More

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused a global pandemic in only 3 months. In addition to major respiratory distress, characteristic neurological manifestations are also described, indicating that SARS-CoV-2 may be an underestimated opportunistic pathogen of the brain. Based on previous studies of neuroinvasive human respiratory coronaviruses, it is proposed that after physical contact with the nasal mucosa, laryngopharynx, trachea, lower respiratory tract, alveoli epithelium, or gastrointestinal mucosa, SARS-CoV-2 can induce intrinsic and innate immune responses in the host involving increased cytokine release, tissue damage, and high neurosusceptibility to COVID-19, especially in the hypoxic conditions caused by lung injury. In some immune-compromised individuals, the virus may invade the brain through multiple routes, such as the vasculature and peripheral nerves. Therefore, in addition to drug treatments, such as pharmaceuticals and traditional Chinese medicine, non-pharmaceutical precautions, including facemasks and hand hygiene, are critically important.

Zhengqian Li ,   Taotao Liu   et al.
The association between serum uric acid and the risk of incident diabetes in Chinese adults remains unknown. This study aimed to investigate this association in a community-dwelling population aged≥40 years in Shanghai, China. Oral glucose tolerance test was conducted during baseline and follow-up visits. Relative risk regression was utilized to examine the associations between baseline gender-specific serum uric acid levels and incident diabetes risk. A total of 613 (10.3%) incident diabetes cases were identified during the follow-up visit after 4.5 years. Fasting plasma glucose, postload glucose, and glycated hemoglobin A1c during the follow-up visit progressively increased across the sex-specific quartiles of serum uric acid (all s<0.05). The incidence rate of diabetes increased across the quartiles of serum uric acid (7.43%, 8.77%, 11.47%, and 13.43%). Multivariate adjusted regression analysis revealed that individuals in the highest quartile had 1.36-fold increased risk of diabetes compared with those in the lowest quartile of serum uric acid (odds ratio (95% confidence interval) = 1.36 (1.06−1.73)). Stratified analysis indicated that the association was only observed in women. Accordingly, serum uric acid was associated with the increased risk of incident diabetes among middle-aged and elderly Chinese women.

Di Cheng ,   Chunyan Hu   et al.
Coronavirus disease 2019 (COVID-19) is a highly contagious disease and a serious threat to human health. COVID-19 can cause multiple organ dysfunction, such as respiratory and circulatory failure, liver and kidney injury, gastrointestinal dysfunction, disseminated intravascular coagulation, and thromboembolism, and even death. The World Health Organization reports that the mortality rate of severe-type COVID-19 is over 50%. Currently, the number of severe cases worldwide has increased rapidly, but the experience in the treatment of infected patients is still limited. Given the lack of specific antiviral drugs, multi-organ function support treatment is important for patients with COVID-19. To improve the cure rate and reduce the mortality of patients with severe- and critical-type COVID-19, this paper summarizes the experience of organ function support in patients with severe- and critical-type COVID-19 in Optical Valley Branch of Tongji Hospital, Wuhan, China. This paper systematically summarizes the procedures of functional support therapies for multiple organs and systems, including respiratory, circulatory, renal, gastrointestinal, hepatic, and hematological systems, among patients with severe- and critical-type COVID-19. This paper provides a clinical reference and a new strategy for the optimal treatment of COVID-19 worldwide.

Yong Li ,   Fan He   et al.
Berberine, an isoquinoline alkaloid isolated from the Chinese herb and other plants, has a wide range of pharmacological properties. Berberine can be used to treat many diseases, such as cancer and digestive, metabolic, cardiovascular, and neurological diseases. Berberine has protective capacities in digestive diseases. It can inhibit toxins and bacteria, including , protect the intestinal epithelial barrier from injury, and ameliorate liver injury. Berberine also inhibits the proliferation of various types of cancer cells and impedes invasion and metastasis. Recent evidence has confirmed that berberine improves the efficacy and safety of chemoradiotherapies. In addition, berberine regulates glycometabolism and lipid metabolism, improves energy expenditure, reduces body weight, and alleviates nonalcoholic fatty liver disease. Berberine also improves cardiovascular hemodynamics, suppresses ischemic arrhythmias, attenuates the development of atherosclerosis, and reduces hypertension. Berberine shows potent neuroprotective effects, including antioxidative, antiapoptotic, and anti-ischemic. Furthermore, berberine exerts protective effects against other diseases. The mechanisms of its functions have been extensively explored, but much remains to be clarified. This article summarizes the main pharmacological actions of berberine and its mechanisms in cancer and digestive, metabolic, cardiovascular, and neurological diseases.

Danyang Song ,   Jianyu Hao   et al.

Most Popular