[1] |
J. Wang, J. Liu, N. Kato. Networking and communications in autonomous driving: a survey. IEEE Commun Surv Tutor, 21 (2) (2019), pp. 1243-1274
|
[2] |
R.E. Stern, S. Cui, M.L. Delle Monache, R. Bhadani, M. Bunting, M. Churchill, et al. Dissipation of stop-and-go waves via control of autonomous vehicles: field experiments. Transp Res Part C, 89 (2018), pp. 205-221
|
[3] |
Cui S, Seibold B, Stern R, Work DB. Stabilizing traffic flow via a single autonomous vehicle: possibilities and limitations. In:Proceedings of the 2017 IEEE Intelligent Vehicles Symposium (IV); 2017 Jun 11- 14; Los Angeles, CA, USA. Piscataway; IEEE; 2017. p. 1336-41.
|
[4] |
Vinitsky E, Parvate K, Kreidieh A, Wu C, Bayen A. Lagrangian control through deep-rl: applications to bottleneck decongestion. In:Proceedings of the 2018 21st International Conference on Intelligent Transportation Systems (ITSC); 2018 Nov 4- 7; Maui, HI, USA. Piscataway; IEEE; 2018. p. 759-65.
|
[5] |
Y. Zheng, J. Wang, K. Li. Smoothing traffic flow via control of autonomous vehicles. IEEE Internet Things J, 7 (5) (2020), pp. 3882-3896
|
[6] |
J. Wang, Y. Zheng, Q. Xu, J. Wang, K. Li. Controllability analysis and optimal control of mixed traffic flow with human-driven and autonomous vehicles. IEEE Trans Intell Transp Syst, 22 (12) (2021), pp. 7445-7459
|
[7] |
Z. Zhan, S.M. Wang, T.L. Pan, P. Chen, W.H.K. Lam, R.X. Zhong, et al. Stabilizing vehicular platoons mixed with regular human-piloted vehicles: an input-to-state string stability approach. Transportmetrica B, 9 (1) (2021), pp. 569-594
|
[8] |
S. Gong, L. Du. Cooperative platoon control for a mixed traffic flow including human drive vehicles and connected and autonomous vehicles. Transportation Res Part B, 116 (2018), pp. 25-61
|
[9] |
J. Zhan, Z. Ma, L. Zhang. Data-driven modeling and distributed predictive control of mixed vehicle platoons. IEEE Trans Intell Veh, 8 (1) (2023), pp. 572-582
|
[10] |
R. Dang, J. Wang, S.E. Li, K. Li. Coordinated adaptive cruise control system with lane-change assistance. IEEE Trans Intell Transp Syst, 16 (5) (2015), pp. 2373-2383
|
[11] |
M. Wang, W. Daamen, S.P. Hoogendoorn, B. Van Arem. Rolling horizon control framework for driver assistance systems. Part I: mathematical formulation and non-cooperative systems. Transp Res Part C, 40 (2014), pp. 271-289
|
[12] |
M. Wang, W. Daamen, S.P. Hoogendoorn, B. Van Arem. Rolling horizon control framework for driver assistance systems. Part II: cooperative sensing and cooperative control. Transp Res Part C, 40 (2014), pp. 290-311
|
[13] |
Y. Zheng, Y. Bian, S. Li, S.E. Li. Cooperative control of heterogeneous connected vehicles with directed acyclic interactions. IEEE Intell Transpn Syst Mag, 13 (2) (2021), pp. 127-141
|
[14] |
K. Li, J. Wang, Y. Zheng. Cooperative formation of autonomous vehicles in mixed traffic flow: beyond platooning. IEEE Trans Intell Transp Syst, 23 (9) (2022), pp. 15951-15966
|
[15] |
H. Zhao, D. Sun, M. Zhao, Q. Pu, C. Tang. Combined longitudinal and lateral control for heterogeneous nodes in mixed vehicle platoon under V2I communication. IEEE Trans Intell Transp Syst, 23 (7) (2022), pp. 6751-6765
|
[16] |
Y. Zhou, S. Ahn, M. Wang, S. Hoogendoorn. Stabilizing mixed vehicular platoons with connected automated vehicles: an H-infinity approach. Transp Res Part B Methodol, 132 (2020), pp. 152-170
|
[17] |
S. Feng, Z. Song, Z. Li, Y. Zhang, L. Li. Robust platoon control in mixed traffic flow based on tube model predictive control. IEEE Trans Intell Veh, 6 (4) (2021), pp. 711-722
|
[18] |
M. Huang, Z.P. Jiang, K. Ozbay. Learning-based adaptive optimal control for connected vehicles in mixed traffic: robustness to driver reaction time. IEEE Trans Cybern, 52 (6) (2022), pp. 5267-5277
|
[19] |
J. Lan, D. Zhao, D. Tian. Data-driven robust predictive control for mixed vehicle platoons using noisy measurement. IEEE Trans Intell Transp Syst, 24 (6) (2023), pp. 6586-6596
|
[20] |
J. Zhou, D. Tian, Z. Sheng, X. Duan, G. Qu, D. Zhao, et al. Robust min-max model predictive vehicle platooning with causal disturbance feedback. IEEE Trans Intell Transp Syst, 23 (9) (2022), pp. 15878-15897
|
[21] |
Y. Zheng, S.E. Li, K. Li, F. Borrelli, J.K. Hedrick. Distributed model predictive control for heterogeneous vehicle platoons under unidirectional topologies. IEEE Trans Control Syst Technol, 25 (3) (2017), pp. 899-910
|
[22] |
X. Gong, S. Liang, B. Wang, W. Zhang. Game theory-based decision-making and iterative predictive lateral control for cooperative obstacle avoidance of guided vehicle platoon. IEEE Trans Veh Technol, 72 (6) (2023), pp. 7051-7066
|
[23] |
H. Wang, L.M. Peng, Z. Wei, K. Yang, X.X.F. Bai, L. Jiang, et al. A holistic robust motion control framework for autonomous platooning. IEEE Trans Veh Technol, 72 (12) (2023), pp. 15213-15226
|
[24] |
L. Peng, H. Wang, J. Li. Uncertainty evaluation of object detection algorithms for autonomous vehicles. Automot Innovation, 4 (3) (2021), pp. 241-252
|
[25] |
J. Liu, H. Wang, L. Peng, Z. Cao, D. Yang, J. Li. Pnnuad: perception neural networks uncertainty aware decision-making for autonomous vehicle. IEEE Trans Intell Transp Syst, 23 (12) (2022), pp. 24355-24368
|
[26] |
X. Tang, K. Yang, H. Wang, J. Wu, Y. Qin, W. Yu, et al. Prediction-uncertainty-aware decision-making for autonomous vehicles. IEEE Trans Intell Veh, 7 (4) (2022), pp. 849-862
|
[27] |
X. Zhang, H. Ma, W. Zuo, M. Luo. Adaptive control of discrete-time nonlinear systems using ITF-ORVFL. IEEE/CAA J Automatica Sinica, 9 (3) (2022), pp. 556-563
|
[28] |
R. Hussain, S. Zeadally. Autonomous cars: research results, issues, and future challenges. IEEE Comm Surv Tutor, 21 (2) (2019), pp. 1275-1313
|
[29] |
S. Parkinson, P. Ward, K. Wilson, J. Miller. Cyber threats facing autonomous and connected vehicles: future challenges. IEEE Trans Intell Transp Syst, 18 (11) (2017), pp. 2898-2915
|
[30] |
M. Amoozadeh, A. Raghuramu, C. Chuah, D. Ghosal, H.M. Zhang, J. Rowe, et al. Security vulnerabilities of connected vehicle streams and their impact on cooperative driving. IEEE Commun Mag, 53 (6) (2015), pp. 126-132
|
[31] |
A. Petrillo, A. Pescapé, S. Santini. A secure adaptive control for cooperative driving of autonomous connected vehicles in the presence of heterogeneous communication delays and cyberattacks. IEEE Trans Cybern, 51 (3) (2021), pp. 1134-1149
|
[32] |
C. Liu, J. Zhao, R.J. Patton. Distributed antittack fault-tolerant tracking control for vehicle platoon systems under cyber-physical threats. IEEE Trans Ind Inf, 19 (6) (2023), pp. 7825-7834
|
[33] |
A. Zhou, J. Wang, S. Peeta. Robust control strategy for platoon of connected and autonomous vehicles considering falsified information injected through communication links. J Intell Transp Syst, 27 (6) (2023), pp. 735-751
|
[34] |
Z. Li, B. Hu, Z. Yang. Co-design of distributed event-triggered controller for string stability of vehicle platooning under periodic jamming attacks. IEEE Trans Veh Technol, 70 (12) (2021), pp. 13115-13128
|
[35] |
D. Ding, Z. Wang, D.W.C. Ho, G. Wei. Observer-based event-triggering consensus control for multiagent systems with lossy sensors and cyber-attacks. IEEE Trans Cybern, 47 (8) (2017), pp. 1936-1947
|
[36] |
Z.H. Pang, G.P. Liu, D. Zhou, F. Hou, D. Sun. Two-channel false data injection attacks against output tracking control of networked systems. IEEE Trans Ind Electron, 63 (5) (2016), pp. 3242-3251
|
[37] |
C.G. Lopes, A.H. Sayed. Diffusion least-mean squares over adaptive networks: formulation and performance analysis. IEEE Trans Signal Process, 56 (7) (2008), pp. 3122-3136
|
[38] |
F.S. Cattivelli, A.H. Sayed. Diffusion LMS strategies for distributed estimation. IEEE Trans Signal Process, 58 (3) (2010), pp. 1035-1048
|
[39] |
Sayed AH. LMS with Gaussian Regressors. In: SayedA.H., editor. Adaptive Filters. Piscataway: IEEE; 2008. p. 340-56.
|
[40] |
D. Mayne, J. Rawlings, C. Rao, P. Scokaert. Constrained model predictive control: stability and optimality. Automatica, 36 (6) (2000), pp. 789-814
|
[41] |
S. Feng, Y. Zhang, S.E. Li, Z. Cao, H.X. Liu, L. Li. String stability for vehicular platoon control: definitions and analysis methods. Annu Rev Control, 47 (2019), pp. 81-97
|
[42] |
Sontag ED. Input to state stability: basic concepts and results. Lect Notes Math 2008; 1932: 163-220.
|
[43] |
E.D. Sontag, Y. Wang. On characterizations of the input-to-state stability property. Syst Control Lett, 24 (5) (1995), pp. 351-359
|
[44] |
J.A.E. Andersson, J. Gillis, G. Horn, J.B. Rawlings, M. Diehl. Casadi: a software framework for nonlinear optimization and optimal control. Math Program Comput, 11 (1) (2019), pp. 1-36
|
[45] |
Z. Hameed Mir, F. Filali. Pathan ( Ed.),C-ITS applications, use cases and requirements for V2X communication systems—threading through IEEE 802.11p to 5G. A.S.K. Towards a Wireless Connected World: Achievements and New Technologies, Springer, Cham (2008), pp. 261-285
|