Journal home Browse Most Down Articles

Most Down Articles

  • Select all
  • Articles
    Mingbao Chen, Limin Han
    Strategic Study of Chinese Academy of Engineering, 2016, 18(2): 98-104. https://doi.org/10.15302/J-SSCAE-2016.02.012

    In today's world, the blue economy has become the focus of global marine development policymakers. The economic sector emphasizes the sustainable development of the maritime economy as well as a cooperative mode of marine resource management and environmental protection among all seafaring nations. The 21st-Century Maritime Silk Road and Economic Belt is an important platform for cooperation on the blue economy between China and countries along the Belt. Against this backdrop, this paper looks into the driving factors behind this cooperation, including national strategies, regional comparative advantage, government policies and regional environmental safety. This study also examines energy resources, marine industries, marine technologies and the marine ecological environment as key areas for cooperation between China and countries along the Belt. Last but not least, this paper proposes a market-led, land-sea integrated and intergovernmental coordination mechanism which fosters communication and mediates the interests of all sides.

  • RESEARCH ARTICLE
    Ziyu Fu, Dongguo Liang, Wei Zhang, Dongling Shi, Yuhua Ma, Dong Wei, Junxiang Xi, Sizhe Yang, Xiaoguang Xu, Di Tian, Zhaoqing Zhu, Mingquan Guo, Lu Jiang, Shuting Yu, Shuai Wang, Fangyin Jiang, Yun Ling, Shengyue Wang, Saijuan Chen, Feng Liu, Yun Tan, Xiaohong Fan
    Frontiers of Medicine, 2023, 17(3): 562-575. https://doi.org/10.1007/s11684-022-0977-3

    The Omicron family of SARS-CoV-2 variants are currently driving the COVID-19 pandemic. Here we analyzed the clinical laboratory test results of 9911 Omicron BA.2.2 sublineages-infected symptomatic patients without earlier infection histories during a SARS-CoV-2 outbreak in Shanghai in spring 2022. Compared to an earlier patient cohort infected by SARS-CoV-2 prototype strains in 2020, BA.2.2 infection led to distinct fluctuations of pathophysiological markers in the peripheral blood. In particular, severe/critical cases of COVID-19 post BA.2.2 infection were associated with less pro-inflammatory macrophage activation and stronger interferon alpha response in the bronchoalveolar microenvironment. Importantly, the abnormal biomarkers were significantly subdued in individuals who had been immunized by 2 or 3 doses of SARS-CoV-2 prototype-inactivated vaccines, supporting the estimation of an overall 96.02% of protection rate against severe/critical disease in the 4854 cases in our BA.2.2 patient cohort with traceable vaccination records. Furthermore, even though age was a critical risk factor of the severity of COVID-19 post BA.2.2 infection, vaccination-elicited protection against severe/critical COVID-19 reached 90.15% in patients aged ≥ 60 years old. Together, our study delineates the pathophysiological features of Omicron BA.2.2 sublineages and demonstrates significant protection conferred by prior prototype-based inactivated vaccines.

  • RESEARCH ARTICLE
    Joana C. Prata, Ana L. Patrício Silva, Armando C. Duarte, Teresa Rocha-Santos
    Frontiers of Environmental Science & Engineering, 2022, 16(1): 5. https://doi.org/10.1007/s11783-021-1439-x

    • Portugal recycles 34% of the 40 kg/hab year of plastic packaging waste.

    • Recycling of plastics in Portugal produces a final revenue of 167 €/t.

    • Recycling and recovery must be the priority for imported wastes.

    • Beach litter must be reduced from 330 to 20 items/100 m (94%) under EU goals.

    • Consumption, use, and waste management of plastics need to improve.

    As a European Union (EU) member, Portugal must comply with reductions in plastic waste. In Portugal, the 330 items/100 m of beach litter, comprising up to 3.9 million pieces and of which 88% is plastic, is higher than the EU median (149 items/100 m) and must be reduced to 20 items/100 m (94%). Integrative measures are needed to reduce littering and improve plastics’ use and disposal under the circular economy. Of this 414 kt of plastic packaging waste, 163 kt were declared plastic packaging, 140 kt subjected to recycling, and 94 kt to energy recovery. The current recycling rate of plastic packaging (34%) should be improved to reach EU recycling averages (42%) and goals and to provide widespread benefits, considering revenues of 167 €/t. As a net importer of waste, Portugal could benefit from the valorization of imported waste. Besides increased recycling, pyrolysis and gasification could provide short-term alternatives for producing value-added substances from plastic waste, such as hydrogen, consistent with the National Plan of Hydrogen and improving ongoing regulations on single-use plastics. This manuscript provides an integrative view of plastics in Portugal, from use to disposal, providing specific recommendations under the circular economy.

  • Orginal Article
    Hongmei Yu, Zhigang Shao, Ming Hou, Baolian Yi, Fangwei Duan, Yingxuan Yang
    Strategic Study of Chinese Academy of Engineering, 2021, 23(2): 146-152. https://doi.org/10.15302/J-SSCAE-2021.02.020

    The increasing demand for carbon emission reduction has drawn wide attention on the green hydrogen-manufacturing technology. Hydrogen production by water electrolysis based on renewable energies has the lowest carbon emission among the main hydrogen manufacturing methods. This study summarizes the hydrogen demand, hydrogen industry planning, and demonstrations of hydrogen production by water electrolysis. The water electrolysis technology is analyzed, including alkaline water electrolysis and proton exchange membrane (PEM) water electrolysis. Research reveals that improving electrocatalyst activity, catalyst utilization, bipolar plate surface treatment, and electrolytic bath structures helps optimize the performance of PEM electrolytic baths and lower equipment cost. The PEM water electrolysis has high operating current density, low energy consumption, and high output pressure; therefore, it accommodates the fluctuation of renewable energy power generation and can be easily combined with renewable energy consumption. Considering the technical characteristics of hydrogen transportation and electrolytic hydrogen production as well as hydrogen transportation demand in China, a solution for green hydrogen generation and long-distance transportation is proposed. High-

  • REVIEW ARTICLE
    Dongxu WU, Fengzhou FANG
    Frontiers of Mechanical Engineering, 2021, 16(1): 1-31. https://doi.org/10.1007/s11465-020-0602-6

    Optical interferometry is a powerful tool for measuring and characterizing areal surface topography in precision manufacturing. A variety of instruments based on optical interferometry have been developed to meet the measurement needs in various applications, but the existing techniques are simply not enough to meet the ever-increasing requirements in terms of accuracy, speed, robustness, and dynamic range, especially in on-line or on-machine conditions. This paper provides an in-depth perspective of surface topography reconstruction for optical interferometric measurements. Principles, configurations, and applications of typical optical interferometers with different capabilities and limitations are presented. Theoretical background and recent advances of fringe analysis algorithms, including coherence peak sensing and phase-shifting algorithm, are summarized. The new developments in measurement accuracy and repeatability, noise resistance, self-calibration ability, and computational efficiency are discussed. This paper also presents the new challenges that optical interferometry techniques are facing in surface topography measurement. To address these challenges, advanced techniques in image stitching, on-machine measurement, intelligent sampling, parallel computing, and deep learning are explored to improve the functional performance of optical interferometry in future manufacturing metrology.

  • REVIEW ARTICLE
    Pai ZHENG, Honghui WANG, Zhiqian SANG, Ray Y. ZHONG, Yongkui LIU, Chao LIU, Khamdi MUBAROK, Shiqiang YU, Xun XU
    Frontiers of Mechanical Engineering, 2018, 13(2): 137-150. https://doi.org/10.1007/s11465-018-0499-5

    Information and communication technology is undergoing rapid development, and many disruptive technologies, such as cloud computing, Internet of Things, big data, and artificial intelligence, have emerged. These technologies are permeating the manufacturing industry and enable the fusion of physical and virtual worlds through cyber-physical systems (CPS), which mark the advent of the fourth stage of industrial production (i.e., Industry 4.0). The widespread application of CPS in manufacturing environments renders manufacturing systems increasingly smart. To advance research on the implementation of Industry 4.0, this study examines smart manufacturing systems for Industry 4.0. First, a conceptual framework of smart manufacturing systems for Industry 4.0 is presented. Second, demonstrative scenarios that pertain to smart design, smart machining, smart control, smart monitoring, and smart scheduling, are presented. Key technologies and their possible applications to Industry 4.0 smart manufacturing systems are reviewed based on these demonstrative scenarios. Finally, challenges and future perspectives are identified and discussed.

  • REVIEW ARTICLE
    Xingzheng CHEN, Congbo LI, Ying TANG, Li LI, Hongcheng LI
    Frontiers of Mechanical Engineering, 2021, 16(2): 221-248. https://doi.org/10.1007/s11465-020-0627-x

    Mechanical manufacturing industry consumes substantial energy with low energy efficiency. Increasing pressures from energy price and environmental directive force mechanical manufacturing industries to implement energy efficient technologies for reducing energy consumption and improving energy efficiency of their machining processes. In a practical machining process, cutting parameters are vital variables set by manufacturers in accordance with machining requirements of workpiece and machining condition. Proper selection of cutting parameters with energy consideration can effectively reduce energy consumption and improve energy efficiency of the machining process. Over the past 10 years, many researchers have been engaged in energy efficient cutting parameter optimization, and a large amount of literature have been published. This paper conducts a comprehensive literature review of current studies on energy efficient cutting parameter optimization to fully understand the recent advances in this research area. The energy consumption characteristics of machining process are analyzed by decomposing total energy consumption into electrical energy consumption of machine tool and embodied energy of cutting tool and cutting fluid. Current studies on energy efficient cutting parameter optimization by using experimental design method and energy models are reviewed in a comprehensive manner. Combined with the current status, future research directions of energy efficient cutting parameter optimization are presented.

  • RESEARCH ARTICLE
    Jun WANG, Peng WU, Xiangyu WANG, Wenchi SHOU
    Frontiers of Engineering Management, 2017, 4(1): 67-75. https://doi.org/10.15302/J-FEM-2017006

    Current construction engineering management suffers numerous challenges in terms of the trust, information sharing, and process automation. Blockchain which is a decentralised transaction and data management technology, has attracted increasing interests from both academic and industrial aspects since 2008. However, most of the existing research and practices are focused on the blockchain itself (i.e. technical challenges and limitations) or its applications in the finance service sector (i.e. Bitcoin). This paper aims to investigate the potential of applying blockchain technology in the construction sector. Three types of blockchain-enabled applications are proposed to improve the current processes of contract management, supply chain management, and equipment leasing, respectively. Challenges of blockchain implementation are also discussed in this paper.

  • REVIEW ARTICLE
    Liujiang KANG, Hao LI, Cong LI, Na XIAO, Huijun SUN, Nsabimana BUHIGIRO
    Frontiers of Engineering Management, 2021, 8(4): 582-594. https://doi.org/10.1007/s42524-021-0151-7

    Safety is one of the most critical themes in any large-scale railway construction project. Recognizing the importance of safety in railway engineering, practitioners and researchers have proposed various standards and procedures to ensure safety in construction activities. In this study, we first review four critical research areas of risk warning technologies and emergency response mechanisms in railway construction, namely, (i) risk identification methods of large-scale railway construction projects, (ii) risk management of large-scale railway construction, (iii) emergency response planning and management, and (iv) emergency response and rescue mechanisms. After reviewing the existing studies, we present four corresponding research areas and recommendations on the Sichuan–Tibet Railway construction. This study aims to inject new significant theoretical elements into the decision-making process and construction of this railway project in China.

  • RESEARCH ARTICLE
    Xu WANG, Hongyang GU, Tianyang WANG, Wei ZHANG, Aihua LI, Fulei CHU
    Frontiers of Mechanical Engineering, 2021, 16(4): 814-828. https://doi.org/10.1007/s11465-021-0650-6

    The fault diagnosis of bearings is crucial in ensuring the reliability of rotating machinery. Deep neural networks have provided unprecedented opportunities to condition monitoring from a new perspective due to the powerful ability in learning fault-related knowledge. However, the inexplicability and low generalization ability of fault diagnosis models still bar them from the application. To address this issue, this paper explores a decision-tree-structured neural network, that is, the deep convolutional tree-inspired network (DCTN), for the hierarchical fault diagnosis of bearings. The proposed model effectively integrates the advantages of convolutional neural network (CNN) and decision tree methods by rebuilding the output decision layer of CNN according to the hierarchical structural characteristics of the decision tree, which is by no means a simple combination of the two models. The proposed DCTN model has unique advantages in 1) the hierarchical structure that can support more accuracy and comprehensive fault diagnosis, 2) the better interpretability of the model output with hierarchical decision making, and 3) more powerful generalization capabilities for the samples across fault severities. The multiclass fault diagnosis case and cross-severity fault diagnosis case are executed on a multicondition aeronautical bearing test rig. Experimental results can fully demonstrate the feasibility and superiority of the proposed method.

  • REVIEW
    Liangliang GAO,Daoliang LI
    Frontiers of Agricultural Science and Engineering, 2014, 1(4): 267-276. https://doi.org/10.15302/J-FASE-2014041

    Water quality models are important in predicting the changes in surface water quality for environmental management. A range of water quality models are wildly used, but every model has its advantages and limitations for specific situations. The aim of this review is to provide a guide to researcher for selecting a suitable water quality model. Eight well known water quality models were selected for this review: SWAT, WASP, QUALs, MIKE 11, HSPF, CE-QUAL-W2, ELCOM-CAEDYM and EFDC. Each model is described according to its intended use, development, simulation elements, basic principles and applicability (e.g., for rivers, lakes, and reservoirs and estuaries). Currently, the most important trends for future model development are: (1) combination models—individual models cannot completely solve the complex situations so combined models are needed to obtain the most appropriate results, (2) application of artificial intelligence and mechanistic models combined with non-mechanistic models will provide more accurate results because of the realistic parameters derived from non-mechanistic models, and (3) integration with remote sensing, geographical information and global position systems (3S) —3S can solve problems requiring large amounts of data.

  • REVIEW ARTICLE
    Jiuhui Qu, Hongchen Wang, Kaijun Wang, Gang Yu, Bing Ke, Han-Qing Yu, Hongqiang Ren, Xingcan Zheng, Ji Li, Wen-Wei Li, Song Gao, Hui Gong
    Frontiers of Environmental Science & Engineering, 2019, 13(6): 88. https://doi.org/10.1007/s11783-019-1172-x

    The history of China’s municipal wastewater management is revisited.

    The remaining challenges in wastewater sector in China are identified.

    New concept municipal wastewater treatment plants are highlighted.

    An integrated plant of energy, water and fertilizer recovery is envisaged.

    China has the world’s largest and still growing wastewater sector and water market, thus its future development will have profound influence on the world. The high-speed development of China’s wastewater sector over the past 40 years has forged its global leading treatment capacity and innovation ability. However, many problems were left behind, including underdeveloped sewers and sludge disposal facilities, low sustainability of the treatment processes, questionable wastewater treatment plant (WWTP) effluent discharge standards, and lacking global thinking on harmonious development between wastewater management, human society and the nature. Addressing these challenges calls for fundamental changes in target design, policy and technologies. In this mini-review, we revisit the development history of China’s municipal wastewater management and identify the remaining challenges. Also, we highlight the future needs of sustainable development and exploring China’s own wastewater management path, and outlook the future from several aspects including targets of wastewater management, policies and technologies, especially the new concept WWTP. Furthermore, we envisage the establishment of new-generation WWTPs with the vision of turning WWTP from a site of pollutant removal into a plant of energy, water and fertilizer recovery and an integrated part urban ecology in China.

  • REVIEW
    Wei HUANG, Minshan PEI, Xiaodong LIU, Ya WEI
    Frontiers of Structural and Civil Engineering, 2020, 14(4): 803-838. https://doi.org/10.1007/s11709-020-0644-1

    Super-long span bridges demand high design requirements and involve many difficulties when constructed, which is an important indicator to reflect the bridge technical level of a country. Over the past three decades, a large percentage of the new long-span bridges around the world were built in China, and thus, abundant technological innovations and experience have been accumulated during the design and construction. This paper aims to review and summarize the design and construction practices of the superstructure, the substructure, and the steel deck paving of the long-span bridges during the past decades as well as the current operation status of the existing long-span bridges in China. A future perspective was given on the developing trend of high-speed railway bridge, bridge over deep-sea, health monitoring and maintenance, intellectualization, standard system, and information technology, which is expected to guide the development direction for the construction of future super long-span bridges and promote China to become a strong bridge construction country.

  • RESEARCH ARTICLE
    Peng ZOU, Xiangming CHEN, Hao CHEN, Guanhua XU
    Frontiers of Mechanical Engineering, 2020, 15(4): 558-570. https://doi.org/10.1007/s11465-020-0591-5

    Experimental and finite element research was conducted on the bolted interference fit of a single-lap laminated structure to reveal the damage propagation mechanism and strength change law. A typical single-lap statically loading experiment was performed, and a finite element damage prediction model was built based on intralaminar progress damage theory. The model was programmed with a user subroutine and an interlaminar cohesive zone method. The deformation and damage propagation of the specimen were analyzed, and the failure mechanism of intralaminar and interlaminar damage during loading was discussed. The effect of secondary bending moment on load translation and damage distribution was revealed. The experimental and simulated load–displacement curves were compared to validate the developed model’s reliability, and the ultimate bearing strengths under different fit percentages were predicted. An optimal percentage was also recommended.

  • Orginal Article
    Man Xie, Yong Gan, Hui Wang
    Strategic Study of Chinese Academy of Engineering, 2020, 22(5): 1-9. https://doi.org/10.15302/J-SSCAE-2020.05.001

    The material industry provides a material basis for national economic development, social progress, and national defense security. Materials are particularly important for China as it now enters the middle and late stage of industrialization. Conducting strategic research on new materials will help strengthen China’s manufacturing sector. In this article, we systematically analyze the development status, trend, and problems regarding the new material industry in China and abroad and summarize the domestic and foreign policies for the industry. After analyzing the future strategic demands for the new materials, we propose the overall idea, characteristics, and goals of the new material power strategy. The key direction of the strategy need to focus on fields such as advanced basic materials, key strategic materials, and frontier materials. An evaluation–characterization–standards platform should be established for new materials. Furthermore, we propose some policy suggestions to facilitate the development of China’s new material industry and provide a reference for the decision making by relevant government departments. Specifically, an independent innovation system for new materials should be constructed; platforms for digital R & D, production application demonstration, and resource sharing should also be established; the quality and technology infrastructure should be improved; and talent teams dedicated for the development of the new material industry should be created.

  • REVIEW
    Shanlin YANG, Jianmin WANG, Leyuan SHI, Yuejin TAN, Fei QIAO
    Frontiers of Engineering Management, 2018, 5(4): 420-450. https://doi.org/10.15302/J-FEM-2018050

    The high-end equipment intelligent manufacturing (HEIM) industry is of strategic importance to national and economic security. Engineering management (EM) for HEIM is a complex, innovative process that integrates natural science, technology, management science, social science, and the human spirit. New-generation information technology (IT), including the internet, cloud computing, big data, and artificial intelligence, have made a remarkable influence on HEIM and its engineering management activities, such as product system construction, product life cycle management, manufacturing resources organization, manufacturing model innovation, and reconstruction of the enterprise ecosystem. Engineering management for HEIM is a key topic at the frontier of international academic research. This study systematically reviews the current research on issues pertaining to engineering management for HEIM under the new-generation IT environment. These issues include cross-lifecycle management, network collaboration management, task integration management of innovative development, operation optimization of smart factories, quality and reliability management, information management, and intelligent decision making. The challenges presented by these issues and potential research opportunities are also summarized and discussed.

  • RESEARCH ARTICLE
    Huimei Yu, Xiaoxing Wang, Zhu Shu, Mamoru Fujii, Chunshan Song
    Frontiers of Chemical Science and Engineering, 2018, 12(1): 83-93. https://doi.org/10.1007/s11705-017-1691-6

    A series of Al2O3 and CeO2 modified MgO sorbents was prepared and studied for CO2 sorption at moderate temperatures. The CO2 sorption capacity of MgO was enhanced with the addition of either Al2O3 or CeO2. Over Al2O3-MgO sorbents, the best capacity of 24.6 mg-CO2/g-sorbent was attained at 100 °C, which was 61% higher than that of MgO (15.3 mg-CO2/g-sorbent). The highest capacity of 35.3 mg-CO2/g-sorbent was obtained over the CeO2-MgO sorbents at the optimal temperature of 200 °C. Combining with the characterization results, we conclude that the promotion effect on CO2 sorption with the addition of Al2O3 and CeO2 can be attributed to the increased surface area with reduced MgO crystallite size. Moreover, the addition of CeO2 increased the basicity of MgO phase, resulting in more increase in the CO2 capacity than Al2O3 promoter. Both the Al2O3-MgO and CeO2-MgO sorbents exhibited better cyclic stability than MgO over the course of fifteen CO2 sorption-desorption cycles. Compared to Al2O3, CeO2 is more effective for promoting the CO2 capacity of MgO. To enhance the CO2 capacity of MgO sorbent, increasing the basicity is more effective than the increase in the surface area.

  • REVIEW ARTICLE
    Shammya AFROZE, AfizulHakem KARIM, Quentin CHEOK, Sten ERIKSSON, Abul K. AZAD
    Frontiers in Energy, 2019, 13(4): 770-797. https://doi.org/10.1007/s11708-019-0651-x

    Recently, the development and fabrication of electrode component of the solid oxide fuel cell (SOFC) have gained a significant importance, especially after the advent of electrode supported SOFCs. The function of the electrode involves the facilitation of fuel gas diffusion, oxidation of the fuel, transport of electrons, and transport of the byproduct of the electrochemical reaction. Impressive progress has been made in the development of alternative electrode materials with mixed conducting properties and a few of the other composite cermets. During the operation of a SOFC, it is necessary to avoid carburization and sulfidation problems. The present review focuses on the various aspects pertaining to a potential electrode material, the double perovskite, as an anode and cathode in the SOFC. More than 150 SOFCs electrode compositions which had been investigated in the literature have been analyzed. An evaluation has been performed in terms of phase, structure, diffraction pattern, electrical conductivity, and power density. Various methods adopted to determine the quality of electrode component have been provided in detail. This review comprises the literature values to suggest possible direction for future research.

  • REVIEW
    Jianchang YANG
    Frontiers of Agricultural Science and Engineering, 2015, 2(2): 115-123. https://doi.org/10.15302/J-FASE-2015055

    This article discusses approaches to simultaneously increase grain yield and resource use efficiency in rice. Breeding nitrogen efficient cultivars without sacrificing rice yield potential, improving grain fill in later-flowering inferior spikelets and enhancing harvest index are three important approaches to achieving the dual goal of high grain yield and high resource use efficiency. Deeper root distribution and higher leaf photosynthetic N use efficiency at lower N rates could be used as selection criteria to develop N-efficient cultivars. Enhancing sink activity through increasing sugar-spikelet ratio at the heading time and enhancing the conversion efficiency from sucrose to starch though increasing the ratio of abscisic acid to ethylene in grains during grain fill could effectively improve grain fill in inferior spikelets. Several practices, such as post-anthesis controlled soil drying, an alternate wetting and moderate soil drying regime during the whole growing season, and non-flooded straw mulching cultivation, could substantially increase grain yield and water use efficiency, mainly via enhanced remobilization of stored carbon from vegetative tissues to grains and improved harvest index. Further research is needed to understand synergistic interaction between water and N on crop and soil and the mechanism underlying high resource use efficiency in high-yielding rice.

  • RESEARCH ARTICLE
    Abdelkarim AMMAR, Amor BOUREK, Abdelhamid BENAKCHA
    Frontiers in Energy, 2020, 14(4): 836-849. https://doi.org/10.1007/s11708-017-0444-z

    This paper proposes a design of control and estimation strategy for induction motor based on the variable structure approach. It describes a coupling of sliding mode direct torque control (DTC) with sliding mode flux and speed observer. This algorithm uses direct torque control basics and the sliding mode approach. A robust electromagnetic torque and flux controllers are designed to overcome the conventional SVM-DTC drawbacks and to ensure fast response and full reference tracking with desired dynamic behavior and low ripple level. The sliding mode controller is used to generate reference voltages in stationary frame and give them to the controlled motor after modulation by a space vector modulation (SVM) inverter. The second aim of this paper is to design a sliding mode speed/flux observer which can improve the control performances by using a sensorless algorithm to get an accurate estimation, and consequently, increase the reliability of the system and decrease the cost of using sensors. The effectiveness of the whole composed control algorithm is investigated in different robustness tests with simulation using Matlab/Simulink and verified by real time experimental implementation based on dS pace 1104 board.

  • RESEARCH ARTICLE
    Xiang DING, Qian LI
    Frontiers of Engineering Management, 2022, 9(2): 326-336. https://doi.org/10.1007/s42524-020-0145-x

    The mechanism of risk allocation is designed to protect all stakeholders, and it is vital to project success. Qualitative and quantitative ways of optimizing risk allocation have been well documented in extant literature (e.g., allocation principles, models, and solutions), and the foci of existing research are usually the maximization of rational utility. Few research has focused on partners’ social preferences affecting the output of risk allocation. This study presents a quantitative approach based on modeling alliance member (AM)’s inequity aversion (IA) to analyze risk-sharing arrangements in an alliance project. Fehr and Schmidt’s inequity-aversion model is integrated into modeling partner’s utility. This paper derives results for an alliance leader (AL)’s optimal risk-sharing ratio and AM’s optimal risk-management effort simultaneously. The derivation is based on solving a restrained optimization problem using the conception and methods from Stackelberg game theory. Results show that an AM’s IA significantly affects risk allocation between AL and AM. Specifically, envious preference is positively related to AL’s optimal risk-sharing ratio, whereas guilty preference negatively affects AL’s optimal risk-sharing ratio. These findings will be of interest to academics and practitioners involved in designing alliance negotiations.

  • REVIEW ARTICLE
    Lieyun DING, Jie XU
    Frontiers of Engineering Management, 2017, 4(1): 4-19. https://doi.org/10.15302/J-FEM-2017015

    China is now in an era of large-scale metro construction. This paper reviews the nature of Chinese metro engineering with a specific focus on its organization and market mode, cost structure, safety control and schedule management. Then, an examination on recent research in metro engineering of the National Natural Science Foundation of China (NSFC) is also conducted, which indicates that information and automation based technologies are increasingly used in practice.

  • Orginal Article
    Yingdu Liu, Hongxia Guo, Xiaoping Ouyang
    Strategic Study of Chinese Academy of Engineering, 2021, 23(4): 162-171. https://doi.org/10.15302/J-SSCAE-2021.04.019

    Hydrogen fuel cell is a key element for conversing hydrogen energy into electric power and has attracted increasing attention from the aspects of basic research and industrial application following the proposal of carbon neutral and carbon peaking. Focusing mainly on the hydrogen fuel cell technology system, we analyze the research progress and development trends of membrane electrode components (such as proton exchange membranes, electrocatalysts, and gas diffusion layers), bipolar plates, system components, and control strategies. Subsequently, we propose the development directions of the hydrogen fuel cell technology system by 2035, following the analysis of the development status of the hydrogen fuel cell technology in China in terms of localization rate, system lifetime, power density, and manufacturing cost. To accelerate the application of hydrogen energy and hydrogen fuel cell technology, we suggest that research on hydrogen production technology should be strengthened to reduce the cost of hydrogen fuel, the technological research and application of key materials and core components should be accelerated, and industrial plans with increased investment should be formulated to establish a complete policy support system.

  • LARGE-SCALE PROJECT MANAGEMENT
    Wen-rui Hu,Jing-wei Bao,Bin Hu
    Frontiers of Engineering Management, 2014, 1(1): 18-29. https://doi.org/10.15302/J-FEM-2014005

    This article analyses the recent progressive increase in resourcequantity and production quantity of unconventional natural gas in China, describes its natural properties and the concepts, strategies and approaches of its development, summarizes the special techniques, management concepts and development modes formed in the process of its development, and puts forward proposals to accelerate the development of unconventional natural gas of China. The technically recoverable reserve of unconventional natural gas is 1.7 times that of conventional natural gas and its output in 2012 accounted for 41.8% of the total output in China. Chinese tight gas development has gained success, coal-bed methane development and shale gas production pilots have made important progresses. As the key feature of unconventional natural gas is "low grade", for the effective scale development, developers must build up the engineering concept of low-grade resources development, adhere to the low cost strategy, take the development route of "a step backward and then a step forward", apply such ideas and methods of engineering management as low cost dualistic integrative innovation, full control network management, economic limit theory, integrated operation and "four orientations" engineering management, establish a "two lows" engineering management system, and take reference of the successful development mode of the tight gas in Sulige and the coal-bed methane in the Qinshui basin. In order to achieve the objective of rapid development of nonconventional natural gas in China and to accelerate the development pace, the government should continue to increase support, to speed up the reform of natural gas price adjustment, to set up national comprehensive development and utilization demonstration areas, to input in sustainable technological research and to promote engineering management innovation.?

  • RESEARCH ARTICLE
    Shuai TENG, Gongfa CHEN, Shaodi WANG, Jiqiao ZHANG, Xiaoli SUN
    Frontiers of Structural and Civil Engineering, 2022, 16(1): 45-56. https://doi.org/10.1007/s11709-021-0777-x

    This paper presents a new approach for automatical classification of structural state through deep learning. In this work, a Convolutional Neural Network (CNN) was designed to fuse both the feature extraction and classification blocks into an intelligent and compact learning system and detect the structural state of a steel frame; the input was a series of vibration signals, and the output was a structural state. The digital image correlation (DIC) technology was utilized to collect vibration information of an actual steel frame, and subsequently, the raw signals, without further pre-processing, were directly utilized as the CNN samples. The results show that CNN can achieve 99% classification accuracy for the research model. Besides, compared with the backpropagation neural network (BPNN), the CNN had an accuracy similar to that of the BPNN, but it only consumes 19% of the training time. The outputs of the convolution and pooling layers were visually displayed and discussed as well. It is demonstrated that: 1) the CNN can extract the structural state information from the vibration signals and classify them; 2) the detection and computational performance of the CNN for the incomplete data are better than that of the BPNN; 3) the CNN has better anti-noise ability.

  • NEWS & VIEWS
    Ning YANG
    Frontiers of Agricultural Science and Engineering, 2021, 8(1): 25-34. https://doi.org/10.15302/J-FASE-2020363

    • China is now the largest egg production country worldwide

    • Egg production in China is characterized by diversity in several aspects

    • China is now capable of breeding new varieties, with more than 50% of the market share

    • Policies have been implemented to ensure sustainable development of egg production

    • Integrating crop-chicken-vegetable production system is established

    Eggs are one of the most nutritious and affordable animal products worldwide. From 1985, egg production in China has retained the leading place in the world. A total of 33 Mt of eggs were produced in 2019 representing ˃ 40% of the world total production. Egg production in China is characterized by diversity in several aspects, including layer breeds, products and production systems. New breeds and synthetic lines are developed to improve the genetic potentials of egg production and feed efficiency of layers. In the past, layer farms were run mostly by small households with 100 to 1000 layers per farm. Over the past decades, egg production in China has developed toward standardization and expansion of production systems, and many of these modern intensive farms raise millions of layers. Although the Chinese egg products maintain strong competitiveness over other animal products and imported egg products, the egg industry will grow at a slower pace compared to the past. Chinese consumers are more concerned about the quality and safety of eggs and egg products, as well as the environmental issues related to animal production, which presents challenges for the Chinese egg industry.

  • RESEARCH ARTICLE
    Yan SU, Fangjun HONG, Lianjie SHU
    Frontiers in Energy, 2020, 14(4): 901-921. https://doi.org/10.1007/s11708-020-0679-y

    A quantitative energy leakage model was developed based on the thermography image data measured for both external and internal building surfaces. The infrared thermography images of both surfaces of doors, windows, and walls of an office building in the Hengqin Campus of University of Macao were taken at various times in a day for four seasons. The transient heat flux for sample units were obtained based on measurements of the seasonal transient local temperature differences and calculations of the effective thermal conductivity from the multiple-layer porous medium conduction model. Effects of construction unit types, orientations, and seasons were quantitatively investigated with unit transient orientation index factors. The corresponding electric energy consumption was calculated based on the air conditioning system coefficient of performance of heat pump and refrigerator cycles for different seasons. The model was validated by comparing to the electric meter records of energy consumption of the air conditioning system. The uncertainties of the predicted total building energy leakage are about 14.7%, 12.8%, 12.4%, and 15.8% for the four seasons, respectively. The differences between the predicted electric consumption and meter values are less than 13.4% and 5.4% for summer and winter, respectively. The typical daily thermal energy leakage value in winter is the highest among the four seasons. However, the daily electric energy consumption by the air conditioning system in summer and autumn is higher than that in winter. The present decomposition model for energy leakage is expected to provide a practical tool for quantitative analysis of energy leakage of buildings.

  • RESEARCH ARTICLE
    Xin Zou, Ke Chen, Jiawei Zou, Peiyi Han, Jie Hao, Zeguang Han
    Frontiers of Medicine, 2020, 14(2): 185-192. https://doi.org/10.1007/s11684-020-0754-0

    It has been known that, the novel coronavirus, 2019-nCoV, which is considered similar to SARS-CoV, invades human cells via the receptor angiotensin converting enzyme II (ACE2). Moreover, lung cells that have ACE2 expression may be the main target cells during 2019-nCoV infection. However, some patients also exhibit non-respiratory symptoms, such as kidney failure, implying that 2019-nCoV could also invade other organs. To construct a risk map of different human organs, we analyzed the single-cell RNA sequencing (scRNA-seq) datasets derived from major human physiological systems, including the respiratory, cardiovascular, digestive, and urinary systems. Through scRNA-seq data analyses, we identified the organs at risk, such as lung, heart, esophagus, kidney, bladder, and ileum, and located specific cell types (i.e., type II alveolar cells (AT2), myocardial cells, proximal tubule cells of the kidney, ileum and esophagus epithelial cells, and bladder urothelial cells), which are vulnerable to 2019-nCoV infection. Based on the findings, we constructed a risk map indicating the vulnerability of different organs to 2019-nCoV infection. This study may provide potential clues for further investigation of the pathogenesis and route of 2019-nCoV infection.

  • REVIEW ARTICLE
    Ziyou GAO, Lixing YANG
    Frontiers of Engineering Management, 2019, 6(2): 139-151. https://doi.org/10.1007/s42524-019-0030-7

    With the accelerated urbanization in China, passenger demand has dramatically increased in large cities, and traffic congestion has become serious in recent years. Developing public urban rail transit systems is an indispensable approach to overcome these problems. However, the high energy consumption of daily operations is an emerging issue due to increased rail transit networks and passenger demands. Thus, reducing the energy consumption and operational cost by using advanced optimization methodologies is an urgent task for operation managers. This work systematically introduces energy-saving approaches for urban rail transit systems in three aspects, namely, train speed profile optimization, utilization of regenerative energy, and integrated optimization of train timetable and speed profile. Future research directions in this field are also proposed to meet increasing passenger demands and network-based urban rail transit systems.

  • RESEARCH ARTICLE
    Hongtao ZHOU, Hongwei WANG, Wei ZENG
    Frontiers of Engineering Management, 2018, 5(1): 78-87. https://doi.org/10.15302/J-FEM-2018075

    The construction sites of mega construction projects (MCP) often have numerous participants with interfacing work within a highly complex system. It is critical how to realize collaborative work and information sharing among such participants. The information and communication technologies (ICTs) provides a technical guarantee for solving this problem. Existing research has been achieved the partial processes digitization of construction site, but certain problems still exist: 1)information perception of the construction site is passive. 2) common collaboration and coordination problems in the construction industry have not been addressed. The emerging trends of ICTs have resulted in the integration of various computer technologies such as CPS, BIM, big data, and cloud computing into construction process, which would changes behavioral and management mode of construction sites. These new ICTs have been applied successfully in MCP, in particular, Hong Kong-Zhuhai-Macao Bridge project. A new management mode of construction sites is inspired by these case. In this paper, a new management mode of construction site for MCP has been proposed, namely, smart construction site. The ultimate goal of smart construction site is to accomplish safe, efficient and high-quality construction. This study put forward the conceptual framework for smart construction site, and have identified three key elements of smart construction site, including information support platform, collaboration work, and intelligent construction management. A case study on Hong Kong-Zhuhai-Macao Bridge project work as an evidence to support the practicability of the proposed mode. Significant contributions of this study is to propose a new management mode for MCP in construction industry, which would enrich the body of knowledge or the construction management community. Future research should be dedicated to further explore the potential of smart construction site in MCP management.