Resource Type

Journal Article 1813

Conference Videos 74

Conference Information 33

Year

2024 3

2023 161

2022 181

2021 206

2020 144

2019 104

2018 114

2017 133

2016 83

2015 54

2014 54

2013 42

2012 39

2011 49

2010 54

2009 47

2008 52

2007 59

2006 52

2005 57

open ︾

Keywords

Machine learning 15

COVID-19 13

genetic algorithm 12

Deep learning 11

disruptive technology 11

Artificial intelligence 10

China 10

Additive manufacturing 8

reliability 8

innovation 7

3D printing 6

Safety 6

Sustainability 6

disruptive technologies 6

neural network 6

numerical simulation 6

Big data 5

Climate change 5

robustness 5

open ︾

Search scope:

排序: Display mode:

OTFS modulation performance in a satellite-to-ground channel at sub-6-GHz and millimeter-wave bands with high mobility

Tianshi Li, Ruisi He, Bo Ai, Mi Yang, Zhangdui Zhong, Haoxiang Zhang,19125026@bjtu.edu.cn,ruisi.he@bjtu.edu.cn,boai@bjtu.edu.cn,17111030@bjtu.edu.cn,zhdzhong@bjtu.edu.cn,zhx61778294@126.com

Frontiers of Information Technology & Electronic Engineering 2021, Volume 22, Issue 4,   Pages 517-526 doi: 10.1631/FITEE.2000468

Abstract: modulation has been widely considered for high-mobility scenarios. have recently received much attention as a typical high-mobility scenario and face great challenges due to the high Doppler shift. To enable reliable communications and high spectral efficiency in satellite mobile communications, we evaluate OTFS modulation performance for geostationary Earth orbit and low Earth orbit satellite-to-ground channels at sub-6-GHz and millimeter-wave bands in both line-of-sight and non-line-of-sight cases. The is used to improve the bit error rate performance. The adaptability of OTFS and the signal detection technologies in satellite-to-ground channels are analyzed. Simulation results confirm the feasibility of applying OTFS modulation to with high mobility. Because full diversity in the delay-Doppler domain can be explored, different terminal movement velocities do not have a significant impact on the performance of OTFS modulation, and OTFS modulation can achieve better performance compared with classical orthogonal frequency division multiplexing in satellite-to-ground channels. It is found that MMSE-SD can improve the performance of OTFS modulation compared with an MMSE equalizer.

Keywords: 时延-多普勒域;高移动性通信;最小均方误差算法;正交时频空;星地通信;毫米波通信    

Empirical study on directional millimeter-wave propagation in vehicle-to-infrastructure communications between road and roadside

Xichen Liu, Lin Yang, Daizhong Yu,362475709@qq.com,eelyang@uestc.edu.cn,15908107465@163.com

Frontiers of Information Technology & Electronic Engineering 2021, Volume 22, Issue 4,   Pages 503-516 doi: 10.1631/FITEE.2000464

Abstract: With the increased demand for unmanned driving technology and big-data transmission between vehicles, (mmWave) technology, due to its characteristics of large bandwidth and low latency, is considered to be the key technology in future vehicular communication systems. Different from traditional cellular communication, the vehicular communication environment has the characteristics of long distance and high moving speed. However, the existing communication channel tests mostly select low-speed and small-range communication scenarios for testing. The test results are insufficient to provide good data support for the existing vehicular communication research; therefore, in this paper, we carry out a large number of channel measurements in mmWave vehicle-to-infrastructure (V2I) long-distance communication scenarios in the 41 GHz band. We study the received signal strength (RSS) in detail and find that the vibration features of RSS can be best modeled by the modified considering road roughness. Based on the obtained RSS, a novel close-in (CI) model considering the effect of the transmitter (TX) and receiver (RX) antenna heights (CI-TRH model) is developed. As for the channel characteristics, the distribution of the root-mean-square (RMS) delay spread is analyzed. We also extend the two-section exponential (PDP) model to a more general form so that the distance-dependent features of the mmWave channel can be better modeled. Furthermore, the variation in both RMS delay spread and PDP shape parameters with TX-RX distance is analyzed. Analysis results show that TX and RX antenna heights have an effect on large-scale fading. Our modified , CI-TRH model, and two-section exponential PDP model are proved to be effective.

Keywords: 毫米波;两径模型;均方根时延扩展;功率延迟分布;CI-TRH路径损耗模型    

The V-BLAST Detection for MIMO MC-CDMA System

Yang Jie,Feng Guangzeng

Strategic Study of CAE 2007, Volume 9, Issue 1,   Pages 58-62

Abstract:

This paper investigates V-BLAST MC-CDMA down link.A V-BLAST detector per subcarrier is proposed for MIMO MC-CDMA system in this paper and the system performance with var ious numbers of V -BLAST antennas and users for such a system is evaluated throu gh simulations.

Keywords: multiple input multiple output(MIMO)     orthogonal frequency division multiplexing(OFDM)     layered space唱time code(LST)     zero force(ZF)algorithm     minimum mean square error(MMSE)    

Prior information based channel estimation for millimeter-wave massive MIMO vehicular communications in 5G and beyond Research Articles

Zhao Yi, Weixia Zou, Xuebin Sun,yz17tx@bupt.edu.cn,zwx0218@bupt.edu.cn

Frontiers of Information Technology & Electronic Engineering 2021, Volume 22, Issue 6,   Pages 777-789 doi: 10.1631/FITEE.2000515

Abstract: (mmWave) has been claimed as the viable solution for high-bandwidth s in 5G and beyond. To realize applications in future s, it is important to take a robust mmWave vehicular network into consideration. However, one challenge in such a network is that mmWave should provide an ultra-fast and high-rate data exchange among vehicles or vehicle-to-infrastructure (V2I). Moreover, traditional real-time strategies are unavailable because vehicle mobility leads to a fast variation mmWave channel. To overcome these issues, a approach for mmWave V2I communications is proposed in this paper. Specifically, by considering a fast-moving vehicle secnario, a corresponding mathematical model for a fast channel is first established. Then, the temporal variation rule between the base station and each mobile user and the determined direction-of-arrival are used to predict the channel prior information (PI). Finally, by exploiting the PI and the characteristics of the channel, the channel is estimated. The simulation results show that the scheme in this paper outperforms traditional ones in both normalized mean square error and sum-rate performance in the mmWave vehicular system.

Keywords: 大规模多入多出;毫米波;信道估计;车辆通信;时变    

Integrated communication and localization in millimeter-wave systems

Jie Yang, Jing Xu, Xiao Li, Shi Jin, Bo Gao,yangjie@seu.edu.cn,shadowaccountxj@foxmail.com,li_xiao@seu.edu.cn,jinshi@seu.edu.cn,gao.bo1@zte.com.cn

Frontiers of Information Technology & Electronic Engineering 2021, Volume 22, Issue 4,   Pages 457-470 doi: 10.1631/FITEE.2000505

Abstract: As the fifth-generation (5G) mobile communication system is being commercialized, extensive studies on the evolution of 5G and sixth-generation (6G) mobile communication systems have been conducted. Future mobile communication systems are evidently evolving toward a more intelligent and software-reconfigurable functionality paradigm that can provide ubiquitous communication, as well as sense, control, and optimize wireless environments. Thus, integrating communication and localization using the highly directional transmission characteristics of millimeter waves (mmWaves) is a promising route. This approach not only expands the localization capabilities of a communication system but also provides new concepts and opportunities to enhance communication. In this paper, we explain the in mmWave systems, in which these processes share the same set of hardware architecture and algorithms. We also provide an overview of the key enabling technologies and the basic knowledge on localization. Then, we provide two promising directions for studies on localization with an and model-based (or model-driven) . We also discuss a comprehensive guidance for location-assisted mmWave communications in terms of channel estimation, channel state information feedback, beam tracking, synchronization, interference control, resource allocation, and user selection. Finally, we outline the future trends on the mutual assistance and enhancement of communication and localization in integrated systems.

Keywords: 毫米波;通信定位一体化;位置辅助通信;超大规模天线阵列;可重构智能表面;人工智能;神经网络    

MEC-Empowered Non-Terrestrial Network for 6G Wide-Area Time-Sensitive Internet of Things Article

Chengxiao Liu, Wei Feng, Xiaoming Tao, Ning Ge

Engineering 2022, Volume 8, Issue 1,   Pages 96-107 doi: 10.1016/j.eng.2021.11.002

Abstract:

In the upcoming sixth-generation (6G) era, the demand for constructing a wide-area time-sensitive Internet of Things (IoT) continues to increase. As conventional cellular technologies are difficult to directly use for wide-area time-sensitive IoT, it is beneficial to use non-terrestrial infrastructures, including satellites and unmanned aerial vehicles (UAVs). Thus, we can build a non-terrestrial network (NTN) using a cell-free architecture. Driven by the time-sensitive requirements and uneven distribution of IoT devices, the NTN must be empowered using mobile edge computing (MEC) while providing oasisoriented on-demand coverage for devices. Nevertheless, communication and MEC systems are coupled with each other under the influence of a complex propagation environment in the MEC-empowered NTN, which makes it difficult to coordinate the resources. In this study, we propose a process-oriented framework to design communication and MEC systems in a time-division manner. In this framework, large-scale channel state information (CSI) is used to characterize the complex propagation environment at an affordable cost, where a nonconvex latency minimization problem is formulated. Subsequently, the approximated problem is provided, and it can be decomposed into sub-problems. These sub-problems are then solved iteratively. The simulation results demonstrated the superiority of the proposed process-oriented scheme over other algorithms, implied that the payload deployments of UAVs should be appropriately predesigned to improve the efficiency of using resources, and confirmed that it is advantageous to integrate NTN with MEC for wide-area time-sensitive IoT.

Keywords: Cell-free Mobile edge computing     Non-terrestrial networks     Sixth-generation     Wide-area time-sensitive IoT    

Modeling and performance analysis of OAM-GSM millimeter-wave wireless communication systems

Qi Zhang, Xusheng Xiong, Qiang Li, Tao Han, Yi Zhong,qiqiz@hust.edu.cn,xiongxusheng@hust.edu.cn,qli_patrick@hust.edu.cn,hantao@hust.edu.cn,yzhong@hust.edu.cn

Frontiers of Information Technology & Electronic Engineering 2021, Volume 22, Issue 4,   Pages 527-547 doi: 10.1631/FITEE.2000444

Abstract: In recent years, the conventional degrees of freedom in frequency and time have been fully used. It is difficult to further improve the performance of communication systems with such degrees of freedom. , which provides a new degree of freedom for millimeter-wave (mmWave) wireless communication systems, has been recognized as a key enabling technique for future mobile communication networks. By combining OAM beams that have theoretically infinite and mutually orthogonal states with the strategy, a new OAM-GSM mmWave wireless communication system is designed in this paper. A model of the OAM-GSM system is established based on channel flip precoding. The , , and BER of the proposed OAM-GSM mmWave wireless communication system are simulated. Numerical results show that, compared with traditional GSM systems, the OAM-GSM system has more complex transmission and reception mechanisms but the and maximum achievable are increased by 80% and 54%, respectively, and the BER drops by 91.5%.

Keywords: 轨道角动量;广义空间调制;毫米波通信;信道容量;能量效率;误比特率    

Forward link outage performance of aeronautical broadband satellite communications Research Articles

Huaicong Kong, Min Lin, Shiwen He, Xiaoyu Liu, Jian Ouyang, Weiping Zhu,linmin@njupt.edu.cn

Frontiers of Information Technology & Electronic Engineering 2021, Volume 22, Issue 6,   Pages 790-801 doi: 10.1631/FITEE.2000445

Abstract: High-throughput satellites (HTSs) play an important role in future millimeter-wave (mmWave) aeronautical communication to meet high speed and broad bandwidth requirements. This paper investigates the outage performance of an aeronautical broadband satellite communication system’s forward link, where the feeder link from the gateway to the HTS uses and the user link from the HTS to aircraft operates at the mmWave band. In the user link, spot beam technology is exploited at the HTS and a massive antenna array is deployed at the aircraft. We first present a location-based beamforming (BF) scheme to maximize the expected output signal-to-noise ratio (SNR) of the forward link with the amplify-and-forward (AF) protocol, which turns out to be a phased array. Then, by supposing that the FSO feeder link follows Gamma-Gamma fading whereas the mmWave user link experiences shadowed Rician fading, we take the influence of the into account, and derive the closed-form expression of the (OP) for the considered system. To gain further insight, a simple asymptotic OP expression at a high SNR is provided to show the diversity order and coding gain. Finally, numerical simulations are conducted to confirm the validity of the theoretical analysis and reveal the effects of s on the system outage performance.

Keywords: 航空宽带卫星网络;自由空间光传输;高通量毫米波通信;中断概率;相位误差    

Polarizationmultiplexing based duplex radio-over-fiber link for millimeterwave signal transmission to a ring of multiple radio access units None

Tayyab MEHMOOD, Hina QAYYUM, Salman GHAFOOR

Frontiers of Information Technology & Electronic Engineering 2019, Volume 20, Issue 2,   Pages 300-306 doi: 10.1631/FITEE.1700056

Abstract:

A radio-over-fiber (RoF) distributed antenna system (DAS) architecture is proposed, where millimeter wave (mm-wave) signals are transmitted to four different radio access units (RAUs) arranged in a ring topology. The proposed architecture transmits duplex data of 128 Mb/s to each RAU in both downlink (DL) and uplink (UL) directions. The radio frequency (RF) signals are transmitted by polarization multiplexing a multi-wavelength source. Millimeter-wave signals at a frequency of 25 GHz are generated at each RAU using remote heterodyne detection. The proposed architecture provides increased coverage while maintaining good bit error rate (BER) results.

Keywords: Radio over fiber     Millimeter wave     Radio access units    

Radio propagation measurement and cluster-based analysis for millimeter-wave cellular systems in dense urban environments

Peize Zhang, Haiming Wang, Wei Hong,pzzhang@seu.edu.cn,hmwang@seu.edu.cn,weihong@seu.edu.cn

Frontiers of Information Technology & Electronic Engineering 2021, Volume 22, Issue 4,   Pages 471-487 doi: 10.1631/FITEE.2000489

Abstract: The deployment of millimeter-wave (mmWave) cellular systems in dense urban environments with an acceptable coverage and cost-efficient transmission scheme is essential for the rollout of fifth-generation and beyond technology. In this paper, cluster-based analysis of mmWave channel characteristics in two typical dense urban environments is performed. First, radio campaigns are conducted in two identified mmWave bands of 28 and 39 GHz in a central business district and a dense residential area. The custom-designed channel sounder supports high-efficiency directional scanning sounding, which helps collect sufficient data for statistical channel modeling. Next, using an improved auto- algorithm, multipath clusters and their scattering sources are identified. An appropriate measure for inter- and intra-cluster characteristics is provided, which includes the cluster number, the Ricean -factor, root-mean-squared (RMS) delay spread, RMS angular spread, and their correlations. Comparisons of these parameters across two mmWave bands for both line-of-sight (LoS) and non-light-of-sight (NLoS) links are given. To shed light on the blockage effects, detailed analysis of the propagation mechanisms corresponding to each NLoS cluster is provided, including reflection from exterior walls and over building corners and rooftops. Finally, the results show that the cluster-based analysis takes full advantage of mmWave beamspace channel characteristics and has further implications for the design and deployment of mmWave wireless networks.

Keywords: 毫米波通信;分簇;绕射;多路通道;传播测量    

Third Generation Mobile Communication——The IP Oriented Application of Modern Wireless Communication Technology

Wu Hequan

Strategic Study of CAE 2000, Volume 2, Issue 8,   Pages 69-75

Abstract:

The article firstly reviews the evolution of the 1st generation (analogy) mobile communication system and the 2nd generation (digital) mobile communication system, and predicts that deployment of mobile communication systems will be enter a development period at a more great rate in the next decate. The mobile communication service will extend from voice to data, and the mobile communication technology will transits from circuit mode to packet mode. Following briefly addressing the second and half generation mobile communication system (2.5 GM) that will come to application soon, introduces the 3rd generation mobile communication (3 GM) for broadband multimedia application. Some schemes as mainstream of 3GM RTT (radio transmission technology) standards and the key technologies, especially technical features of TD - SCDMA presented by China, are emphatically described. Finally, The transition strategy from 2GM to 3GM and the development trend of 3GM core network are prospected in this article.

Keywords: mobile communication     third generation mobile communication     CDMA     TD - SCDMA    

Consideration on Developing Mobile Satellite Communication

Zhang Naitong,Zhang Zhongzhao,Chu Haibin,Liu Huijie

Strategic Study of CAE 2002, Volume 4, Issue 10,   Pages 11-16

Abstract:

Three kinds of international constellation communication system are introduced in this paper, and the constitution, configuration, function, and existing problems of some representative systems are analyzed. The paper discusses the development and trend of the satellite communication system, and then some viewpoints on developing mobile satellite communication system are put forward.

Keywords: mobile satellite communication     constellation communication system     broad band service    

Beam squint effect on high-throughput millimeter-wave communication with an ultra-massive phased array

Zhiqiang Wang, Jiawei Liu, Jun Wang, Guangrong Yue,wangzq@std.uestc.edu.cn,842927584@qq.com,junwang@uestc.edu.cn,yuegr@uestc.edu.cn

Frontiers of Information Technology & Electronic Engineering 2021, Volume 22, Issue 4,   Pages 560-570 doi: 10.1631/FITEE.2000451

Abstract: An can be deployed in high-throughput communication systems to increase the transmission distance. However, when the signal bandwidth is large, the antenna array response changes with the frequency, causing . In this paper, we investigate the effect on a high-throughput mmWave communication system with the single-carrier frequency-domain equalization transmission scheme. Specifically, we first view analog beamforming and the physical channel as a spatial equivalent channel. The characteristics of the spatial equivalent channel are analyzed which behaves like frequency-selective fading. To eliminate the deep fading points in the spatial equivalent channel, an advanced analog beamforming method is proposed based on the (ZC) sequence. Then, the low-complexity linear zero-forcing and minimum mean squared error equalizers are considered at the receiver. Simulation results indicate that the proposed ZC-based analog beamforming method can effectively mitigate the performance loss by the .

Keywords: 超大规模相控阵;毫米波;波束倾斜;Zadoff-Chu;单载波频域均衡    

Embracing non-orthogonalmultiple access in future wireless networks None

Zhi-guo DING, Mai XU, Yan CHEN, Mu-gen PENG, H. Vincent POOR

Frontiers of Information Technology & Electronic Engineering 2018, Volume 19, Issue 3,   Pages 322-339 doi: 10.1631/FITEE.1800051

Abstract: This paper provides a comprehensive survey of the impact of the emerging communication technique, non-orthogonal multiple access (NOMA), on future wireless networks. Particularly, how the NOMA principle affects the design of the generation multiple access techniques is introduced first. Then the applications of NOMA to other advanced communication techniques, such as wireless caching, multiple-input multiple-output techniques, millimeter-wave communications, and cooperative relaying, are discussed. The impact of NOMA on communication systems beyond cellular networks is also illustrated, through the examples of digital TV, satellite communications, vehicular networks, and visible light communications. Finally, the study is concluded with a discussion of important research challenges and promising future directions in NOMA.

Keywords: Non-orthogonal multiple access (NOMA)     Wireless caching     Multiple-input multiple-output (MIMO) NOMA     Cooperative NOMA     Millimeter-wave networks     Visible light communications (VLC)    

Toward Wisdom-Evolutionary and Primitive-Concise 6G: A New Paradigm of Semantic Communication Networks Article

Ping Zhang, Wenjun Xu, Hui Gao, Kai Niu, Xiaodong Xu, Xiaoqi Qin, Caixia Yuan, Zhijin Qin, Haitao Zhao, Jibo Wei, Fangwei Zhang

Engineering 2022, Volume 8, Issue 1,   Pages 60-73 doi: 10.1016/j.eng.2021.11.003

Abstract:

The sixth generation (6G) mobile networks will reshape the world by offering instant, efficient, and intelligent hyper-connectivity, as envisioned by the previously proposed Ubiquitous-X 6G networks. Such hyper-massive and global connectivity will introduce tremendous challenges into the operation and management of 6G networks, calling for revolutionary theories and technological innovations. To this end, we propose a new route to boost network capabilities toward a wisdom-evolutionary and primitive-concise network (WePCN) vision for the Ubiquitous-X 6G network. In particular, we aim to concretize the evolution path toward the WePCN by first conceiving a new semantic representation framework, namely semantic base, and then establishing an intelligent and efficient semantic communication (IE-SC) network architecture. In the IE-SC architecture, a semantic intelligence plane is employed to interconnect the semantic-empowered physical-bearing layer, network protocol layer, and application-intent layer via semantic information flows. The proposed architecture integrates artificial intelligence and network technologies to enable intelligent interactions among various communication objects in 6G. It features a lower bandwidth requirement, less redundancy, and more accurate intent identification. We also present a brief review of recent advances in semantic communications and highlight potential use cases, complemented by a range of open challenges for 6G.

Keywords: 6G     Semantic information     Semantic communication     Intelligent communication    

Title Author Date Type Operation

OTFS modulation performance in a satellite-to-ground channel at sub-6-GHz and millimeter-wave bands with high mobility

Tianshi Li, Ruisi He, Bo Ai, Mi Yang, Zhangdui Zhong, Haoxiang Zhang,19125026@bjtu.edu.cn,ruisi.he@bjtu.edu.cn,boai@bjtu.edu.cn,17111030@bjtu.edu.cn,zhdzhong@bjtu.edu.cn,zhx61778294@126.com

Journal Article

Empirical study on directional millimeter-wave propagation in vehicle-to-infrastructure communications between road and roadside

Xichen Liu, Lin Yang, Daizhong Yu,362475709@qq.com,eelyang@uestc.edu.cn,15908107465@163.com

Journal Article

The V-BLAST Detection for MIMO MC-CDMA System

Yang Jie,Feng Guangzeng

Journal Article

Prior information based channel estimation for millimeter-wave massive MIMO vehicular communications in 5G and beyond

Zhao Yi, Weixia Zou, Xuebin Sun,yz17tx@bupt.edu.cn,zwx0218@bupt.edu.cn

Journal Article

Integrated communication and localization in millimeter-wave systems

Jie Yang, Jing Xu, Xiao Li, Shi Jin, Bo Gao,yangjie@seu.edu.cn,shadowaccountxj@foxmail.com,li_xiao@seu.edu.cn,jinshi@seu.edu.cn,gao.bo1@zte.com.cn

Journal Article

MEC-Empowered Non-Terrestrial Network for 6G Wide-Area Time-Sensitive Internet of Things

Chengxiao Liu, Wei Feng, Xiaoming Tao, Ning Ge

Journal Article

Modeling and performance analysis of OAM-GSM millimeter-wave wireless communication systems

Qi Zhang, Xusheng Xiong, Qiang Li, Tao Han, Yi Zhong,qiqiz@hust.edu.cn,xiongxusheng@hust.edu.cn,qli_patrick@hust.edu.cn,hantao@hust.edu.cn,yzhong@hust.edu.cn

Journal Article

Forward link outage performance of aeronautical broadband satellite communications

Huaicong Kong, Min Lin, Shiwen He, Xiaoyu Liu, Jian Ouyang, Weiping Zhu,linmin@njupt.edu.cn

Journal Article

Polarizationmultiplexing based duplex radio-over-fiber link for millimeterwave signal transmission to a ring of multiple radio access units

Tayyab MEHMOOD, Hina QAYYUM, Salman GHAFOOR

Journal Article

Radio propagation measurement and cluster-based analysis for millimeter-wave cellular systems in dense urban environments

Peize Zhang, Haiming Wang, Wei Hong,pzzhang@seu.edu.cn,hmwang@seu.edu.cn,weihong@seu.edu.cn

Journal Article

Third Generation Mobile Communication——The IP Oriented Application of Modern Wireless Communication Technology

Wu Hequan

Journal Article

Consideration on Developing Mobile Satellite Communication

Zhang Naitong,Zhang Zhongzhao,Chu Haibin,Liu Huijie

Journal Article

Beam squint effect on high-throughput millimeter-wave communication with an ultra-massive phased array

Zhiqiang Wang, Jiawei Liu, Jun Wang, Guangrong Yue,wangzq@std.uestc.edu.cn,842927584@qq.com,junwang@uestc.edu.cn,yuegr@uestc.edu.cn

Journal Article

Embracing non-orthogonalmultiple access in future wireless networks

Zhi-guo DING, Mai XU, Yan CHEN, Mu-gen PENG, H. Vincent POOR

Journal Article

Toward Wisdom-Evolutionary and Primitive-Concise 6G: A New Paradigm of Semantic Communication Networks

Ping Zhang, Wenjun Xu, Hui Gao, Kai Niu, Xiaodong Xu, Xiaoqi Qin, Caixia Yuan, Zhijin Qin, Haitao Zhao, Jibo Wei, Fangwei Zhang

Journal Article