
Tumor Molecular Imaging with Nanoparticles
Zhen Cheng, Xuefeng Yan, Xilin Sun, Baozhong Shen, Sanjiv Sam Gambhir
Engineering ›› 2016, Vol. 2 ›› Issue (1) : 132-140.
Tumor Molecular Imaging with Nanoparticles
Molecular imaging (MI) can provide not only structural images using traditional imaging techniques but also functional and molecular information using many newly emerging imaging techniques. Over the past decade, the utilization of nanotechnology in MI has exhibited many significant advantages and provided new opportunities for the imaging of living subjects. It is expected that multimodality nanoparticles (NPs) can lead to precise assessment of tumor biology and the tumor microenvironment. This review addresses topics related to engineered NPs and summarizes the recent applications of these nanoconstructs in cancer optical imaging, ultrasound, photoacoustic imaging, magnetic resonance imaging (MRI), and radionuclide imaging. Key challenges involved in the translation of NPs to the clinic are discussed.
Tumor / Molecular imaging / Nanoparticles
[1] |
Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin2015; 65(2): 87−108.
|
[2] |
Yu S, Yang CS, Li J, You W, Chen J, Cao Y,
|
[3] |
Adams JY, Johnson M, Sato M, Berger F, Gambhir SS, Carey M,
|
[4] |
Massoud TF, Gambhir SS. Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev2003; 17(5): 545−80.
|
[5] |
James ML, Gambhir SS. A molecular imaging primer: modalities, imaging agents, and applications. Physiol Rev2012; 92(2): 897−965.
|
[6] |
Koo H, Huh MS, Sun IC, Yuk SH, Choi K, Kim K,
|
[7] |
Wiwanitkit V. Glomerular pore size corresponding to albumin molecular size, an explanation for underlying structural pathology leading to albuminuria at nanolevel. Ren Fail2006; 28(1): 101.
|
[8] |
Ullman EF, Schwarzberg M, Rubenstein KE. Fluorescent excitation transfer immunoassay. A general method for determination of antigens. J Biol Chem1976; 251(14): 4172−8.
|
[9] |
Heath JR, Davis ME. Nanotechnology and cancer. Annu Rev Med2008; 59: 251−65.
|
[10] |
Ferrari M. Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer2005; 5(3): 161−71.
|
[11] |
Lammers T. Drug delivery research in Europe. J Control Release2012; 161(2): 151.
|
[12] |
Brambilla D, Luciani P, Leroux JC. Breakthrough discoveries in drug delivery technologies: the next 30 years. J Control Release2014; 190: 9−14.
|
[13] |
Taurin S, Nehoff H, Greish K. Anticancer nanomedicine and tumor vascular permeability; Where is the missing link? J Control Release2012; 164(3): 265−75.
|
[14] |
Maeda H, Nakamura H, Fang J. The EPR effect for macromolecular drug delivery to solid tumors: improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv Drug Deliv Rev2013; 65(1): 71−9.
|
[15] |
Altundag K, Dede DS, Purnak T. Albumin-bound paclitaxel (ABI-007; Abraxane) in the management of basal-like breast carcinoma. J Clin Pathol2007; 60(8): 958.
|
[16] |
Chakravarthy AB, Kelley MC, McLaren B, Truica CI, Billheimer D, Mayer IA,
|
[17] |
Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release2000; 65(1−2): 271−84.
|
[18] |
Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res1986; 46(12 Pt 1): 6387−92.
|
[19] |
Maeda H. Toward a full understanding of the EPR effect in primary and metastatic tumors as well as issues related to its heterogeneity. Adv Drug Deliv Rev2015; 91: 3−6.
|
[20] |
Al-Jamal WT, Kostarelos K. Liposomes: from a clinically established drug delivery system to a nanoparticle platform for theranostic nanomedicine. Acc Chem Res2011; 44(10): 1094−104.
|
[21] |
Ambrogio MW, Thomas CR, Zhao YL, Zink JI, Stoddart JF. Mechanized silica nanoparticles: a new frontier in theranostic nanomedicine. Acc Chem Res2011; 44(10): 903−13.
|
[22] |
Bardhan R, Lal S, Joshi A, Halas NJ. Theranostic nanoshells: from probe design to imaging and treatment of cancer. Acc Chem Res2011; 44(10): 936−46.
|
[23] |
Ho D, Sun X, Sun S. Monodisperse magnetic nanoparticles for theranostic applications. Acc Chem Res2011; 44(10): 875−82.
|
[24] |
Thakor AS, Gambhir SS. Nanooncology: the future of cancer diagnosis and therapy. CA Cancer J Clin2013; 63(6): 395−418.
|
[25] |
Piner RD, Zhu J, Xu F, Hong S, Mirkin CA. “Dip-Pen” nanolithography. Science1999; 283(5402): 661−3.
|
[26] |
Canelas DA, Herlihy KP, DeSimone JM. Top-down particle fabrication: control of size and shape for diagnostic imaging and drug delivery. Wiley Interdiscip Rev Nanomed Nanobiotechnol2009; 1(4): 391−404.
|
[27] |
Key J, Leary JF. Nanoparticles for multimodal in vivo imaging in nanomedicine. Int J Nanomedicine2014; 9:711−26.
|
[28] |
He X, Wang K, Cheng Z. In vivo near-infrared fluorescence imaging of cancer with nanoparticle-based probes. Wiley Interdiscip Rev Nanomed Nanobiotechnol2010; 2(4): 349−66.
|
[29] |
He X, Gao J, Gambhir SS, Cheng Z. Near-infrared fluorescent nanoprobes for cancer molecular imaging: status and challenges. Trends Mol Med2010; 16(12): 574−83.
|
[30] |
Alivisatos P. The use of nanocrystals in biological detection. Nat Biotechnol2004; 22(1): 47−52.
|
[31] |
Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ,
|
[32] |
Medintz IL, Uyeda HT, Goldman ER, Mattoussi H. Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater2005; 4(6): 435−46.
|
[33] |
Gao J, Chen K, Luong R, Bouley DM, Mao H, Qiao T,
|
[34] |
Smith BR, Cheng Z, De A, Koh AL, Sinclair R, Gambhir SS. Real-time intravital imaging of RGD-quantum dot binding to luminal endothelium in mouse tumor neovasculature. Nano Lett2008; 8(9): 2599−606.
|
[35] |
Cai W, Hsu AR, Li ZB, Chen X. Are quantum dots ready for in vivo imaging in human subjects? Nanoscale Res Lett2007; 2(6): 265−81.
|
[36] |
Schipper ML, Cheng Z, Lee SW, Bentolila LA, Iyer G, Rao J,
|
[37] |
Schipper ML, Iyer G, Koh AL, Cheng Z, Ebenstein Y, Aharoni A,
|
[38] |
Gao J, Chen K, Xie R, Xie J, Lee S, Cheng Z,
|
[39] |
Gao J, Chen K, Miao Z, Ren G, Chen X, Gambhir SS,
|
[40] |
DeCoste SD, Farinelli W, Flotte T, Anderson RR. Dye-enhanced laser welding for skin closure. Lasers Surg Med1992; 12(1): 25−32.
|
[41] |
Gianella A, Jarzyna PA, Mani V, Ramachandran S, Calcagno C, Tang J,
|
[42] |
Santra S, Kaittanis C, Grimm J, Perez JM. Drug/dye-loaded, multifunctional iron oxide nanoparticles for combined targeted cancer therapy and dual optical/magnetic resonance imaging. Small2009; 5(16): 1862−8.
|
[43] |
Yan X, Niu G, Lin J, Jin AJ, Hu H, Tang Y,
|
[44] |
Yan X, Hu H, Lin J, Jin AJ, Niu G, Zhang S,
|
[45] |
Luo S, Zhang E, Su Y, Cheng T, Shi C. A review of NIR dyes in cancer targeting and imaging. Biomaterials2011; 32(29): 7127−38.
|
[46] |
Liu H, Zhang X, Xing B, Han P, Gambhir SS, Cheng Z. Radiation-luminescence-excited quantum dots for in vivo multiplexed optical imaging. Small2010; 6(10): 1087−91.
|
[47] |
Yang Y, Shao Q, Deng R, Wang C, Teng X, Cheng K,
|
[48] |
Mitchell GS, Gill RK, Boucher DL, Li C, Cherry SR. In vivo Cerenkov luminescence imaging: a new tool for molecular imaging. Philos Trans A Math Phys Eng Sci2011; 369(1955): 4605−19.
|
[49] |
Carpenter CM, Sun C, Pratx G, Rao R, Xing L. Hybrid x-ray/optical luminescence imaging: characterization of experimental conditions. Med Phys2010; 37(8): 4011−8.
|
[50] |
Pratx G, Carpenter CM, Sun C, Rao RP, Xing L. Tomographic molecular imaging of x-ray-excitable nanoparticles. Opt Lett2010; 35(20): 3345−7.
|
[51] |
Pratx G, Carpenter CM, Sun C, Xing L. X-ray luminescence computed tomography via selective excitation: a feasibility study. IEEE Trans Med Imaging2010; 29(12): 1992−9.
|
[52] |
Sun C, Pratx G, Carpenter CM, Liu H, Cheng Z, Gambhir SS,
|
[53] |
Keren S, Zavaleta C, Cheng Z, de la Zerda A, Gheysens O, Gambhir SS. Noninvasive molecular imaging of small living subjects using Raman spectroscopy. Proc Natl Acad Sci USA2008; 105(15): 5844−9.
|
[54] |
Zavaleta CL, Hartman KB, Miao Z, James ML, Kempen P, Thakor AS,
|
[55] |
Jokerst JV, Miao Z, Zavaleta C, Cheng Z, Gambhir SS. Affibody-functionalized gold-silica nanoparticles for Raman molecular imaging of the epidermal growth factor receptor. Small2011; 7(5): 625−33.
|
[56] |
Grinvald A, Lieke E, Frostig RD, Gilbert CD, Wiesel TN. Functional architecture of cortex revealed by optical imaging of intrinsic signals. Nature1986; 324(6095): 361−4.
|
[57] |
He Y, Tang Z, Chen Z, Wan W, Li J. A novel photoacoustic tomography based on a time-resolved technique and an acoustic lens imaging system. Phys Med Biol2006; 51(10): 2671−80.
|
[58] |
Wang LV, Hu S. Photoacoustic tomography: in vivo imaging from organelles to organs. Science2012; 335(6075): 1458−62.
|
[59] |
Fan Q, Cheng K, Yang Z, Zhang R, Yang M, Hu X,
|
[60] |
Bianco A, Kostarelos K, Prato M. Applications of carbon nanotubes in drug delivery. Curr Opin Chem Biol2005; 9(6): 674−9.
|
[61] |
Liu Z, Cai W, He L, Nakayama N, Chen K, Sun X,
|
[62] |
De la Zerda A, Zavaleta C, Keren S, Vaithilingam S, Bodapati S, Liu Z,
|
[63] |
De la Zerda A, Liu Z, Bodapati S, Teed R, Vaithilingam S, Khuri-Yakub BT,
|
[64] |
Ren G, Miao Z, Liu H, Jiang L, Limpa-Amara N, Mahmood A,
|
[65] |
Cheng Z, Mahmood A, Li H, Davison A, Jones AG. [99mTcOAADT]-(CH2)2-NEt2: a potential small-molecule single-photon emission computed tomography probe for imaging metastatic melanoma. Cancer Res2005; 65(12): 4979−86.
|
[66] |
Zhang R, Fan Q, Yang M, Cheng K, Lu X, Zhang L,
|
[67] |
Yang M, Fan Q, Zhang R, Cheng K, Yan J, Pan D,
|
[68] |
Bloch SH, Dayton PA, Ferrara KW. Targeted imaging using ultrasound contrast agents. Progess and opportunities for clinical and research applications. IEEE Eng Med Biol Mag2004; 23(5): 18−29.
|
[69] |
Liu R, Tian B, Gearing M, Hunter S, Ye K, Mao Z. Cdk5-mediated regulation of the PIKE-A-Akt pathway and glioblastoma cell invasion. Proc Natl Acad Sci USA2008; 105(21): 7570−5.
|
[70] |
Zhou J, Patel TR, Sirianni RW, Strohbehn G, Zheng MQ, Duong N,
|
[71] |
Kiessling F, Huppert J, Zhang C, Jayapaul J, Zwick S, Woenne EC,
|
[72] |
Anderson CR, Hu X, Zhang H, Tlaxca J, Declèves AE, Houghtaling R,
|
[73] |
Yan F, Xu X, Chen Y, Deng Z, Liu H, Xu J,
|
[74] |
Willmann JK, Kimura RH, Deshpande N, Lutz AM, Cochran JR, Gambhir SS. Targeted contrast-enhanced ultrasound imaging of tumor angiogenesis with contrast microbubbles conjugated to integrin-binding knottin peptides. J Nucl Med2010; 51(3): 433−40.
|
[75] |
Willmann JK, Lutz AM, Paulmurugan R, Patel MR, Chu P, Rosenberg J,
|
[76] |
Chavanpatil MD, Khdair A, Panyam J. Nanoparticles for cellular drug delivery: mechanisms and factors influencing delivery. J Nanosci Nanotechnol2006; 6(9−10): 2651−63.
|
[77] |
Shamsi K, Balzer T, Saini S, Ros PR, Nelson RC, Carter EC,
|
[78] |
Reimer P, Jähnke N, Fiebich M, Schima W, Deckers F, Marx C,
|
[79] |
Bu L, Xie J, Chen K, Huang J, Aguilar ZP, Wang A,
|
[80] |
de Marco G, Bogdanov A, Marecos E, Moore A, Simonova M, Weissleder R. MR imaging of gene delivery to the central nervous system with an artificial vector. Radiology1998; 208(1): 65−71.
|
[81] |
Gupta AK, Curtis AS. Surface modified superparamagnetic nanoparticles for drug delivery: interaction studies with human fibroblasts in culture. J Mater Sci Mater Med2004; 15(4): 493−6.
|
[82] |
Akbarzadeh A, Samiei M, Davaran S. Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine. Nanoscale Res Lett2012; 7(1): 144.
|
[83] |
Thorek DL, Chen AK, Czupryna J, Tsourkas A. Superparamagnetic iron oxide nanoparticle probes for molecular imaging. Ann Biomed Eng2006; 34(1): 23−38.
|
[84] |
Cheng K, Yang M, Zhang R, Qin C, Su X, Cheng Z. Hybrid nanotrimers for dual T1 and T2-weighted magnetic resonance imaging. ACS Nano2014; 8(10): 9884−96.
|
[85] |
Yoffe S, Leshuk T, Everett P, Gu F. Superparamagnetic iron oxide nanoparticles (SPIONs): synthesis and surface modification techniques for use with MRI and other biomedical applications. Curr Pharm Des2013; 19(3): 493−509.
|
[86] |
Gupta AK, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials2005; 26(18): 3995−4021.
|
[87] |
Yu MK, Jeong YY, Park J, Park S, Kim JW, Min JJ,
|
[88] |
Phelps ME, Hoffman EJ, Huang SC, Ter-Pogossian MM. Effect of positron range on spatial resolution. J Nucl Med1975; 16(7): 649−52.
|
[89] |
Shokeen M, Anderson CJ. Molecular imaging of cancer with copper-64 radiopharmaceuticals and positron emission tomography (PET). Acc Chem Res2009; 42(7): 832−41.
|
[90] |
Cutler CS, Hennkens HM, Sisay N, Huclier-Markai S, Jurisson SS. Radiometals for combined imaging and therapy. Chem Rev2013; 113(2): 858−83.
|
[91] |
Wadas TJ, Wong EH, Weisman GR, Anderson CJ. Coordinating radiometals of copper, gallium, indium, yttrium, and zirconium for PET and SPECT imaging of disease. Chem Rev2010; 110(5): 2858−902.
|
[92] |
Cai W, Chen K, Li ZB, Gambhir SS, Chen X. Dual-function probe for PET and near-infrared fluorescence imaging of tumor vasculature. J Nucl Med2007; 48(11): 1862−70.
|
[93] |
Kirchner C, Liedl T, Kudera S, Pellegrino T, Muñoz Javier A, Gaub HE,
|
[94] |
Cai W, Shin DW, Chen K, Gheysens O, Cao Q, Wang SX,
|
[95] |
Chen K, Li ZB, Wang H, Cai W, Chen X. Dual-modality optical and positron emission tomography imaging of vascular endothelial growth factor receptor on tumor vasculature using quantum dots. Eur J Nucl Med Mol Imaging2008; 35(12): 2235−44.
|
[96] |
Nahrendorf M, Zhang H, Hembrador S, Panizzi P, SosnovikDE, Aikawa E,
|
[97] |
Nahrendorf M, Keliher E, Marinelli B, Waterman P, Feruglio PF, Fexon L,
|
[98] |
Yang X, Hong H, Grailer JJ, Rowland IJ, Javadi A, Hurley SA,
|
[99] |
Liu TW, Macdonald TD, Jin CS, Gold JM, Bristow RG, Wilson BC,
|
[100] |
Chen F, Hong H, Shi S, Goel S, Valdovinos HF, Hernandez R,
|
[101] |
Verel I, Visser GW, Boellaard R, Stigter-van Walsum M, Snow GB, van Dongen GA. 89Zr immuno-PET: comprehensive procedures for the production of 89Zr-labeled monoclonal antibodies. J Nucl Med2003; 44(8): 1271−81.
|
[102] |
Holland JP, Sheh Y, Lewis JS. Standardized methods for the production of high specific-activity zirconium-89. Nucl Med Biol2009; 36(7): 729−39.
|
[103] |
Holland JP, Williamson MJ, Lewis JS. Unconventional nuclides for radiopharmaceuticals. Mol Imaging2010; 9(1): 1−20.
|
[104] |
Holland JP, Caldas-Lopes E, Divilov V, Longo VA, Taldone T, Zatorska D,
|
[105] |
Holland JP, Divilov V, Bander NH, Smith-Jones PM, Larson SM, Lewis JS. 89Zr-DFO-J591 for immunoPET of prostate-specific membrane antigen expression in vivo. J Nucl Med2010; 51(8): 1293−300.
|
[106] |
Ruggiero A, Villa CH, Holland JP, Sprinkle SR, May C, Lewis JS,
|
[107] |
Lee J, Lee TS, Ryu J, Hong S, Kang M, Im K,
|
[108] |
Lijowski M, Caruthers S, Hu G, Zhang H, Scott MJ, Williams T,
|
[109] |
Hu G, Lijowski M, Zhang H, Partlow KC, Caruthers SD, Kiefer G,
|
[110] |
Yang M, Cheng K, Qi S, Liu H, Jiang Y, Jiang H,
|
/
〈 |
|
〉 |