提高混合自动驾驶和人工驾驶车辆编队避障能力的鲁棒控制——一种基于协同感知的自适应模型预测控制方法

Daxin Tian, Jianshan Zhou, Xu Han, Ping Lang

工程(英文) ›› 2024, Vol. 42 ›› Issue (11) : 244-266.

PDF(4040 KB)
PDF(4040 KB)
工程(英文) ›› 2024, Vol. 42 ›› Issue (11) : 244-266. DOI: 10.1016/j.eng.2024.08.015
研究论文

提高混合自动驾驶和人工驾驶车辆编队避障能力的鲁棒控制——一种基于协同感知的自适应模型预测控制方法

作者信息 +

Robust Platoon Control of Mixed Autonomous and Human-Driven Vehicles for Obstacle Collision Avoidance: A Cooperative Sensing-Based Adaptive Model Predictive Control Approach

Author information +
History +

Abstract

Obstacle detection and platoon control for mixed traffic flows, comprising human-driven vehicles (HDVs) and connected and autonomous vehicles (CAVs), face challenges from uncertain disturbances, such as sensor faults, inaccurate driver operations, and mismatched model errors. Furthermore, misleading sensing information or malicious attacks in vehicular wireless networks can jeopardize CAVs’ perception and platoon safety. In this paper, we develop a two-dimensional robust control method for a mixed platoon, including a single leading CAV and multiple following HDVs that incorporate robust information sensing and platoon control. To effectively detect and locate unknown obstacles ahead of the leading CAV, we propose a cooperative vehicle-infrastructure sensing scheme and integrate it with an adaptive model predictive control scheme for the leading CAV. This sensing scheme fuses information from multiple nodes while suppressing malicious data from attackers to enhance robustness and attack resilience in a distributed and adaptive manner. Additionally, we propose a distributed car-following control scheme with robustness to guarantee the following HDVs, considering uncertain disturbances. We also provide theoretical proof of the string stability under this control framework. Finally, extensive simulations are conducted to validate our approach. The simulation results demonstrate that our method can effectively filter out misleading sensing information from malicious attackers, significantly reduce the mean-square deviation in obstacle sensing, and approach the theoretical error lower bound. Moreover, the proposed control method successfully achieves obstacle avoidance for the mixed platoon while ensuring stability and robustness in the face of external attacks and uncertain disturbances.

Keywords

Connected autonomous vehicle / Mixed vehicle platoon / Obstacle collision avoidance / Cooperative sensing / Adaptive model predictive control

引用本文

导出引用
Daxin Tian, Jianshan Zhou, Xu Han. 提高混合自动驾驶和人工驾驶车辆编队避障能力的鲁棒控制——一种基于协同感知的自适应模型预测控制方法. Engineering. 2024, 42(11): 244-266 https://doi.org/10.1016/j.eng.2024.08.015

参考文献

[1]
J. Wang, J. Liu, N. Kato. Networking and communications in autonomous driving: a survey. IEEE Commun Surv Tutor, 21 (2) (2019), pp. 1243-1274
[2]
R.E. Stern, S. Cui, M.L. Delle Monache, R. Bhadani, M. Bunting, M. Churchill, et al. Dissipation of stop-and-go waves via control of autonomous vehicles: field experiments. Transp Res Part C, 89 (2018), pp. 205-221
[3]
Cui S, Seibold B, Stern R, Work DB. Stabilizing traffic flow via a single autonomous vehicle: possibilities and limitations. In:Proceedings of the 2017 IEEE Intelligent Vehicles Symposium (IV); 2017 Jun 11- 14; Los Angeles, CA, USA. Piscataway; IEEE; 2017. p. 1336-41.
[4]
Vinitsky E, Parvate K, Kreidieh A, Wu C, Bayen A. Lagrangian control through deep-rl: applications to bottleneck decongestion. In:Proceedings of the 2018 21st International Conference on Intelligent Transportation Systems (ITSC); 2018 Nov 4- 7; Maui, HI, USA. Piscataway; IEEE; 2018. p. 759-65.
[5]
Y. Zheng, J. Wang, K. Li. Smoothing traffic flow via control of autonomous vehicles. IEEE Internet Things J, 7 (5) (2020), pp. 3882-3896
[6]
J. Wang, Y. Zheng, Q. Xu, J. Wang, K. Li. Controllability analysis and optimal control of mixed traffic flow with human-driven and autonomous vehicles. IEEE Trans Intell Transp Syst, 22 (12) (2021), pp. 7445-7459
[7]
Z. Zhan, S.M. Wang, T.L. Pan, P. Chen, W.H.K. Lam, R.X. Zhong, et al. Stabilizing vehicular platoons mixed with regular human-piloted vehicles: an input-to-state string stability approach. Transportmetrica B, 9 (1) (2021), pp. 569-594
[8]
S. Gong, L. Du. Cooperative platoon control for a mixed traffic flow including human drive vehicles and connected and autonomous vehicles. Transportation Res Part B, 116 (2018), pp. 25-61
[9]
J. Zhan, Z. Ma, L. Zhang. Data-driven modeling and distributed predictive control of mixed vehicle platoons. IEEE Trans Intell Veh, 8 (1) (2023), pp. 572-582
[10]
R. Dang, J. Wang, S.E. Li, K. Li. Coordinated adaptive cruise control system with lane-change assistance. IEEE Trans Intell Transp Syst, 16 (5) (2015), pp. 2373-2383
[11]
M. Wang, W. Daamen, S.P. Hoogendoorn, B. Van Arem. Rolling horizon control framework for driver assistance systems. Part I: mathematical formulation and non-cooperative systems. Transp Res Part C, 40 (2014), pp. 271-289
[12]
M. Wang, W. Daamen, S.P. Hoogendoorn, B. Van Arem. Rolling horizon control framework for driver assistance systems. Part II: cooperative sensing and cooperative control. Transp Res Part C, 40 (2014), pp. 290-311
[13]
Y. Zheng, Y. Bian, S. Li, S.E. Li. Cooperative control of heterogeneous connected vehicles with directed acyclic interactions. IEEE Intell Transpn Syst Mag, 13 (2) (2021), pp. 127-141
[14]
K. Li, J. Wang, Y. Zheng. Cooperative formation of autonomous vehicles in mixed traffic flow: beyond platooning. IEEE Trans Intell Transp Syst, 23 (9) (2022), pp. 15951-15966
[15]
H. Zhao, D. Sun, M. Zhao, Q. Pu, C. Tang. Combined longitudinal and lateral control for heterogeneous nodes in mixed vehicle platoon under V2I communication. IEEE Trans Intell Transp Syst, 23 (7) (2022), pp. 6751-6765
[16]
Y. Zhou, S. Ahn, M. Wang, S. Hoogendoorn. Stabilizing mixed vehicular platoons with connected automated vehicles: an H-infinity approach. Transp Res Part B Methodol, 132 (2020), pp. 152-170
[17]
S. Feng, Z. Song, Z. Li, Y. Zhang, L. Li. Robust platoon control in mixed traffic flow based on tube model predictive control. IEEE Trans Intell Veh, 6 (4) (2021), pp. 711-722
[18]
M. Huang, Z.P. Jiang, K. Ozbay. Learning-based adaptive optimal control for connected vehicles in mixed traffic: robustness to driver reaction time. IEEE Trans Cybern, 52 (6) (2022), pp. 5267-5277
[19]
J. Lan, D. Zhao, D. Tian. Data-driven robust predictive control for mixed vehicle platoons using noisy measurement. IEEE Trans Intell Transp Syst, 24 (6) (2023), pp. 6586-6596
[20]
J. Zhou, D. Tian, Z. Sheng, X. Duan, G. Qu, D. Zhao, et al. Robust min-max model predictive vehicle platooning with causal disturbance feedback. IEEE Trans Intell Transp Syst, 23 (9) (2022), pp. 15878-15897
[21]
Y. Zheng, S.E. Li, K. Li, F. Borrelli, J.K. Hedrick. Distributed model predictive control for heterogeneous vehicle platoons under unidirectional topologies. IEEE Trans Control Syst Technol, 25 (3) (2017), pp. 899-910
[22]
X. Gong, S. Liang, B. Wang, W. Zhang. Game theory-based decision-making and iterative predictive lateral control for cooperative obstacle avoidance of guided vehicle platoon. IEEE Trans Veh Technol, 72 (6) (2023), pp. 7051-7066
[23]
H. Wang, L.M. Peng, Z. Wei, K. Yang, X.X.F. Bai, L. Jiang, et al. A holistic robust motion control framework for autonomous platooning. IEEE Trans Veh Technol, 72 (12) (2023), pp. 15213-15226
[24]
L. Peng, H. Wang, J. Li. Uncertainty evaluation of object detection algorithms for autonomous vehicles. Automot Innovation, 4 (3) (2021), pp. 241-252
[25]
J. Liu, H. Wang, L. Peng, Z. Cao, D. Yang, J. Li. Pnnuad: perception neural networks uncertainty aware decision-making for autonomous vehicle. IEEE Trans Intell Transp Syst, 23 (12) (2022), pp. 24355-24368
[26]
X. Tang, K. Yang, H. Wang, J. Wu, Y. Qin, W. Yu, et al. Prediction-uncertainty-aware decision-making for autonomous vehicles. IEEE Trans Intell Veh, 7 (4) (2022), pp. 849-862
[27]
X. Zhang, H. Ma, W. Zuo, M. Luo. Adaptive control of discrete-time nonlinear systems using ITF-ORVFL. IEEE/CAA J Automatica Sinica, 9 (3) (2022), pp. 556-563
[28]
R. Hussain, S. Zeadally. Autonomous cars: research results, issues, and future challenges. IEEE Comm Surv Tutor, 21 (2) (2019), pp. 1275-1313
[29]
S. Parkinson, P. Ward, K. Wilson, J. Miller. Cyber threats facing autonomous and connected vehicles: future challenges. IEEE Trans Intell Transp Syst, 18 (11) (2017), pp. 2898-2915
[30]
M. Amoozadeh, A. Raghuramu, C. Chuah, D. Ghosal, H.M. Zhang, J. Rowe, et al. Security vulnerabilities of connected vehicle streams and their impact on cooperative driving. IEEE Commun Mag, 53 (6) (2015), pp. 126-132
[31]
A. Petrillo, A. Pescapé, S. Santini. A secure adaptive control for cooperative driving of autonomous connected vehicles in the presence of heterogeneous communication delays and cyberattacks. IEEE Trans Cybern, 51 (3) (2021), pp. 1134-1149
[32]
C. Liu, J. Zhao, R.J. Patton. Distributed antittack fault-tolerant tracking control for vehicle platoon systems under cyber-physical threats. IEEE Trans Ind Inf, 19 (6) (2023), pp. 7825-7834
[33]
A. Zhou, J. Wang, S. Peeta. Robust control strategy for platoon of connected and autonomous vehicles considering falsified information injected through communication links. J Intell Transp Syst, 27 (6) (2023), pp. 735-751
[34]
Z. Li, B. Hu, Z. Yang. Co-design of distributed event-triggered controller for string stability of vehicle platooning under periodic jamming attacks. IEEE Trans Veh Technol, 70 (12) (2021), pp. 13115-13128
[35]
D. Ding, Z. Wang, D.W.C. Ho, G. Wei. Observer-based event-triggering consensus control for multiagent systems with lossy sensors and cyber-attacks. IEEE Trans Cybern, 47 (8) (2017), pp. 1936-1947
[36]
Z.H. Pang, G.P. Liu, D. Zhou, F. Hou, D. Sun. Two-channel false data injection attacks against output tracking control of networked systems. IEEE Trans Ind Electron, 63 (5) (2016), pp. 3242-3251
[37]
C.G. Lopes, A.H. Sayed. Diffusion least-mean squares over adaptive networks: formulation and performance analysis. IEEE Trans Signal Process, 56 (7) (2008), pp. 3122-3136
[38]
F.S. Cattivelli, A.H. Sayed. Diffusion LMS strategies for distributed estimation. IEEE Trans Signal Process, 58 (3) (2010), pp. 1035-1048
[39]
Sayed AH. LMS with Gaussian Regressors. In: SayedA.H., editor. Adaptive Filters. Piscataway: IEEE; 2008. p. 340-56.
[40]
D. Mayne, J. Rawlings, C. Rao, P. Scokaert. Constrained model predictive control: stability and optimality. Automatica, 36 (6) (2000), pp. 789-814
[41]
S. Feng, Y. Zhang, S.E. Li, Z. Cao, H.X. Liu, L. Li. String stability for vehicular platoon control: definitions and analysis methods. Annu Rev Control, 47 (2019), pp. 81-97
[42]
Sontag ED. Input to state stability: basic concepts and results. Lect Notes Math 2008; 1932: 163-220.
[43]
E.D. Sontag, Y. Wang. On characterizations of the input-to-state stability property. Syst Control Lett, 24 (5) (1995), pp. 351-359
[44]
J.A.E. Andersson, J. Gillis, G. Horn, J.B. Rawlings, M. Diehl. Casadi: a software framework for nonlinear optimization and optimal control. Math Program Comput, 11 (1) (2019), pp. 1-36
[45]
Z. Hameed Mir, F. Filali. Pathan ( Ed.),C-ITS applications, use cases and requirements for V2X communication systems—threading through IEEE 802.11p to 5G. A.S.K. Towards a Wireless Connected World: Achievements and New Technologies, Springer, Cham (2008), pp. 261-285
PDF(4040 KB)

Accesses

Citation

Detail

段落导航
相关文章

/