资源类型

期刊论文 2

年份

2014 1

2010 1

关键词

检索范围:

排序: 展示方式:

Modification of polycarbonateurethane surface with poly(ethylene glycol) monoacrylate and phosphorylcholine

Jing YANG,Juan LV,Bin GAO,Li ZHANG,Dazhi YANG,Changcan SHI,Jintang GUO,Wenzhong LI,Yakai FENG

《化学科学与工程前沿(英文)》 2014年 第8卷 第2期   页码 188-196 doi: 10.1007/s11705-014-1414-1

摘要: Poly(ethylene glycol) monoacrylate (PEGMA) is grafted onto polycarbonateurethane (PCU) surface via ultraviolet initiated photopolymerization. The hydroxyl groups of poly(PEGMA) on the surface react with one NCO group of isophorone diisocyanate (IPDI) and another NCO group of IPDI is then hydrolyzed to form amino terminal group, which is further grafted with phosphorylcholine glyceraldehyde to establish a biocompatible hydrophilic structure on the surface. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy confirm the successful grafting of both PEG and phosphorylcholine functional groups on the surface. The decrease of the water contact angle for the modified film is caused by synergic effect of PEG and phosphorylcholine, which both have the high hydrophilicity. Furthermore, the number of platelets adhered is relative low on the synergetically modified PCU film compared with the PCU film modified only by poly(PEGMA). Our synergic modification method using both PEG and phosphorylcholine may be applied in surface modification of blood-contacting biomaterials and some relevant devices.

关键词: poly(ethylene glycol) monoacrylate     phosphorylcholine     polycarbonateurethane     surface modification     anti-platelet adhesion     biomaterials    

Surface modification of biomaterials by photochemical immobilization and photograft polymerization to improve hemocompatibility

Yakai FENG, Haiyang ZHAO, Li ZHANG, Jintang GUO,

《化学科学与工程前沿(英文)》 2010年 第4卷 第3期   页码 372-381 doi: 10.1007/s11705-010-0005-z

摘要: Thrombus formation and blood coagulation are serious problems associated with blood contacting products, such as catheters, vascular grafts, artificial hearts, and heart valves. Recent progresses and strategies to improve the hemocompatibility of biomaterials by surface modification using photochemical immobilization and photograft polymerization are reviewed in this paper. Three approaches to modify biomaterial surfaces for improving the hemocompatibility, i.e., bioinert surfaces, immobilization of anticoagulative substances and biomimetic surfaces, are introduced. The biomimetic amphiphilic phosphorylcholine and Arg-Gly-Asp (RGD) sequence are the most effective and most often employed biomolecules and peptide sequence for improving hemocompatibility of material surfaces. The RGD sequence can enhance adhesion and growth of endothelial cells (ECs) on material surfaces and increase the retention of ECs under flow shear stress conditions. This surface modification is a promising strategy for biomaterials especially for cardiovascular grafts and functional tissue engineered blood vessels.

关键词: biomimetic amphiphilic     amphiphilic phosphorylcholine     endothelial     functional     biomaterial    

标题 作者 时间 类型 操作

Modification of polycarbonateurethane surface with poly(ethylene glycol) monoacrylate and phosphorylcholine

Jing YANG,Juan LV,Bin GAO,Li ZHANG,Dazhi YANG,Changcan SHI,Jintang GUO,Wenzhong LI,Yakai FENG

期刊论文

Surface modification of biomaterials by photochemical immobilization and photograft polymerization to improve hemocompatibility

Yakai FENG, Haiyang ZHAO, Li ZHANG, Jintang GUO,

期刊论文