资源类型

期刊论文 13

年份

2021 1

2020 2

2019 2

2018 1

2017 1

2012 1

2010 2

2009 1

2008 1

展开 ︾

关键词

多目标粒子群协同优化算法 1

烧结终点 1

综合透气性 1

铅锌烧结过程 1

展开 ︾

检索范围:

排序: 展示方式:

Stabilization of hexavalent chromium with pretreatment and high temperature sintering in highly contaminated

Haiyan Mou, Wenchao Liu, Lili Zhao, Wenqing Chen, Tianqi Ao

《环境科学与工程前沿(英文)》 2021年 第15卷 第4期 doi: 10.1007/s11783-020-1353-7

摘要: Abstract • Separate reduction and sintering cannot be effective for Cr stabilization. • Combined treatment of reduction and sintering is effective for Cr stabilization. • Almost all the Cr in the reduced soil is residual form after sintering at 1000°C. This study explored the effectiveness and mechanisms of high temperature sintering following pre-reduction with ferric sulfate (FeSO4), sodium sulfide (Na2S), or citric acid (C6H8O7) in stabilizing hexavalent chromium (Cr(VI)) in highly contaminated soil. The soil samples had an initial total Cr leaching of 1768.83 mg/L, and Cr(VI) leaching of 1745.13 mg/L. When FeSO4 or C6H8O7 reduction was followed by sintering at 1000°C, the Cr leaching was reduced enough to meet the Safety Landfill Standards regarding general industrial solid waste. This combined treatment greatly improved the stabilization efficiency of chromium because the reduction of Cr(VI) into Cr(III) decreased the mobility of chromium and made it more easily encapsulated in minerals during sintering. SEM, XRD, TG-DSC, and speciation analysis indicated that when the sintering temperature reached 1000°C, almost all the chromium in soils that had the pre-reduction treatment was transformed into the residual form. At 1000°C, the soil melted and promoted the mineralization of Cr and the formation of new Cr-containing compounds, which significantly decreased subsequent leaching of chromium from the soil. However, without reduction treatment, chromium continued to leach from the soil even after being sintered at 1000°C, possibly because the soil did not fully fuse and because Cr(VI) does not bind with soil as easily as Cr(III).

关键词: Chromium     Heavy contaminated soil     Reduction     Sintering     Stabilization     Speciation    

Two-dimensional modeling of sintering of a powder layer on top of nonporous substrate

Tiebing CHEN, Yuwen ZHANG,

《机械工程前沿(英文)》 2010年 第5卷 第2期   页码 143-148 doi: 10.1007/s11465-010-0006-0

摘要: Selective laser sintering (SLS) of a two-component metal powder layer on the top of multiple sintered layers by a moving Gaussian laser beam is modeled. The loose metal powder layer is composed of a powder mixture with significantly different melting points. The physical model that accounts the shrinkage induced by melting is described by using a temperature-transforming model. The effects of the porosity and the thickness of the atop loose powder layer with different numbers of the existing sintered metal powder layers below on the sintering process are numerically investigated. The present work will provide a better understanding to simulate much more complicated three-dimensional SLS process.

关键词: laser     sintering     melting     solidification     heat transfer    

Fabrication of form stable NaCl-Al2O3 composite for thermal energy storage by cold sintering process

Bilyaminu Suleiman, Qinghua Yu, Yulong Ding, Yongliang Li

《化学科学与工程前沿(英文)》 2019年 第13卷 第4期   页码 727-735 doi: 10.1007/s11705-019-1823-2

摘要: A form stable NaCl-Al O (50-50 wt-%) composite material for high temperature thermal energy storage was fabricated by cold sintering process, a process recently applied to the densification of ceramics at low temperature ˂ 300°C under uniaxial pressure in the presence of small amount of transient liquid. The fabricated composite achieved as high as 98.65% of the theoretical density. The NaCl-Al O composite also retained the chloride salt without leakage after 30 heating-cooling cycles between 750°C–850°C together with a holding period of 24 h at 850°C. X-ray diffraction measurements indicated congruent solubility of the alumina in chloride salt, excellent compatibility of NaCl with Al O , and chemical stability at high temperature. Structural analysis by scanning electron microscope also showed limited grain growth, high density, uniform NaCl distribution and clear faceted composite structure without inter-diffusion. The latent heat storage density of 252.5 J/g was obtained from simultaneous thermal analysis. Fracture strength test showed high sintered strength around 5 GPa after 50 min. The composite was found to have fair mass losses due to volatilization. Overall, cold sintering process has the potential to be an efficient, safe and cost-effective strategy for the fabrication of high temperature thermal energy storage materials.

关键词: cold sintering process     composite fabrication     thermal energy storage     phase change materials    

Current understanding and applications of the cold sintering process

Tong Yu, Jiang Cheng, Lu Li, Benshuang Sun, Xujin Bao, Hongtao Zhang

《化学科学与工程前沿(英文)》 2019年 第13卷 第4期   页码 654-664 doi: 10.1007/s11705-019-1832-1

摘要: In traditional ceramic processing techniques, high sintering temperature is necessary to achieve fully dense microstructures. But it can cause various problems including warpage, overfiring, element evaporation, and polymorphic transformation. To overcome these drawbacks, a novel processing technique called “cold sintering process (CSP)” has been explored by Randall et al. CSP enables densification of ceramics at ultra-low temperature (≤300°C) with the assistance of transient aqueous solution and applied pressure. In CSP, the processing conditions including aqueous solution, pressure, temperature, and sintering duration play critical roles in the densification and properties of ceramics, which will be reviewed. The review will also include the applications of CSP in solid-state rechargeable batteries. Finally, the perspectives about CSP is proposed.

关键词: cold sintering process     processing variables     solid-state rechargeable batteries    

Laser sintering of Cu nanoparticles on PET polymer substrate for printed electronics at different wavelengths

Juan Carlos HERNANDEZ-CASTANEDA, Boon Keng LOK, Hongyu ZHENG

《机械工程前沿(英文)》 2020年 第15卷 第2期   页码 303-318 doi: 10.1007/s11465-019-0562-x

摘要: This study explores the feasibility of different laser systems to sinter screen-printed lines from nonconductive copper nanoparticles (Cu NPs) on polyethylene terephthalate polymer film. These materials are commonly used in manufacturing functional printed electronics for large-area applications. Here, optical and thermal characterization of the materials is conducted to identify suitable laser sources and process conditions. Direct diode (808 nm), Nd:YAG (1064 nm and second harmonic of 532 nm), and ytterbium fiber (1070 nm) lasers are explored. Optimal parameters for sintering the Cu NPs are identified for each laser system, which targets low resistivity and high processing speed. Finally, the quality of the sintered tracks is quantified, and the laser sintering mechanisms observed under different wavelengths are analyzed. Practical considerations are discussed to improve the laser sintering process of Cu NPs.

关键词: laser sintering     copper nanoparticles     printed electronics    

Development of lunar regolith composite and structure via laser-assisted sintering

《机械工程前沿(英文)》 doi: 10.1007/s11465-021-0662-2

摘要: Aiming at the exploration and resource utilization activities on the Moon, in situ resource utilization and in situ manufacturing are proposed to minimize the dependence on the ground transportation supplies. In this paper, a laser-assisted additive manufacturing process is developed to fabricate lunar regolith composites with PA12/SiO2 mixing powders. The process parameters and composite material compositions are optimized in an appropriate range through orthogonal experiments to establish the relationship of process–structure–property for lunar regolith composites. The optimal combination of composite material compositions and process parameters are mixing ratio of 50/50 in volume, laser power of 30 W, scanning speed of 3500 mm/s, and scanning hatch space of 0.2 mm. The maximum tensile strength of lunar regolith composites reaches 9.248 MPa, and the maximum depth of surface variation is 120.79 μm, which indicates poor powder fusion and sintering quality. Thereafter, the mechanical properties of laser-sintered lunar regolith composites are implemented to the topology optimization design of complex structures. The effectiveness and the feasibility of this laser-assisted process are potentially developed for future lightweight design and manufacturing of the solar panel installed on the lunar rover.

关键词: in situ manufacturing     laser-assisted powder fusion process     mechanical properties     topological structure design    

Preparation and microstructure analysis of Fe-doped PbTiO ceramic

QIANG Liangsheng, MA Jing, CHU Jia, ZHANG Xiaohong

《化学科学与工程前沿(英文)》 2008年 第2卷 第2期   页码 140-144 doi: 10.1007/s11705-008-0021-4

摘要: Fe-doped PbTiO (PT) powder and bulk materials were prepared successfully by sol-gel technique and a subsequent sintering process using Fe (CH) as a dopant agent. The effects of pH and temperature on the Fe-doped PT system were investigated. Thermogravimetry/differential thermal analysis (TG/DTA), X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to analyze the composition and the microstructure of the PT ceramics. The results indicated that the thermal decomposition of xerogel included three stages: volatilization of adsorption water and organic composition, oxygenolysis of -butyl and acetate, and transformation of the crystalline phase. Well-stabilized collosol and gel could be obtained at 60°C and pH = 4.5. It was found that PbTiO, PbFeO, and TiO crystalline appeared in the Fe-doped PT system when the mass fraction of the dopant Fe was 0.03%. Furthermore, from STM analysis, it could be seen that the grain size of doped PT ceramics was homogeneous and about 1–2 ?m, and the pore of the PT ceramic was small. As a result, the PT ceramic had high tightness.

关键词: homogeneous     Thermogravimetry/differential thermal     tightness     oxygenolysis     sintering process    

Strengthening mechanisms in carbon nanotube reinforced bioglass composites

Jing ZHANG, Chengchang JIA, Zhizhong JIA, Jillian LADEGARD, Yanhong GU, Junhui NIE

《化学科学与工程前沿(英文)》 2012年 第6卷 第2期   页码 126-131 doi: 10.1007/s11705-012-1279-0

摘要: Carbon nanotube reinforced bioglass composites have been successfully synthesized by two comparative sintering techniques, i.e., spark plasma sintering (SPS) and conventional compaction and sinteirng. The composites show improved mechanical properties, with SPS technique substantially better than conventional compact and sintering approach. Using SPS, compared with the 45S5Bioglass matrix, the maximum flexural strength and fracture toughness increased by 159% and 105%, respectively. Enhanced strength and toughness are attributed to the interfacial bonding and bridging effects between the carbon nanotubes and bioglass powders during crack propagations.

关键词: 45S5Bioglass     multi-wall carbon nanotubes     biocomposite     mechanical properties     sintering    

Bimetallic Ni-Fe catalysts derived from layered double hydroxides for CO methanation from syngas

Honggui Tang, Shuangshuang Li, Dandan Gong, Yi Guan, Yuan Liu

《化学科学与工程前沿(英文)》 2017年 第11卷 第4期   页码 613-623 doi: 10.1007/s11705-017-1664-9

摘要: Carbon deposition and sintering of active components such as nano particles are great challenges for Ni-based catalysts for CO methanation to generate synthetic natural gas from syngas. Facing the challenges, bimetallic catalysts with different Fe content derived from layered double hydroxide containing Ni, Fe, Mg, Al elements were prepared by co-precipitation method. Nanoparticles of Ni-Fe alloy were supported on mixed oxides of aluminium and magnesium after calcination and reduction. The catalysts were characterized by Brunner-Emmett-Teller (BET), X-ray diffraction, hydrogen temperature programmed reduction, inductively coupled plasma, X-ray photoelectron spectroscopy, transmission electron microscopy and thermogravimetric techniques, and their catalytic activity for CO methanation was investigated. The results show that the Ni-Fe alloy catalysts exhibit better catalytic performance than monometallic catalysts except for the Ni4Fe-red catalyst. The Ni2Fe-red catalyst shows the highest CO conversion (100% at 260–350 °C), as well as the highest CH selectivity (over 95% at 280–350 °C), owing to the formation of Ni-Fe alloy. In stability test, the Ni2Fe-red catalyst exhibits great improvement in both anti-sintering and resistance to carbon formation compared with the Ni0Fe-red catalyst. The strong interaction between Ni and Fe element in alloy and surface distribution of Fe element not only inhibits the sintering of nanoparticles but restrains the formation of Ni clusters.

关键词: methanation     layered double hydroxide     bimetal Ni-Fe alloy     sintering     carbon deposition    

A novel approach to preparing ultra-lightweight ceramsite with a large amount of fly ash

Sen Liu, Congren Yang, Wei Liu, Longsheng Yi, Wenqing Qin

《环境科学与工程前沿(英文)》 2020年 第14卷 第4期 doi: 10.1007/s11783-020-1241-1

摘要: •Ultra-lightweight ceramsite is prepared with 80% fly ash. •SiO2, Al2O3, and flux contents significantly influence the performance of ceramsite. •The expansion of ceramsite is caused by the formation of a dense glaze and gas. •The bulk density of ultra-lightweight ceramsite is only 340 kg/m3. The disposal of fly ash has become a serious problem in China due to its rapid increase in volume in recent years. The most common method of fly ash disposal is solidification-stabilization-landfill, and the most common reuse is low-value-added building materials. A novel processing method for preparing ultra-lightweight ceramsite with fly ash was developed. The results show that the optimal parameters for preparation of ultra-lightweight ceramsite are as follows: mass ratio of fly ash:kaolin:diatomite= 80:15:5, preheating temperature of 800°C, preheating time of 5 min, sintering temperature of 1220°C, and sintering time of 10 min. The expansion agent is perlite, at 10 wt.% addition. Finally, a ceramsite with bulk density of 340 kg/m3, particle density of 0.68 g/cm3, and cylinder compressive strength of 1.02 MPa was obtained. Because of its low density and high porosity, ultra-lightweight ceramsite has excellent thermal insulation performance, and its strength is generally low, so it is usually used in the production of thermal insulation concrete and its products. The formation of a liquid-phase component on the surface, and generation of a gas phase inside ceramsite during the sintering process, make it possible to control the production of the suitable liquid phase and gas in this system, resulting in an optimization of the expansion behavior and microstructure of ceramsite. These characteristics show the feasibility of industrial applications of fly ash for the production of ultra-lightweight ceramsite, which could not only produce economic benefits, but also conserve land resources and protect the environment.

关键词: Fly ash     Ultra-lightweight ceramsite     Expansion mechanism     Sintering process    

Properties of Ag-doped Bi-Sb alloys as thermoelectric conversion materials for solid state refrigeration

Wen XU, Laifeng LI, Rongjin HUANG, Min ZHOU, Liyun ZHENG, Linghui GONG, Chunmei SONG

《能源前沿(英文)》 2009年 第3卷 第1期   页码 90-93 doi: 10.1007/s11708-009-0005-1

摘要: The energy conversion properties of Bi-Sb system thermoelectric materials doped by Ag was investigated. Bi Sb Ag ( =0, 1, 2, 3, 4) alloys with Ag substitution for Sb were synthesized by mechanical alloying and then pressed under 5 GPa at 523 K for 30 min. The phase structure of the alloys was characterized by X-ray diffraction. The electric conductivities and the seebeck coefficients were measured at the temperature range of 80-300 K. The results reveal that the electric conductivities of the Ag-doped Bi-Sb alloys are highly improved. The power factor of Bi Sb Ag reaches a maximum value of 2.98×10 W/(K ?m) at 255 K, which is about three times that of the un-doped sample Bi Sb at the same temperature.

关键词: thermoelectric conversion materials     high-pressure sintering     thermoelectric properties    

Tubes with coated and sintered porous surface for highly efficient heat exchangers

Hong Xu, Yulin Dai, Honghai Cao, Jinglei Liu, Li Zhang, Mingjie Xu, Jun Cao, Peng Xu, Jianshu Liu

《化学科学与工程前沿(英文)》 2018年 第12卷 第3期   页码 367-375 doi: 10.1007/s11705-018-1703-1

摘要:

Surface modification is a direct and effective way to enhance the efficiency of heat exchangers. Surface modification by forming a microporous coated layer can greatly enhance the boiling heat transfer and thus achieve a high performance. In this paper, we systematically investigate the boiling behavior on a plain surface with/without sintered microporous coatings of copper powder. The results demonstrated that the sintered surface has a better performance in nucleate boiling due to the increased nucleation sites. The superheat degree is lower and the bubble departure diameter is larger for the sintered surface than for the plain surface, so the heat can be carried away more efficiently on the sintered surface. In addition, the heat transfer capacity on the sintered surface depends on both the powder size and the coating thickness for a high flux tube. The optimum heat transfer capacity can be obtained when the thickness of the microporous coating layer is 3–5 times of the sintered powder diameter. As a result, the heat transfer coefficient tube can be up to 3 times higher for the tube with a sintered surface than that with a plain surface, showing a pronounced enhancement in heat transfer and a high potential in chemical engineering industry application.

关键词: microporous coating layer     surface modification     boiling enhancement     sintering    

基于多目标粒子群协同算法的状态参数优化

丁雷,吴敏,佘锦华,段平

《中国工程科学》 2010年 第12卷 第2期   页码 101-107

摘要:

针对铅锌烧结过程综合透气性、烧结终点的优化具有强非线性、计算复杂等特点,提出了一种有效的多目标粒子群协同优化算法。首先,建立了有综合透气性、烧结终点两个目标的优化模型。接着,通过改进的约束比较方法、粒子极值选取方法,以及利用不同的粒子群来分别优化相应的变量,提出了一种改进的多目标粒子群协同优化算法。最后,利用提出的多目标优化算法进行综合透气性、烧结终点的优化。仿真结果表明,所提出的多目标优化算法能较好地解决综合透气性、烧结终点的优化问题。

关键词: 铅锌烧结过程     综合透气性     烧结终点     多目标粒子群协同优化算法    

标题 作者 时间 类型 操作

Stabilization of hexavalent chromium with pretreatment and high temperature sintering in highly contaminated

Haiyan Mou, Wenchao Liu, Lili Zhao, Wenqing Chen, Tianqi Ao

期刊论文

Two-dimensional modeling of sintering of a powder layer on top of nonporous substrate

Tiebing CHEN, Yuwen ZHANG,

期刊论文

Fabrication of form stable NaCl-Al2O3 composite for thermal energy storage by cold sintering process

Bilyaminu Suleiman, Qinghua Yu, Yulong Ding, Yongliang Li

期刊论文

Current understanding and applications of the cold sintering process

Tong Yu, Jiang Cheng, Lu Li, Benshuang Sun, Xujin Bao, Hongtao Zhang

期刊论文

Laser sintering of Cu nanoparticles on PET polymer substrate for printed electronics at different wavelengths

Juan Carlos HERNANDEZ-CASTANEDA, Boon Keng LOK, Hongyu ZHENG

期刊论文

Development of lunar regolith composite and structure via laser-assisted sintering

期刊论文

Preparation and microstructure analysis of Fe-doped PbTiO ceramic

QIANG Liangsheng, MA Jing, CHU Jia, ZHANG Xiaohong

期刊论文

Strengthening mechanisms in carbon nanotube reinforced bioglass composites

Jing ZHANG, Chengchang JIA, Zhizhong JIA, Jillian LADEGARD, Yanhong GU, Junhui NIE

期刊论文

Bimetallic Ni-Fe catalysts derived from layered double hydroxides for CO methanation from syngas

Honggui Tang, Shuangshuang Li, Dandan Gong, Yi Guan, Yuan Liu

期刊论文

A novel approach to preparing ultra-lightweight ceramsite with a large amount of fly ash

Sen Liu, Congren Yang, Wei Liu, Longsheng Yi, Wenqing Qin

期刊论文

Properties of Ag-doped Bi-Sb alloys as thermoelectric conversion materials for solid state refrigeration

Wen XU, Laifeng LI, Rongjin HUANG, Min ZHOU, Liyun ZHENG, Linghui GONG, Chunmei SONG

期刊论文

Tubes with coated and sintered porous surface for highly efficient heat exchangers

Hong Xu, Yulin Dai, Honghai Cao, Jinglei Liu, Li Zhang, Mingjie Xu, Jun Cao, Peng Xu, Jianshu Liu

期刊论文

基于多目标粒子群协同算法的状态参数优化

丁雷,吴敏,佘锦华,段平

期刊论文