Resource Type

Journal Article 2

Year

2022 1

2018 1

Keywords

thermoelectrics 2

Boltzmann transport theory 1

diffusive scattering 1

first-principle calculations 1

inorganic metal halide perovskites 1

mean free path 1

mechanical deformation 1

nanoporous film 1

phonon 1

open ︾

Search scope:

排序: Display mode:

Largely reduced cross-plane thermal conductivity of nanoporous In

Dongchao XU, Quan WANG, Xuewang WU, Jie ZHU, Hongbo ZHAO, Bo XIAO, Xiaojia WANG, Xiaoliang WANG, Qing HAO

Frontiers in Energy 2018, Volume 12, Issue 1,   Pages 127-136 doi: 10.1007/s11708-018-0519-5

Abstract: recent year, nanoporous Si thin films have been widely studied for their potential applications in thermoelectrics

Keywords: nanoporous film     thermoelectrics     phonon     mean free path     diffusive scattering    

High performance solid-state thermoelectric energy conversion via inorganic metal halide perovskites under tailored mechanical deformation

Lifu YAN, Lingling ZHAO, Guiting YANG, Shichao LIU, Yang LIU, Shangchao LIN

Frontiers in Energy 2022, Volume 16, Issue 4,   Pages 581-594 doi: 10.1007/s11708-022-0831-y

Abstract: Solid-state thermoelectric energy conversion devices attract broad research interests because of their great promises in waste heat recycling, space power generation, deep water power generation, and temperature control, but the search for essential thermoelectric materials with high performance still remains a great challenge. As an emerging low cost, solution-processed thermoelectric material, inorganic metal halide perovskites CsPb(I1–xBrx)3 under mechanical deformation is systematically investigated using the first-principle calculations and the Boltzmann transport theory. It is demonstrated that halogen mixing and mechanical deformation are efficient methods to tailor electronic structures and charge transport properties in CsPb(I1–xBrx)3 synergistically. Halogen mixing leads to band splitting and anisotropic charge transport due to symmetry-breaking-induced intrinsic strains. Such band splitting reconstructs the band edge and can decrease the charge carrier effective mass, leading to excellent charge transport properties. Mechanical deformation can further push the orbital energies apart from each other in a more controllable manner, surpassing the impact from intrinsic strains. Both anisotropic charge transport properties andZT values are sensitive to the direction and magnitude of strain, showing a wide range of variation from 20% to 400% (with a ZT value of up to 1.85) compared with unstrained cases. The power generation efficiency of the thermoelectric device can reach as high as approximately 12% using mixed halide perovskites under tailored mechanical deformation when the heat-source is at 500 K and the cold side is maintained at 300 K, surpassing the performance of many existing bulk thermoelectric materials.

Keywords: inorganic metal halide perovskites     mechanical deformation     thermoelectrics     first-principle calculations    

Title Author Date Type Operation

Largely reduced cross-plane thermal conductivity of nanoporous In

Dongchao XU, Quan WANG, Xuewang WU, Jie ZHU, Hongbo ZHAO, Bo XIAO, Xiaojia WANG, Xiaoliang WANG, Qing HAO

Journal Article

High performance solid-state thermoelectric energy conversion via inorganic metal halide perovskites under tailored mechanical deformation

Lifu YAN, Lingling ZHAO, Guiting YANG, Shichao LIU, Yang LIU, Shangchao LIN

Journal Article