
Big Data Research in Italy: A Perspective
Sonia Bergamaschi, Emanuele Carlini, Michelangelo Ceci, Barbara Furletti, Fosca Giannotti, Donato Malerba, Mario Mezzanzanica, Anna Monreale, Gabriella Pasi, Dino Pedreschi, Raffele Perego, Salvatore Ruggieri
Engineering ›› 2016, Vol. 2 ›› Issue (2) : 163-170.
Big Data Research in Italy: A Perspective
The aim of this article is to synthetically describe the research projects that a selection of Italian universities is undertaking in the context of big data. Far from being exhaustive, this article has the objective of offering a sample of distinct applications that address the issue of managing huge amounts of data in Italy, collected in relation to diverse domains.
Big data / Smart cities / Energy / Job offers / Privacy
[1] |
Europe Big Data market 2015−2020 [Internet]. New York: PR Newswire Association LLC.; c2016 [updated 2016 May 30, cited 2016 Jun 12]. Available from: http://www.prnewswire.com/news-releases/europe-big-data-market-2015---2020-300276656.html.
|
[2] |
Furletti B, Gabrielli L, Renso C, Rinzivillo S. Analysis of GSM calls data for understanding user mobility behavior. In: Hu X, Lin TY, Raghavan V, Wah B, Baeza-Yates R, Fox G,
|
[3] |
Furletti B, Gabrielli L, Renso C, Rinzivillo S. Pisa tourism fluxes observatory: deriving mobility indicators from GSM call habits. In: Proceedings of the 3rd International Conference on the Analysis of Mobile Phone Datasets; <Date>2013 May 1–3</Date>; Cambridge, MA, USA; 2013.
|
[4] |
Gabrielli L, Furletti B, Trasarti R, Giannotti F, Pedreschi D. City users’ classification with mobile phone data. In: Ho H, Ooi BC, Zaki MJ, Hu X, Haas L, Kumar V,
|
[5] |
Furletti B, Gabrielli L, Giannotti F, Milli L, Nanni M, Pedreschi D. Use of mobile phone data to estimate mobility flows. Measuring urban population and inter-city mobility using big data in an integrated approach. In: Proceedings of the 47th SIS Scientific Meeting of the Italian Statistical Society; <Date>2014 Jun 11−13</Date>; Cagliari, Italy; 2014.
|
[6] |
Nanni M, Trasarti R, Furletti B, Gabrielli L, Van Der Mede P, De Bruijn J,
|
[7] |
Pappalardo L, Simini F, Rinzivillo S, Pedreschi D, Giannotti F, Barabási AL. Returners and explorers dichotomy in human mobility. Nat Commun 2015;6:8166.
|
[8] |
Pappalardo L, Pedreschi D, Smoreda Z, Giannotti F. Using big data to study the link between human mobility and socio-economic development. In: Ho H, Ooi BC, Zaki MJ, Hu X, Haas L, Kumar V,
|
[9] |
Wang D, Pedreschi D, Song C, Giannotti F, Barabási AL. Human mobility, social ties, and link prediction. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; <Date>2011 Aug 21–24</Date>; San Diego, CA, USA; 2011. p. 1100–8.
|
[10] |
Trasarti R, Olteanu-Raimond AM., Nanni M, Couronné T, Furletti B, Giannotti F,
|
[11] |
Liu W, Park EK. Big data as an e-health service. In: Proceedings of the 2014 IEEE International Conference on Computing, Networking and Communications; <Date>2014 Feb 3–6</Date>; Honolulu, HI, USA; 2014. p. 982–8.
|
[12] |
Gini R, Francesconi P, Mazzaglia G, Cricelli I, Pasqua A, Gallina P,
|
[13] |
Directive 2009/28/EC of the European Parliament and of the Council on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC. Official Journal of the European Union L 140; <Date>2009 Jun 5</Date>. p. 16–47.
|
[14] |
Ioakimidis CS, Oliveira LJ, Genikomsakis KN. Wind power forecasting in a residential location as part of the energy box management decision tool. IEEE Trans Ind Inform 2014;10(4):2103–11.
|
[15] |
Bessa RJ, Miranda V, Gama J. Entropy and correntropy against minimum square error in offline and online three-day ahead wind power forecasting. IEEE Trans Power Syst 2009;24(4):1657–66.
|
[16] |
Ceci M, Cassavia N, Corizzo R, Dicosta P, Malerba D, Maria G,
|
[17] |
Ceci M, Corizzo R, Fumarola F, Ianni M, Malerba D, Maria G,
|
[18] |
Bofinger S, Heilscher G. Solar electricity forecast—approaches and first results. In: Proceedings of the 21st European Photovoltaic Solar Energy Conference; <Date>2006 Sep 4−8</Date>; Dresden, Germany; 2006. p. 4–8.
|
[19] |
Pelland S, Galanis G, Kallos G. Solar and photovoltaic forecasting through post-processing of the Global Environmental Multiscale numerical weather prediction model. Prog Photovoltaics 2013;21(3):284–96.
|
[20] |
Sharma N, Sharma P, Irwin DE, Shenoy PJ. Predicting solar generation from weather forecasts using machine learning. In: Proceedings of the 2011 IEEE International Conference on Smart Grid Communications; <Date>2011 Oct 17–20</Date>; Brussels, Belgium; 2011. p. 528–33.
|
[21] |
Stojanova D, Ceci M, Appice A, Džeroski S. Network regression with predictive clustering trees. Data Min Knowl Disc 2012;25(2):378–413.
|
[22] |
Zaharia M, Chowdhury M, Franklin MJ, Shenker S, Stoica I. Spark: cluster computing with working sets. In: Proceedings of the 2nd USENIX Conference on Hot Topics in Cloud Computing; <Date>2010 Jun 22–25</Date>; Boston, MA, USA. Berkeley: USENIX Association; 2010. p. 1765–73.
|
[23] |
Fayyad U, Piatetsky-Shapiro G, Smyth P. The KDD process for extracting useful knowledge from volumes of data. Commun ACM 1996;39(11):27–34.
|
[24] |
Boselli R, Cesarini M, Mercorio F, Mezzanzanica M. Planning meets data cleansing. In: Proceedings of the 24th International Conference on Automated Planning and Scheduling; 2014<Date>Jun 21–26</Date>; Portsmouth, NH, USA; 2014. p. 439−43.
|
[25] |
Mezzanzanica M, Boselli R, Cesarini M, Mercorio F. Data quality sensitivity analysis on aggregate indicators. In: Helfert M, Francalanci C, Felipe J, editors Proceedings of the International Conference on Data Technologies and Applications;<Date> 2012 Jul 25−27</Date>; Rome, Italy; 2012. p. 97–108.
|
[26] |
Mezzanzanica M, Boselli R, Cesarini M, Mercorio F. A model-based evaluation of data quality activities in KDD. Inform Process Manag 2015;51(2):144–66.
|
[27] |
Amato F, Boselli R, Cesarini M, Mercorio F, Mezzanzanica M, Moscato V,
|
[28] |
Monreale A, Rinzivillo S, Pratesi F, Giannotti F, Pedreschi D. Privacy-by-design in big data analytics and social mining. EPJ Data Sci 2014;3(1):10.
|
[29] |
Monreale A, Andrienko G, Andrienko NV, Giannotti F, Pedreschi D, Rinzivillo S,
|
[30] |
Giannotti F, Lakshmanan LVS, Monreale A, Pedreschi D, Wang H. Privacy-preserving mining of association rules from outsourced transaction databases. IEEE Syst J 2013;7(3):385–95.
|
[31] |
Monreale A, Wang WH, Pratesi F, Rinzivillo S, Pedreschi D, Andrienko G,
|
[32] |
Romei A, Ruggieri S. A multidisciplinary survey on discrimination analysis. Knowl Eng Rev 2014;29(5):582–638.
|
[33] |
Romei A, Ruggieri S, Turini F. Discrimination discovery in scientific project evaluation: a case study. Expert Syst Appl 2013;40(15):6064–79.
|
[34] |
Ruggieri S. Using t-closeness anonymity to control for non-discrimination. Trans Data Privacy 2014;7(2):99–129.
|
[35] |
Hajian S, Domingo-Ferrer J, Monreale A, Pedreschi D, Giannotti F. Discrimination- and privacy-aware patterns. Data Min Knowl Disc 2015;29(6):1733–82.
|
[36] |
Cafarella MJ, Halevy A, Wang ZD, Wu E, Zhang Y. WebTables: exploring the power of tables on the web. In: Proceedings of the Very Large Database Endowment; <Date>2008 Aug 23–28</Date>; Auckland, New Zealand; 2008. p. 538–49.
|
[37] |
Bizer C, Heath T, Berners-Lee T. Linked data: the story so far. In: Sheth A, editor Semantic services, interoperability and web applications: emerging concepts. Hershey: IGI Global; 2011. p. 205–27.
|
[38] |
Batini C, Rula A, Scannapieco M, Viscusi G. From data quality to big data quality. J Database Manage 2015;26(1):60–82.
|
[39] |
Firmani D, Mecella M, Scannapieco M, Batini C. On the meaningfulness of “Big Data Quality”. Data Sci Eng 2016;1(1):6–20.
|
[40] |
Dong XL, Srivastava D. Big data integration. In: Proceedings of the Very Large Databases Endowment; <Date>2013 Aug 26−30</Date>; Trento, Italy; 2013. p. 1188–9.
|
[41] |
Madhavan J, Jeffery SR, Cohen S, Dong XL, Ko D, Yu C,
|
[42] |
Papadakis G, Ioannou E, Palpanas T, Niederée C, Nejdl W. A blocking framework for entity resolution in highly heterogeneous information spaces. IEEE Trans Knowl Data En 2013;25(12):2665–82.
|
[43] |
Papadakis G, Koutrika G, Palpanas T, Nejdl W. Meta-blocking: taking entity resolution to the next level. IEEE Trans Knowl Data En 2014;26(8):1946–60.
|
[44] |
Papadakis G, Papastefanatos G, Koutrika G. Supervised meta-blocking. In: Proceedings of the Very Large Databases Endowment; <Date>2014 Sep1–5</Date>; Hangzhou, China.; 2014. p. 1929–40.
|
[45] |
Bergamaschi S, Ferrari D, Guerra F, Simonini G. Discovering the topics of a data source: a statistical approach. In: Proceedings of the Workshop on Surfacing the Deep and the Social Web Co-located with the 13th International Semantic Web Conference; <Date>2014 Oct 19</Date>; Trentino, Italy; 2014.
|
[46] |
Bergamaschi S, Simonini G, Zhu S. Enhancing big data exploration with faceted browsing. In: Proceedings of the 10th Scientific Meeting of Classification and Data Analysis Group; <Date>2015 Oct 8-10</Date>; Cagliari, Italy; 2015.
|
[47] |
Fagan JC. Usability studies of faceted browsing: a literature review. Inform Technol Libr 2010;29(2):58–66.
|
/
〈 |
|
〉 |