活性粉末混凝土 1

碳纤维(CFRP) 1

检索范围:

排序: 展示方式:

Precast steel–UHPC lightweight composite bridge for accelerated bridge construction

Shuwen DENG, Xudong SHAO, Xudong ZHAO, Yang WANG, Yan WANG

《结构与土木工程前沿(英文)》 2021年 第15卷 第2期   页码 364-377 doi: 10.1007/s11709-021-0702-3

摘要: In this study, a fully precast steel–ultrahigh performance concrete (UHPC) lightweight composite bridge (LWCB) was proposed based on Mapu Bridge, aiming at accelerating construction in bridge engineering. Cast-in-place joints are generally the controlling factor of segmental structures. Therefore, an innovative girder-to-girder joint that is suitable for LWCB was developed. A specimen consisting of two prefabricated steel–UHPC composite girder parts and one post-cast joint part was fabricated to determine if the joint can effectively transfer load between girders. The flexural behavior of the specimen under a negative bending moment was explored. Finite element analyses of Mapu Bridge showed that the nominal stress of critical sections could meet the required stress, indicating that the design is reasonable. The fatigue performance of the UHPC deck was assessed based on past research, and results revealed that the fatigue performance could meet the design requirements. Based on the test results, a crack width prediction method for the joint interface, a simplified calculation method for the design moment, and a deflection calculation method for the steel–UHPC composite girder in consideration of the UHPC tensile stiffness effect were presented. Good agreements were achieved between the predicted values and test results.

关键词: accelerated bridge construction     ultrahigh-performance concrete     steel–UHPC composite bridge     UHPC girder-to-girder joint    

Innovative steel-UHPC composite bridge girders for long-span bridges

Xudong SHAO, Lu DENG, Junhui CAO

《结构与土木工程前沿(英文)》 2019年 第13卷 第4期   页码 981-989 doi: 10.1007/s11709-019-0531-9

摘要: Steel and steel-concrete composite girders are two types of girders commonly used for long-span bridges. However, practice has shown that the two types of girders have some drawbacks. For steel girders, the orthotropic steel deck (OSD) is vulnerable to fatigue cracking and the asphalt overlay is susceptible to damage such as rutting and pot holes. While for steel-concrete composite girders, the concrete deck is generally thick and heavy, and the deck is prone to cracking because of its low tensile strength and high creep. Thus, to improve the serviceability and durability of girders for long-span bridges, three new types of steel-UHPC lightweight composite bridge girders are proposed, where UHPC denotes ultra-high performance concrete. The first two types consist of an OSD and a thin UHPC layer while the third type consists of a steel beam and a UHPC waffle deck. Due to excellent mechanical behaviors and impressive durability of UHPC, the steel-UHPC composite girders have the advantages of light weight, high strength, low creep coefficient, low risk of cracking, and excellent durability, making them competitive alternatives for long-span bridges. To date, the proposed steel-UHPC composite girders have been applied to 14 real bridges in China. It is expected that the application of the new steel-UHPC composite girders on long-span bridges will have a promising future.

关键词: steel-UHPC composite bridge girder     long-span bridge     orthotropic steel deck     fatigue cracking     durability    

Construction management and technology innovation for main projects of Quanzhou Bay Bridge

Jun DU, Fangwen WENG

《工程管理前沿(英文)》 2021年 第8卷 第1期   页码 151-155 doi: 10.1007/s42524-020-0147-8

摘要: Hongtao ZHOU, Hongwei WANG, Wei ZENG. [J]. Front. Eng, 2018, 5(1): 78-87.SangHyun LEE. [J]. Front. Eng, 2017, 4(1): 35-40.Bao-long Yuan,Sheng-gang Ren,Xing Hu,Xuan-yu Yang. [J]. Front. Eng, 2016, 3(1): 24-29.Ting Gong,Jian Yang,Hao Hu,Feng Xu. [J]. Front. Eng, 2015, 2(2): 122-124.Hong-yong Liu,Yi-qi Chen,Yi Yang. [J]. Front. Eng, 2015, 2(1): 71-75.Burcu Akinci. [J]. Front. Eng, 2014, 1(3): 283-289.Mao-run Feng,Zheng-song Zhao. [J]. Front. Eng, 2014, 1(1): 42-51.

关键词: construction management     technology innovation     UHPC trestle panel    

Field validation of UHPC layer in negative moment region of steel-concrete composite continuous girder

Minghong QIU; Xudong SHAO; Weiye HU; Yanping ZHU; Husam H. HUSSEIN; Yaobei HE; Qiongwei LIU

《结构与土木工程前沿(英文)》 2022年 第16卷 第6期   页码 744-761 doi: 10.1007/s11709-022-0843-z

摘要: Improving the cracking resistance of steel-normal concrete (NC) composite beams in the negative moment region is one of the main tasks in designing continuous composite beam (CCB) bridges due to the low tensile strength of the NC deck at pier supports. This study proposed an innovative structural configuration for the negative bending moment region in a steel-concrete CCB bridge with the aid of ultrahigh performance concrete (UHPC) layer. In order to investigate the feasibility and effectiveness of this new UHPC jointed structure in the negative bending moment region, field load testing was conducted on a newly built full-scale bridge. The newly designed structural configuration was described in detail regarding the structural characteristics (cracking resistance, economy, durability, and constructability). In the field investigation, strains on the surface of the concrete bridge deck, rebar, and steel beam in the negative bending moment region, as well as mid-span deflection, were measured under different load cases. Also, a finite element model for the four-span superstructure of the full-scale bridge was established and validated by the field test results. The simulated results in terms of strains and mid-span deflection showed moderate consistency with the test results. This field test and the finite element model results demonstrated that the new configuration with the UHPC layer provided an effective alternative for the negative bending moment region of the composite beam.

关键词: field test     steel-concrete composite beam     continuous girder bridge     negative bending moment region     ultrahigh performance concrete    

Flexural and longitudinal shear performance of precast lightweight steel–ultra-high performance concrete composite beam

《结构与土木工程前沿(英文)》 2023年 第17卷 第5期   页码 704-721 doi: 10.1007/s11709-023-0941-6

摘要: In this study, the flexural and longitudinal shear performances of two types of precast lightweight steel–ultra-high performance concrete (UHPC) composite beams are investigated, where a cluster UHPC slab (CUS) and a normal UHPC slab (NUS) are connected to a steel beam using headed studs through discontinuous shear pockets and full-length shear pockets, respectively. Results show that the longitudinal shear force of the CUS is greater than that of the NUS, whereas the interfacial slip of the former is smaller. Owing to its better integrity, the CUS exhibits greater flexural stiffness and a higher ultimate bearing capacity than the NUS. To further optimize the design parameters of the CUS, a parametric study is conducted to investigate their effects on the flexural and longitudinal shear performances. The square shear pocket is shown to be more applicable for the CUS, as the optimal spacing between two shear pockets is 650 mm. Moreover, a design method for transverse reinforcement is proposed; the transverse reinforcement is used to withstand the splitting force caused by studs in the shear pocket and prevent the UHPC slab from cracking. According to calculation results, the transverse reinforcement can be canceled when the compressive strength of UHPC is 150 MPa and the volume fraction of steel fiber exceeds 2.0%.

关键词: precast steel–UHPC composite beam     flexural performance     longitudinal shear performance     parametric study     transverse reinforcement ratio    

CFRP拉索预应力超高性能混凝土斜拉桥力学性能分析

方志,任亮,凡凤红

《中国工程科学》 2012年 第14卷 第7期   页码 53-59

摘要:

为了探讨碳纤维复合材料 (carbon fiber reinforced polymer, CFRP) 和超高性能活性粉末混凝土(reactive powder concrete, RPC)在超大跨度斜拉桥中应用的可行性,以主跨1 008 m的大跨度钢主梁斜拉桥设计方案为例,采用拉索的等强度原则将原桥钢索替换成CFRP索,考虑截面刚度、截面应力和局部稳定等要求,将原桥钢主梁替换成RPC主梁,拟订了一座等跨度的CFRP拉索、RPC主梁斜拉桥方案。采用有限元法分别对两种方案结构的静力特性、动力特性、稳定性能以及抗风性能等进行了分析与比较。结果表明:从结构受力性能角度而言,采用超高性能混凝土主梁和CFRP拉索构成千米级跨度混凝土斜拉桥的结构体系是可行的。

关键词: 斜拉桥     碳纤维(CFRP)     活性粉末混凝土     力学性能    

Pretest analysis of shake table response of a two-span steel girder bridge incorporating accelerated bridge construction connections

Elmira SHOUSHTARI, M. Saiid SAIIDI, Ahmad ITANI, Mohamed A. MOUSTAFA

《结构与土木工程前沿(英文)》 2020年 第14卷 第1期   页码 169-184 doi: 10.1007/s11709-019-0590-y

摘要: This paper presents pretest analysis of a shake table test model of a 0.35-scale, two-span, steel plate girder bridge. The objective of pretest analysis was to obtain an insight on the seismic response of the bridge model during the shake table tests. The bridge included seat type abutments, full-depth precast deck panels, and a two-column bent in which columns were pinned to the footing and integral with superstructure. Six accelerated bridge construction connections were incorporated in the bridge model. An analytical model was developed in OpenSees and was subjected to ten input bi-directional earthquake motions including near-fault and far-field records. The overall seismic response of the bridge was satisfactory for all the earthquake records at 100%, 150%, and 200% design level. All connections and capacity-protected components remained elastic, and the average ductility capacity surpassed the ductility demand even at 200% design level. Using experimental fragility curves developed for RC bridge columns, it was predicted that there was a probability of 45% that columns would undergo the imminent failure in the last run and a probability of 30% for their failure.

关键词: shake table test     accelerated bridge construction     steel girder bridge     OpenSEES     UHPC     simple for dead continuous for live    

标题 作者 时间 类型 操作

Precast steel–UHPC lightweight composite bridge for accelerated bridge construction

Shuwen DENG, Xudong SHAO, Xudong ZHAO, Yang WANG, Yan WANG

期刊论文

Innovative steel-UHPC composite bridge girders for long-span bridges

Xudong SHAO, Lu DENG, Junhui CAO

期刊论文

Construction management and technology innovation for main projects of Quanzhou Bay Bridge

Jun DU, Fangwen WENG

期刊论文

Field validation of UHPC layer in negative moment region of steel-concrete composite continuous girder

Minghong QIU; Xudong SHAO; Weiye HU; Yanping ZHU; Husam H. HUSSEIN; Yaobei HE; Qiongwei LIU

期刊论文

Flexural and longitudinal shear performance of precast lightweight steel–ultra-high performance concrete composite beam

期刊论文

CFRP拉索预应力超高性能混凝土斜拉桥力学性能分析

方志,任亮,凡凤红

期刊论文

Pretest analysis of shake table response of a two-span steel girder bridge incorporating accelerated bridge construction connections

Elmira SHOUSHTARI, M. Saiid SAIIDI, Ahmad ITANI, Mohamed A. MOUSTAFA

期刊论文