Tumor Molecular Imaging with Nanoparticles

Zhen Cheng, Xuefeng Yan, Xilin Sun, Baozhong Shen, Sanjiv Sam Gambhir

Engineering ›› 2016, Vol. 2 ›› Issue (1) : 132-140.

PDF(2399 KB)
PDF(2399 KB)
Engineering ›› 2016, Vol. 2 ›› Issue (1) : 132-140. DOI: 10.1016/J.ENG.2016.01.027
Research
Research

Tumor Molecular Imaging with Nanoparticles

Author information +
History +

Abstract

Molecular imaging (MI) can provide not only structural images using traditional imaging techniques but also functional and molecular information using many newly emerging imaging techniques. Over the past decade, the utilization of nanotechnology in MI has exhibited many significant advantages and provided new opportunities for the imaging of living subjects. It is expected that multimodality nanoparticles (NPs) can lead to precise assessment of tumor biology and the tumor microenvironment. This review addresses topics related to engineered NPs and summarizes the recent applications of these nanoconstructs in cancer optical imaging, ultrasound, photoacoustic imaging, magnetic resonance imaging (MRI), and radionuclide imaging. Key challenges involved in the translation of NPs to the clinic are discussed.

Keywords

Tumor / Molecular imaging / Nanoparticles

Cite this article

Download citation ▾
Zhen Cheng, Xuefeng Yan, Xilin Sun, Baozhong Shen, Sanjiv Sam Gambhir. Tumor Molecular Imaging with Nanoparticles. Engineering, 2016, 2(1): 132‒140 https://doi.org/10.1016/J.ENG.2016.01.027

References

[1]
Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin2015; 65(2): 87−108.
[2]
Yu S, Yang CS, Li J, You W, Chen J, Cao Y, Cancer prevention research in China. Cancer Prev Res (Phila)2015; 8(8): 662−74.
[3]
Adams JY, Johnson M, Sato M, Berger F, Gambhir SS, Carey M, Visualization of advanced human prostate cancer lesions in living mice by a targeted gene transfer vector and optical imaging. Nat Med2002; 8(8): 891−7.
[4]
Massoud TF, Gambhir SS. Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev2003; 17(5): 545−80.
[5]
James ML, Gambhir SS. A molecular imaging primer: modalities, imaging agents, and applications. Physiol Rev2012; 92(2): 897−965.
[6]
Koo H, Huh MS, Sun IC, Yuk SH, Choi K, Kim K, In vivo targeted delivery of nanoparticles for theranosis. Acc Chem Res2011; 44(10): 1018−28.
[7]
Wiwanitkit V. Glomerular pore size corresponding to albumin molecular size, an explanation for underlying structural pathology leading to albuminuria at nanolevel. Ren Fail2006; 28(1): 101.
[8]
Ullman EF, Schwarzberg M, Rubenstein KE. Fluorescent excitation transfer immunoassay. A general method for determination of antigens. J Biol Chem1976; 251(14): 4172−8.
[9]
Heath JR, Davis ME. Nanotechnology and cancer. Annu Rev Med2008; 59: 251−65.
[10]
Ferrari M. Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer2005; 5(3): 161−71.
[11]
Lammers T. Drug delivery research in Europe. J Control Release2012; 161(2): 151.
[12]
Brambilla D, Luciani P, Leroux JC. Breakthrough discoveries in drug delivery technologies: the next 30 years. J Control Release2014; 190: 9−14.
[13]
Taurin S, Nehoff H, Greish K. Anticancer nanomedicine and tumor vascular permeability; Where is the missing link? J Control Release2012; 164(3): 265−75.
[14]
Maeda H, Nakamura H, Fang J. The EPR effect for macromolecular drug delivery to solid tumors: improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv Drug Deliv Rev2013; 65(1): 71−9.
[15]
Altundag K, Dede DS, Purnak T. Albumin-bound paclitaxel (ABI-007; Abraxane) in the management of basal-like breast carcinoma. J Clin Pathol2007; 60(8): 958.
[16]
Chakravarthy AB, Kelley MC, McLaren B, Truica CI, Billheimer D, Mayer IA, Neoadjuvant concurrent paclitaxel and radiation in stage II/III breast cancer. Clin Cancer Res2006; 12(5): 1570−6.
[17]
Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release2000; 65(1−2): 271−84.
[18]
Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res1986; 46(12 Pt 1): 6387−92.
[19]
Maeda H. Toward a full understanding of the EPR effect in primary and metastatic tumors as well as issues related to its heterogeneity. Adv Drug Deliv Rev2015; 91: 3−6.
[20]
Al-Jamal WT, Kostarelos K. Liposomes: from a clinically established drug delivery system to a nanoparticle platform for theranostic nanomedicine. Acc Chem Res2011; 44(10): 1094−104.
[21]
Ambrogio MW, Thomas CR, Zhao YL, Zink JI, Stoddart JF. Mechanized silica nanoparticles: a new frontier in theranostic nanomedicine. Acc Chem Res2011; 44(10): 903−13.
[22]
Bardhan R, Lal S, Joshi A, Halas NJ. Theranostic nanoshells: from probe design to imaging and treatment of cancer. Acc Chem Res2011; 44(10): 936−46.
[23]
Ho D, Sun X, Sun S. Monodisperse magnetic nanoparticles for theranostic applications. Acc Chem Res2011; 44(10): 875−82.
[24]
Thakor AS, Gambhir SS. Nanooncology: the future of cancer diagnosis and therapy. CA Cancer J Clin2013; 63(6): 395−418.
[25]
Piner RD, Zhu J, Xu F, Hong S, Mirkin CA. “Dip-Pen” nanolithography. Science1999; 283(5402): 661−3.
[26]
Canelas DA, Herlihy KP, DeSimone JM. Top-down particle fabrication: control of size and shape for diagnostic imaging and drug delivery. Wiley Interdiscip Rev Nanomed Nanobiotechnol2009; 1(4): 391−404.
[27]
Key J, Leary JF. Nanoparticles for multimodal in vivo imaging in nanomedicine. Int J Nanomedicine2014; 9:711−26.
[28]
He X, Wang K, Cheng Z. In vivo near-infrared fluorescence imaging of cancer with nanoparticle-based probes. Wiley Interdiscip Rev Nanomed Nanobiotechnol2010; 2(4): 349−66.
[29]
He X, Gao J, Gambhir SS, Cheng Z. Near-infrared fluorescent nanoprobes for cancer molecular imaging: status and challenges. Trends Mol Med2010; 16(12): 574−83.
[30]
Alivisatos P. The use of nanocrystals in biological detection. Nat Biotechnol2004; 22(1): 47−52.
[31]
Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Quantum dots for live cells, in vivo imaging, and diagnostics. Science2005; 307(5709): 538−44.
[32]
Medintz IL, Uyeda HT, Goldman ER, Mattoussi H. Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater2005; 4(6): 435−46.
[33]
Gao J, Chen K, Luong R, Bouley DM, Mao H, Qiao T, A novel clinically translatable fluorescent nanoparticle for targeted molecular imaging of tumors in living subjects. Nano Lett2012; 12(1): 281−6.
[34]
Smith BR, Cheng Z, De A, Koh AL, Sinclair R, Gambhir SS. Real-time intravital imaging of RGD-quantum dot binding to luminal endothelium in mouse tumor neovasculature. Nano Lett2008; 8(9): 2599−606.
[35]
Cai W, Hsu AR, Li ZB, Chen X. Are quantum dots ready for in vivo imaging in human subjects? Nanoscale Res Lett2007; 2(6): 265−81.
[36]
Schipper ML, Cheng Z, Lee SW, Bentolila LA, Iyer G, Rao J, microPET-based biodistribution of quantum dots in living mice. J Nucl Med2007; 48(9): 1511−8.
[37]
Schipper ML, Iyer G, Koh AL, Cheng Z, Ebenstein Y, Aharoni A, Particle size, surface coating, and PEGylation influence the biodistribution of quantum dots in living mice. Small2009; 5(1): 126−34.
[38]
Gao J, Chen K, Xie R, Xie J, Lee S, Cheng Z, Ultrasmall near-infrared non-cadmium quantum dots for in vivo tumor imaging. Small2010; 6(2): 256−61.
[39]
Gao J, Chen K, Miao Z, Ren G, Chen X, Gambhir SS, Affibody-based nanoprobes for HER2-expressing cell and tumor imaging. Biomaterials 2011; 32(8): 2141−8.
[40]
DeCoste SD, Farinelli W, Flotte T, Anderson RR. Dye-enhanced laser welding for skin closure. Lasers Surg Med1992; 12(1): 25−32.
[41]
Gianella A, Jarzyna PA, Mani V, Ramachandran S, Calcagno C, Tang J, Multifunctional nanoemulsion platform for imaging guided therapy evaluated in experimental cancer. ACS Nano2011; 5(6): 4422−33.
[42]
Santra S, Kaittanis C, Grimm J, Perez JM. Drug/dye-loaded, multifunctional iron oxide nanoparticles for combined targeted cancer therapy and dual optical/magnetic resonance imaging. Small2009; 5(16): 1862−8.
[43]
Yan X, Niu G, Lin J, Jin AJ, Hu H, Tang Y, Enhanced fluorescence imaging guided photodynamic therapy of sinoporphyrin sodium loaded graphene oxide. Biomaterials2015; 42: 94−102.
[44]
Yan X, Hu H, Lin J, Jin AJ, Niu G, Zhang S, Optical and photoacoustic dual-modality imaging guided synergistic photodynamic/photothermal therapies. Nanoscale2015; 7(6): 2520−6.
[45]
Luo S, Zhang E, Su Y, Cheng T, Shi C. A review of NIR dyes in cancer targeting and imaging. Biomaterials2011; 32(29): 7127−38.
[46]
Liu H, Zhang X, Xing B, Han P, Gambhir SS, Cheng Z. Radiation-luminescence-excited quantum dots for in vivo multiplexed optical imaging. Small2010; 6(10): 1087−91.
[47]
Yang Y, Shao Q, Deng R, Wang C, Teng X, Cheng K, In vitro and in vivo uncaging and bioluminescence imaging by using photocaged upconversion nanoparticles. Angew Chem Int Ed Engl2012; 51(13): 3125−9.
[48]
Mitchell GS, Gill RK, Boucher DL, Li C, Cherry SR. In vivo Cerenkov luminescence imaging: a new tool for molecular imaging. Philos Trans A Math Phys Eng Sci2011; 369(1955): 4605−19.
[49]
Carpenter CM, Sun C, Pratx G, Rao R, Xing L. Hybrid x-ray/optical luminescence imaging: characterization of experimental conditions. Med Phys2010; 37(8): 4011−8.
[50]
Pratx G, Carpenter CM, Sun C, Rao RP, Xing L. Tomographic molecular imaging of x-ray-excitable nanoparticles. Opt Lett2010; 35(20): 3345−7.
[51]
Pratx G, Carpenter CM, Sun C, Xing L. X-ray luminescence computed tomography via selective excitation: a feasibility study. IEEE Trans Med Imaging2010; 29(12): 1992−9.
[52]
Sun C, Pratx G, Carpenter CM, Liu H, Cheng Z, Gambhir SS, Synthesis and radioluminescence of PEGylated Eu(3+) -doped nanophosphors as bioimaging probes. Adv Mater2011; 23(24): H195−9.
[53]
Keren S, Zavaleta C, Cheng Z, de la Zerda A, Gheysens O, Gambhir SS. Noninvasive molecular imaging of small living subjects using Raman spectroscopy. Proc Natl Acad Sci USA2008; 105(15): 5844−9.
[54]
Zavaleta CL, Hartman KB, Miao Z, James ML, Kempen P, Thakor AS, Preclinical evaluation of Raman nanoparticle biodistribution for their potential use in clinical endoscopy imaging. Small2011; 7(15): 2232−40.
[55]
Jokerst JV, Miao Z, Zavaleta C, Cheng Z, Gambhir SS. Affibody-functionalized gold-silica nanoparticles for Raman molecular imaging of the epidermal growth factor receptor. Small2011; 7(5): 625−33.
[56]
Grinvald A, Lieke E, Frostig RD, Gilbert CD, Wiesel TN. Functional architecture of cortex revealed by optical imaging of intrinsic signals. Nature1986; 324(6095): 361−4.
[57]
He Y, Tang Z, Chen Z, Wan W, Li J. A novel photoacoustic tomography based on a time-resolved technique and an acoustic lens imaging system. Phys Med Biol2006; 51(10): 2671−80.
[58]
Wang LV, Hu S. Photoacoustic tomography: in vivo imaging from organelles to organs. Science2012; 335(6075): 1458−62.
[59]
Fan Q, Cheng K, Yang Z, Zhang R, Yang M, Hu X, Perylene-diimide-based nanoparticles as highly efficient photoacoustic agents for deep brain tumor imaging in living mice. Adv Mater2015; 27(5): 843−7.
[60]
Bianco A, Kostarelos K, Prato M. Applications of carbon nanotubes in drug delivery. Curr Opin Chem Biol2005; 9(6): 674−9.
[61]
Liu Z, Cai W, He L, Nakayama N, Chen K, Sun X, In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat Nanotechnol2007; 2(1): 47−52.
[62]
De la Zerda A, Zavaleta C, Keren S, Vaithilingam S, Bodapati S, Liu Z, Carbon nanotubes as photoacoustic molecular imaging agents in living mice. Nat Nanotechnol2008; 3(9): 557−62.
[63]
De la Zerda A, Liu Z, Bodapati S, Teed R, Vaithilingam S, Khuri-Yakub BT, Ultrahigh sensitivity carbon nanotube agents for photoacoustic molecular imaging in living mice. Nano Lett2010; 10(6): 2168−72.
[64]
Ren G, Miao Z, Liu H, Jiang L, Limpa-Amara N, Mahmood A, Melanin-targeted preclinical PET imaging of melanoma metastasis. J Nucl Med2009; 50(10): 1692−9.
[65]
Cheng Z, Mahmood A, Li H, Davison A, Jones AG. [99mTcOAADT]-(CH2)2-NEt2: a potential small-molecule single-photon emission computed tomography probe for imaging metastatic melanoma. Cancer Res2005; 65(12): 4979−86.
[66]
Zhang R, Fan Q, Yang M, Cheng K, Lu X, Zhang L, Engineering melanin nanoparticles as an efficient drug-delivery system for imaging-guided chemotherapy. Adv Mater2015; 27(34): 5063−9.
[67]
Yang M, Fan Q, Zhang R, Cheng K, Yan J, Pan D, Dragon fruit-like biocage as an iron trapping nanoplatform for high efficiency targeted cancer multimodality imaging. Biomaterials2015; 69: 30−7.
[68]
Bloch SH, Dayton PA, Ferrara KW. Targeted imaging using ultrasound contrast agents. Progess and opportunities for clinical and research applications. IEEE Eng Med Biol Mag2004; 23(5): 18−29.
[69]
Liu R, Tian B, Gearing M, Hunter S, Ye K, Mao Z. Cdk5-mediated regulation of the PIKE-A-Akt pathway and glioblastoma cell invasion. Proc Natl Acad Sci USA2008; 105(21): 7570−5.
[70]
Zhou J, Patel TR, Sirianni RW, Strohbehn G, Zheng MQ, Duong N, Highly penetrative, drug-loaded nanocarriers improve treatment of glioblastoma. Proc Natl Acad Sci USA2013; 110(29): 11751−6.
[71]
Kiessling F, Huppert J, Zhang C, Jayapaul J, Zwick S, Woenne EC, RGD-labeled USPIO inhibits adhesion and endocytotic activity of ανβ3-integrin-expressing glioma cells and only accumulates in the vascular tumor compartment. Radiology2009; 253(2): 462−9.
[72]
Anderson CR, Hu X, Zhang H, Tlaxca J, Declèves AE, Houghtaling R, Ultrasound molecular imaging of tumor angiogenesis with an integrin targeted microbubble contrast agent. Invest Radiol2011; 46(4): 215−24.
[73]
Yan F, Xu X, Chen Y, Deng Z, Liu H, Xu J, A lipopeptide-based ανβ3 integrin-targeted ultrasound contrast agent for molecular imaging of tumor angiogenesis. Ultrasound Med Biol2015; 41(10): 2765−73.
[74]
Willmann JK, Kimura RH, Deshpande N, Lutz AM, Cochran JR, Gambhir SS. Targeted contrast-enhanced ultrasound imaging of tumor angiogenesis with contrast microbubbles conjugated to integrin-binding knottin peptides. J Nucl Med2010; 51(3): 433−40.
[75]
Willmann JK, Lutz AM, Paulmurugan R, Patel MR, Chu P, Rosenberg J, Dual-targeted contrast agent for US assessment of tumor angiogenesis in vivo. Radiology2008; 248(3): 936−44.
[76]
Chavanpatil MD, Khdair A, Panyam J. Nanoparticles for cellular drug delivery: mechanisms and factors influencing delivery. J Nanosci Nanotechnol2006; 6(9−10): 2651−63.
[77]
Shamsi K, Balzer T, Saini S, Ros PR, Nelson RC, Carter EC, Superparamagnetic iron oxide particles (SH U 555 A): evaluation of efficacy in three doses for hepatic MR imaging. Radiology1998; 206(2): 365−71.
[78]
Reimer P, Jähnke N, Fiebich M, Schima W, Deckers F, Marx C, Hepatic lesion detection and characterization: value of nonenhanced MR imaging, superparamagnetic iron oxide-enhanced MR imaging, and spiral CT-ROC analysis. Radiology2000; 217(1): 152−8.
[79]
Bu L, Xie J, Chen K, Huang J, Aguilar ZP, Wang A, Assessment and comparison of magnetic nanoparticles as MRI contrast agents in a rodent model of human hepatocellular carcinoma. Contrast Media Mol Imaging2012; 7(4): 363−72.
[80]
de Marco G, Bogdanov A, Marecos E, Moore A, Simonova M, Weissleder R. MR imaging of gene delivery to the central nervous system with an artificial vector. Radiology1998; 208(1): 65−71.
[81]
Gupta AK, Curtis AS. Surface modified superparamagnetic nanoparticles for drug delivery: interaction studies with human fibroblasts in culture. J Mater Sci Mater Med2004; 15(4): 493−6.
[82]
Akbarzadeh A, Samiei M, Davaran S. Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine. Nanoscale Res Lett2012; 7(1): 144.
[83]
Thorek DL, Chen AK, Czupryna J, Tsourkas A. Superparamagnetic iron oxide nanoparticle probes for molecular imaging. Ann Biomed Eng2006; 34(1): 23−38.
[84]
Cheng K, Yang M, Zhang R, Qin C, Su X, Cheng Z. Hybrid nanotrimers for dual T1 and T2-weighted magnetic resonance imaging. ACS Nano2014; 8(10): 9884−96.
[85]
Yoffe S, Leshuk T, Everett P, Gu F. Superparamagnetic iron oxide nanoparticles (SPIONs): synthesis and surface modification techniques for use with MRI and other biomedical applications. Curr Pharm Des2013; 19(3): 493−509.
[86]
Gupta AK, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials2005; 26(18): 3995−4021.
[87]
Yu MK, Jeong YY, Park J, Park S, Kim JW, Min JJ, Drug-loaded superparamagnetic iron oxide nanoparticles for combined cancer imaging and therapy in vivo. Angew Chem Int Ed Engl2008; 47(29): 5362−5.
[88]
Phelps ME, Hoffman EJ, Huang SC, Ter-Pogossian MM. Effect of positron range on spatial resolution. J Nucl Med1975; 16(7): 649−52.
[89]
Shokeen M, Anderson CJ. Molecular imaging of cancer with copper-64 radiopharmaceuticals and positron emission tomography (PET). Acc Chem Res2009; 42(7): 832−41.
[90]
Cutler CS, Hennkens HM, Sisay N, Huclier-Markai S, Jurisson SS. Radiometals for combined imaging and therapy. Chem Rev2013; 113(2): 858−83.
[91]
Wadas TJ, Wong EH, Weisman GR, Anderson CJ. Coordinating radiometals of copper, gallium, indium, yttrium, and zirconium for PET and SPECT imaging of disease. Chem Rev2010; 110(5): 2858−902.
[92]
Cai W, Chen K, Li ZB, Gambhir SS, Chen X. Dual-function probe for PET and near-infrared fluorescence imaging of tumor vasculature. J Nucl Med2007; 48(11): 1862−70.
[93]
Kirchner C, Liedl T, Kudera S, Pellegrino T, Muñoz Javier A, Gaub HE, Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. Nano Lett2005; 5(2): 331−8.
[94]
Cai W, Shin DW, Chen K, Gheysens O, Cao Q, Wang SX, Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects. Nano Lett2006; 6(4): 669−76.
[95]
Chen K, Li ZB, Wang H, Cai W, Chen X. Dual-modality optical and positron emission tomography imaging of vascular endothelial growth factor receptor on tumor vasculature using quantum dots. Eur J Nucl Med Mol Imaging2008; 35(12): 2235−44.
[96]
Nahrendorf M, Zhang H, Hembrador S, Panizzi P, SosnovikDE, Aikawa E, Nanoparticle PET-CT imaging of macrophages in inflammatory atherosclerosis. Circulation2008; 117(3): 379−87.
[97]
Nahrendorf M, Keliher E, Marinelli B, Waterman P, Feruglio PF, Fexon L, Hybrid PET-optical imaging using targeted probes. Proc Natl Acad Sci USA2010; 107(17): 7910−5.
[98]
Yang X, Hong H, Grailer JJ, Rowland IJ, Javadi A, Hurley SA, cRGD-functionalized, DOX-conjugated, and 64Cu-labeled superparamagnetic iron oxide nanoparticles for targeted anticancer drug delivery and PET/MR imaging. Biomaterials2011; 32(17): 4151−60.
[99]
Liu TW, Macdonald TD, Jin CS, Gold JM, Bristow RG, Wilson BC, Inherently multimodal nanoparticle-driven tracking and real-time delineation of orthotopic prostate tumors and micrometastases. ACS Nano2013; 7(5): 4221−32.
[100]
Chen F, Hong H, Shi S, Goel S, Valdovinos HF, Hernandez R, Engineering of hollow mesoporous silica nanoparticles for remarkably enhanced tumor active targeting efficacy. Sci Rep2014; 4: 5080.
[101]
Verel I, Visser GW, Boellaard R, Stigter-van Walsum M, Snow GB, van Dongen GA. 89Zr immuno-PET: comprehensive procedures for the production of 89Zr-labeled monoclonal antibodies. J Nucl Med2003; 44(8): 1271−81.
[102]
Holland JP, Sheh Y, Lewis JS. Standardized methods for the production of high specific-activity zirconium-89. Nucl Med Biol2009; 36(7): 729−39.
[103]
Holland JP, Williamson MJ, Lewis JS. Unconventional nuclides for radiopharmaceuticals. Mol Imaging2010; 9(1): 1−20.
[104]
Holland JP, Caldas-Lopes E, Divilov V, Longo VA, Taldone T, Zatorska D, Measuring the pharmacodynamic effects of a novel Hsp90 inhibitor on HER2/neu expression in mice using 89Zr-DFO-trastuzumab. PLoS ONE2010; 5(1): e8859.
[105]
Holland JP, Divilov V, Bander NH, Smith-Jones PM, Larson SM, Lewis JS. 89Zr-DFO-J591 for immunoPET of prostate-specific membrane antigen expression in vivo. J Nucl Med2010; 51(8): 1293−300.
[106]
Ruggiero A, Villa CH, Holland JP, Sprinkle SR, May C, Lewis JS, Imaging and treating tumor vasculature with targeted radiolabeled carbon nanotubes. Int J Nanomedicine2010; 5: 783−802.
[107]
Lee J, Lee TS, Ryu J, Hong S, Kang M, Im K, RGD peptide-conjugated multimodal NaGdF4:Yb3+/Er3+ nanophosphors for upconversion luminescence, MR, and PET imaging of tumor angiogenesis. J Nucl Med2013; 54(1): 96−103.
[108]
Lijowski M, Caruthers S, Hu G, Zhang H, Scott MJ, Williams T, High sensitivity: high-resolution SPECT-CT/MR molecular imaging of angiogenesis in the Vx2 model. Invest Radiol2009; 44(1): 15−22.
[109]
Hu G, Lijowski M, Zhang H, Partlow KC, Caruthers SD, Kiefer G, Imaging of Vx-2 rabbit tumors with ανβ3-integrin-targeted 111In nanoparticles. Int J Cancer2007; 120(9): 1951−7.
[110]
Yang M, Cheng K, Qi S, Liu H, Jiang Y, Jiang H, Affibody modified and radiolabeled gold-iron oxide hetero-nanostructures for tumor PET, optical and MR imaging. Biomaterials2013; 34(11): 2796−806.
AI Summary AI Mindmap
PDF(2399 KB)

Accesses

Citations

Detail

Sections
Recommended

/