
Regenerative Engineering for Knee Osteoarthritis Treatment: Biomaterials and Cell-Based Technologies
Jorge L. Escobar Ivirico, Maumita Bhattacharjee, Emmanuel Kuyinu, Lakshmi S. Nair, Cato T. Laurencin
Engineering ›› 2017, Vol. 3 ›› Issue (1) : 16-27.
Regenerative Engineering for Knee Osteoarthritis Treatment: Biomaterials and Cell-Based Technologies
Knee osteoarthritis (OA) is the most common form of arthritis worldwide. The incidence of this disease is rising and its treatment poses an economic burden. Two early targets of knee OA treatment include the predominant symptom of pain, and cartilage damage in the knee joint. Current treatments have been beneficial in treating the disease but none is as effective as total knee arthroplasty (TKA). However, while TKA is an end-stage solution of the disease, it is an invasive and expensive procedure. Therefore, innovative regenerative engineering strategies should be established as these could defer or annul the need for a TKA. Several biomaterial and cell-based therapies are currently in development and have shown early promise in both preclinical and clinical studies. The use of advanced biomaterials and stem cells independently or in conjunction to treat knee OA could potentially reduce pain and regenerate focal articular cartilage damage. In this review, we discuss the pathogenesis of pain and cartilage damage in knee OA and explore novel treatment options currently being studied, along with some of their limitations.
Knee osteoarthritis / Osteoarthritic pain / Mesenchymal stem cells / Biomaterials / Regenerative engineering
[1] |
Kuyinu EL, Narayanan G, Nair LS, Laurencin CT.Animal models of osteoarthritis: classification, update, and measurement of outcomes. J Orthop Surg Res 2016; 11(1):1–27.
CrossRef
Pubmed
Google scholar
|
[2] |
Glyn-Jones S, Palmer AJ, Agricola R, Price AJ, Vincent TL, Weinans H, et al. Osteoarthritis. Lancet 2015;386(9991):376–87.
CrossRef
Pubmed
Google scholar
|
[3] |
Neogi T.The epidemiology and impact of pain in osteoarthritis. Osteoarthritis Cartilage 2013;21(9):1145–53.
CrossRef
Pubmed
Google scholar
|
[4] |
Neogi T, Zhang Y.Epidemiology of osteoarthritis. Rheum Dis Clin North Am 2013;39(1):1–19.
CrossRef
Google scholar
|
[5] |
Ogden CL, Carroll MD, Kit BK, Flegal KM.Prevalence of childhood and adult obesity in the United States, 2011‒2012. JAMA 2014;311(8):806–4.
CrossRef
Pubmed
Google scholar
|
[6] |
Murphy L, Schwartz TA, Helmick CG, Renner JB, Tudor G, Koch G, et al. Lifetime risk of symptomatic knee osteoarthritis. Arthritis Rheum 2008;59(9):1207–13.
CrossRef
Pubmed
Google scholar
|
[7] |
Lawrence RC, Felson DT, Helmick CG, Arnold LM, Choi H, Deyo RA, et al. National Arthritis Data Workgroup. Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part II. Arthritis Rheum 2008;58(1):26–35.
CrossRef
Pubmed
Google scholar
|
[8] |
Hootman JM, Helmick CG.Projections of US prevalence of arthritis and associated activity limitations. Arthritis Rheum 2006;54(1):226–9.
CrossRef
Pubmed
Google scholar
|
[9] |
Turkiewicz A, Petersson IF, Björk J, Hawker G, Dahlberg LE, Lohmander LS,et al. Current and future impact of osteoarthritis on health care: a population-based study with projections to year 2032. Osteoarthritis Cartilage 2014;22(11):1826–32.
CrossRef
Pubmed
Google scholar
|
[10] |
Le TK, Montejano LB, Cao Z, Zhao Y, Ang D.Healthcare costs associated with osteoarthritis in US patients. Pain Pract 2012;12(8):633–40.
CrossRef
Pubmed
Google scholar
|
[11] |
Losina E, Paltiel AD, Weinstein AM, Yelin E, Hunter DJ, Chen SP, et al.Lifetime medical costs of knee osteoarthritis management in the United States: impact of extending indications for total knee arthroplasty. Arthritis CareRes (Hoboken) 2015;67 (2):203–15.
CrossRef
Pubmed
Google scholar
|
[12] |
Wilkie R, Hay EM, Croft P, Pransky G.Exploring how pain leads to productivity loss in primary care consulters for osteoarthritis: a prospective cohort study. PLoS One 2015;10 (4):e0120042.
CrossRef
Pubmed
Google scholar
|
[13] |
Kurtz S, Ong K, Lau E, Mowat F, Halpern M.Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. J Bone Joint Surg Am 2007;89(4):780–5.
CrossRef
Pubmed
Google scholar
|
[14] |
Yoo JY, O’Malley MJ, Matsen Ko LJ, Cohen SB, Sharkey PF.Knee arthroplasty after subchondroplasty: early results, complications, and technical challenges. JArthroplasty 2016;31(10):2188–92.
CrossRef
Pubmed
Google scholar
|
[15] |
Cohen SB, Sharkey PF.Subchondroplasty for treating bone marrow lesions. JKnee Surg 2016;29(7):555–63.
Pubmed
|
[16] |
Laurencin CT, Khan Y.Regenerative engineering. Sci Trans Med 2012;4(160):160ed9.
CrossRef
Pubmed
Google scholar
|
[17] |
Laurencin CT, Nair LS.The Quest toward limb regeneration: a regenerative engineering approach. Regen Biomater 2016;3(2):123–5.
CrossRef
Pubmed
Google scholar
|
[18] |
Arendt-minus;Nielsen L, Nie H, Laursen MB, Laursen BS, Madeleine P, Simonsen OH, et al. Sensitization in patients with painful knee osteoarthritis. Pain 2010;149(3):573–81.
CrossRef
Pubmed
Google scholar
|
[19] |
Connelly AE, Tucker AJ, Kott LS, Wright AJ, Duncan AM.Modifiable lifestyle factors are associated with lower pain levels in adults with knee osteoarthritis. Pain Res Manag 2015;20(5):241–8.
CrossRef
Google scholar
|
[20] |
Miller RE, Miller RJ, Malfait AM.Osteoarthritis joint pain: the cytokine connection. Cytokine 2014;70(2):185–93.
CrossRef
Pubmed
Google scholar
|
[21] |
Mease PJ, Hanna S, Frakes EP, Altman RD.Pain mechanisms in osteoarthritis: understanding the role of central pain and current approaches to its treatment. JRheumatol 2011;38(8):1546–51.
CrossRef
Pubmed
Google scholar
|
[22] |
McAlindon TE, Bannuru RR, Sullivan MC, Arden NK, Berenbaum F, Bierma-minus;Zeinstra SM, et al.OARSI guidelines for the non-surgical management of knee osteoarthritis. Osteoarthritis Cartilage 2014;22 (3):363–88.
CrossRef
Pubmed
Google scholar
|
[23] |
Hochberg MC, Altman RD, April KT, Benkhalti M, Guyatt G, McGowan J, et al. American College of Rheumatology. American College of Rheumatology 2012 recommendations for the use of nonpharmacologic and pharmacologic therapies in osteoarthritis of the hand, hip, and knee .Arthritis Care Res (Hoboken) 2012;64(4):465–74.
CrossRef
Google scholar
|
[24] |
Fransen M, McConnell S.Land-based exercise for osteoarthritis of the knee: a metaanalysis of randomized controlled trials. J Rheumatol 2009;36(6):1109–17.
CrossRef
Pubmed
Google scholar
|
[25] |
Fransen M, McConnell S, Harmer AR, Van der Esch M, Simic M, Bennell KL. Exercise for osteoarthritis of the knee. Cochrane DatabaseSyst Rev 2015;(1):CD004376.
CrossRef
Google scholar
|
[26] |
Silva LE, Valim V, Pessanha AP, Oliveira LM, Myamoto S, Jones A, et al. Hydrotherapy versus conventional land-based exercise for the management of patients with osteoarthritis of the knee: a randomized clinical trial. Phys Ther 2008;88(1):12–21.
CrossRef
Pubmed
Google scholar
|
[27] |
Batterham SI, Heywood S, Keating JL.Systematic review and meta-analysis comparing land and aquatic exercise for people with hip or knee arthritis on function, mobility and other health outcomes. BMC Musculoskelet Disord 2011;12:123.
CrossRef
Pubmed
Google scholar
|
[28] |
Barker AL, Talevski J, Morello RT, Brand CA, Rahmann AE, Urquhart DM.Effectiveness of aquatic exercise for musculoskeletal conditions: a meta-minus;analysis. Arch Phys Med Rehabil 2014;95(9):1776–86.
CrossRef
Pubmed
Google scholar
|
[29] |
Ye J, Cai S, Zhong W, Cai S, Zheng Q.Effects of tai chi for patients with knee osteoarthritis: a systematic review. JPhysTherSci 2014;26(7):1133–7.
CrossRef
Pubmed
Google scholar
|
[30] |
Kolasinski SL, Garfinkel M, Tsai AG, Matz W, Van Dyke A, Schumacher HR.Iyengar yoga for treating symptoms of osteoarthritis of the knees: a pilot study. J Altern Complement Med 2005;11(4):689–93.
CrossRef
Pubmed
Google scholar
|
[31] |
van Laar M, Pergolizzi JVJr, Mellinghoff HU, Merchante IM, Nalamachu S, O’Brien J, et al. Pain treatment in arthritis-related pain: beyond NSAIDs. Open Rheumatolo J 2012;6:320–30.
CrossRef
Pubmed
Google scholar
|
[32] |
Lapane KL, Yang S, Driban JB, Liu SH, Dubé CE, McAlindon TE, et al. Effects of prescription nonsteroidal antiinflammatory drugs on symptoms and disease progression among patients with knee osteoarthritis. Arthritis Rheumatol 2015;67(3):724–32.
CrossRef
Pubmed
Google scholar
|
[33] |
Derry S, Moore RA, Rabbie R. Topical NSAIDs for chronic musculoskeletal pain in adults. Cochrane Database Syst Rev 2012;(9):CD007400.
|
[34] |
Pergolizzi J, Böger RH, Budd K, Dahan A, Erdine S, Hans G, et al. Opioids and the management of chronic severe pain in the elderly: consensus statement of an International Expert Panel with focus on the six clinically most often used World Health Organization Step III opioids (buprenorphine, fentanyl, hydromorphone, methadone, morphine, oxycodone). Pain Pract 2008;8(4):287–313.
CrossRef
Pubmed
Google scholar
|
[35] |
Inacio MC, Pratt NL,Roughead EE, Paxton EW, Graves SE.Opioid use after total hip arthroplasty surgery is associated with revision surgery. BMC Musculoskelet Disord 2016;17:122.
CrossRef
Pubmed
Google scholar
|
[36] |
Khanna IK, Pillarisetti S.Buprenorphine—an attractive opioid with underutilized potential in treatment of chronic pain. JPain Res 2015:8:859–70.
Pubmed
|
[37] |
Ramiro S, Radner H, van der Heijde D, van Tubergen A, Buchbinder R, Aletaha D,et al. Combination therapy for pain management in inflammatory arthritis (rheumatoid arthritis, ankylosing spondylitis, psoriatic arthritis, other spondyloarthritis). Cochrane DatabaseSyst Rev 2011;(10):CD008886.
CrossRef
Google scholar
|
[38] |
Altman R, Hochberg M, Gibofsky A, Jaros M, Young C.Efficacy and safety of low-dose SoluMatrix meloxicam in the treatment of osteoarthritis pain: a 12-week, phase 3 study. Curr Med Res Opin 2015;31(12):2331–43.
CrossRef
Pubmed
Google scholar
|
[39] |
Wade WE, Spruill WJ.Tapentadol hydrochloride: a centrally acting oral analgesic. Clin Ther 2009;31(12):2804–18.
CrossRef
Pubmed
Google scholar
|
[40] |
McCarberg B.Tramadol extended-minus;release in the management of chronic pain. Ther Clin Risk Manag 2007;3(3):401–10.
Pubmed
|
[41] |
Rannou F, Pelletier JP, Martel-Pelletier J.Efficacy and safety of topical NSAIDs in the management of osteoarthritis: evidence from real-life setting trials and surveys. Semin Arthritis and Rheum 2016;45(4 Suppl):S18–21.
CrossRef
Pubmed
Google scholar
|
[42] |
Zhang W, Nuki G,Moskowitz RW, Abramson S, Altman RD, Arden NK, et al. OARSI recommendations for the management of hip and knee osteoarthritis: part III: changes in evidence following systematic cumulative update of research published through January 2009. Osteoarthritis Cartilage 2010;18(4):476–99.
CrossRef
Pubmed
Google scholar
|
[43] |
Wang ZY, Shi SY, Li SJ, Chen F, Chen H, Lin HZ, et al. Efficacy and safety of duloxetine on osteoarthritis knee pain: a meta-analysis of randomized controlled trials. Pain Med 2015;16(7):1373–85.
CrossRef
Pubmed
Google scholar
|
[44] |
Wadsworth LT, Kent JD, Holt RJ.Efficacy and safety of diclofenac sodium 2% topical solution for osteoarthritis of the knee: a randomized, double-blind, vehicle-controlled, 4 week study. Curr Med Res Opin 2016;32(2):241–50.
CrossRef
Pubmed
Google scholar
|
[45] |
Biondi DM, Xiang J, Etropolski M, Moskovitz B. Tolerability and efficacy of tapentadol extended release in elderly patients≥75 years of age with chronic osteoarthritis knee or low back pain. J Opioid Manag 2015;11(5):393–403.
CrossRef
Google scholar
|
[46] |
Balazs EA, Denlinger JL.Viscosupplementation: a new concept in the treatment of osteoarthritis. J Rheumatol Suppl 1993;39:3–9.
Pubmed
|
[47] |
Altman RD, Åkermark C, Beaulieu AD, Schnitzer T;Durolane International Study Group. Efficacy and safety of a single intra-articular injection of non-animal stabilized hyaluronic acid (NASHA) in patients with osteoarthritis of the knee. Osteoarthritis Cartilage 2004;12(8):642–9.
CrossRef
Pubmed
Google scholar
|
[48] |
Fraser JR, Clarris BJ, Baxter E.Patterns of induced variation in the morphology, hyaluronic acid secretion, and lysosomal enzyme activity of cultured human synovial cells. Ann Rheum Dis 1979;38(3):287–94.
CrossRef
Pubmed
Google scholar
|
[49] |
Benke M, Shaffer B.Viscosupplementation treatment of arthritis pain. Curr Pain and Headache Rep 2009;13(6):440–6.
CrossRef
Pubmed
Google scholar
|
[50] |
Supartz FX [package insert]. Tokyo: Seikagaku Corporation.2015 Apr.
|
[51] |
Hyalgan [package insert]. Padua: Fidia Farmaceutici s.p.a.2014 May.
|
[52] |
Euflexxa [package insert]. Parsippany: Ferring Pharmaceuticals, Inc. 2014 Sep.
|
[53] |
Synvisc [package insert]. Ridgefield: Genzyme Biosurgery.2014Sep.
|
[54] |
Synvisc-One [package insert]. Ridgefield: Genzyme Biosurgery.2014Sep.
|
[55] |
Orthovisc [package insert]. Woburn: Anika Therapeutics, Inc.2006Feb.
|
[56] |
Gel-One [package insert]. Tokyo: Seikagaku Corporation.2011May.
|
[57] |
Monovisc [package insert]. Bedford: Anika Therapeutics, Inc.2014Feb.
|
[58] |
Trigkilidas D, Anand A.The effectiveness of hyaluronic acid intra-articular injections in managing osteoarthritic knee pain. Ann R Coll Surg Engl 2013;95(8):545–51.
CrossRef
Pubmed
Google scholar
|
[59] |
Leopold SS, Redd BB, Warme WJ, Wehrle PA, Pettis PD, Shott S.Corticosteroid compared with hyaluronic acid injections for the treatment of osteoarthritis of the knee. a prospective, randomized trial. J Bone Joint Surg Am 2003;85–A(7):1197–203.
CrossRef
Pubmed
Google scholar
|
[60] |
Kirchner M, Marshall D.A double-blind randomized controlled trial comparing alternate forms of high molecular weight hyaluronan for the treatment of osteoarthritis of the knee. Osteoarthritis Cartilage 2006;14(2):154–62.
CrossRef
Pubmed
Google scholar
|
[61] |
Petrella RJ, Petrella M.A prospective, randomized, double-blind, placebo controlled study to evaluate the efficacy of intraarticular hyaluronic acid for osteoarthritis of the knee. J Rheumatol 2006;33(5):951–6.
Pubmed
|
[62] |
Baker K, Grainger A, Niu J, Clancy, M, Guermazi A, Crema M, et al. Relation of synovitis to knee pain using contrast-enhanced MRIs. Ann Rheum Dis 2010;69(10):1779–83.
CrossRef
Pubmed
Google scholar
|
[63] |
Saarakkala S, Julkunen P, Kiviranta P, Mäkitalo J, Jurvelin JS, Korhonen RK.Depth-wise progression of osteoarthritis in human articular cartilage: investigation of composition, structure and biomechanics. Osteoarthritis Cartilage 2010;18(1):73–81.
CrossRef
Pubmed
Google scholar
|
[64] |
Mort JS, Geng Y, Fisher WD, Roughley PJ.Aggrecan heterogeneity in articular cartilage from patients with osteoarthritis. BMC Musculoskelet Disord 2016;17:89.
CrossRef
Pubmed
Google scholar
|
[65] |
Roughley PJ, Mort JS.The role of aggrecan in normal and osteoarthritic cartilage. JExp Orthop 2014;1(1):8.
CrossRef
Pubmed
Google scholar
|
[66] |
Lahm A, Mrosek E, Spank H, Erggelet C, Kasch R, Esser J, et al. Changes in content and synthesis of collagen types and proteoglycans in osteoarthritis of the knee joint and comparison of quantitative analysis with Photoshop-based image analysis. ArchOrthopTrauma Surg 2010;130(4):557–64.
CrossRef
Pubmed
Google scholar
|
[67] |
Gelse K, Pöschl E, Aigner T.Collagens—structure, function, and biosynthesis. Adv Drug Deliv Rev 2003;55(12):1531–46.
CrossRef
Pubmed
Google scholar
|
[68] |
Troeberg L, Nagase H.Proteases involved in cartilage matrix degradation in osteoarthritis. BBA–Proteins and Proteomics 2012;1824(1):133–45.
CrossRef
Google scholar
|
[69] |
Verma P, Dalal K.ADAMTS-4 and ADAMTS-5: key enzymes in osteoarthritis. J Cell Biochem 2011;112(12):3507–14.
CrossRef
Pubmed
Google scholar
|
[70] |
Grenier S, Bhargava MM, Torzilli PA.An in vitro model for the pathological degradation of articular cartilage in osteoarthritis. J Biomech 2014;47(3):645–52.
CrossRef
Pubmed
Google scholar
|
[71] |
Maldonado M, Nam J. The role of changes in extracellular matrix of cartilage in the presence of inflammation on the pathology of osteoarthritis. Biomed Res Int 2013;2013:284873.
CrossRef
Google scholar
|
[72] |
Hoff P, Buttgereit F, Burmester GR, Jakstadt M, Gaber T, Andreas K, et al. Osteoarthritis synovial fluid activates pro-inflammatory cytokines in primary human chondrocytes. Int Orthop 2013;37(1):145–51.
CrossRef
Pubmed
Google scholar
|
[73] |
Browne JE, Branch TP.Surgical alternatives for treatment of articular cartilage lesions. J AmAcad Orthop Surg 2000;8(3):180–9.
CrossRef
Pubmed
Google scholar
|
[74] |
Ossendorf C, Steinwachs MR, Kreuz PC, Osterhoff G, Lahm A, Ducommun PP, et al. Autologous chondrocyte implantation (ACI) for the treatment of large and complex cartilage lesions of the knee. BMC Sports Sci Med Rehabil 2011;3(1):11.
CrossRef
Pubmed
Google scholar
|
[75] |
Oussedik S, Tsitskaris K, Parker D.Treatment of articular cartilage lesions of the knee by microfracture or autologous chondrocyte implantation: a systematic review. Arthroscopy 2015;31(4):732–44.
CrossRef
Pubmed
Google scholar
|
[76] |
Steinwachs M, Kreuz PC.Autologous chondrocyte implantation in chondral defects of the knee with a type I/III collagen membrane: a prospective study with a 3-year follow-up. Arthroscopy 2007;23(4):381–7.
CrossRef
Pubmed
Google scholar
|
[77] |
Kon E, Filardo G, Gobbi A, Berruto M, Andriolo L, Ferrua P, et al. Long-term results after hyaluronan-based MACT for the treatment of cartilage lesions of the patellofemoral joint. Am J Sports Med 2016;44(3):602–8.
CrossRef
Pubmed
Google scholar
|
[78] |
Dean CS, Chahla J, Serra Cruz R, LaPrade RF.Fresh osteochondral allograft transplantation for treatment of articular cartilage defects of the knee. Arthrosc Tech 2016;5(1):e157–61.
CrossRef
Pubmed
Google scholar
|
[79] |
Migliaresi C, Motta A, DiBenedetto AT.Injectable scaffolds for bone and cartilage regeneration. In: Bronner F, Farach-Carson MC, Mikos AG, editors Engineering of functional skeletal tissues. London: Springer; 2007. p. 95–109.
CrossRef
Google scholar
|
[80] |
Minas T, Gomoll AH, Solhpour S, Rosenberger R, Probst C, Bryant T. Autologous chondrocyte implantation for joint preservation in patients with early osteoarthritis. Clin Orthop Relat Res 2010;468(1):147–57.
CrossRef
Pubmed
Google scholar
|
[81] |
Estes BT, Wu AW, Guilak F.Potent induction of chondrocytic differentiation of human adipose-derived adult stem cells by bone morphogenetic protein 6. Arthritis Rheum 2006;54(4):1222–32.
CrossRef
Pubmed
Google scholar
|
[82] |
Lee JC, Lee SY, Min HJ, Han SA, Jang J, Lee S, et al. Synovium-derived mesenchymal stem cells encapsulated in a novel injectable gel can repair osteochondral defects in a rabbit model. Tissue Eng Part A 2012;18(19–20):2173–86.
CrossRef
Pubmed
Google scholar
|
[83] |
Leijten JC, Georgi N, Wu L, van Blitterswijk CA, Karperien M.Cell sources for articular cartilage repair strategies: shifting from monocultures to cocultures. Tissue Eng Part B Rev 2013;19(1):31–40.
CrossRef
Pubmed
Google scholar
|
[84] |
Zhao W, Jin X, Cong Y, Liu Y, Fu J.Degradable natural polymer hydrogels for articular cartilage tissue engineering. J Chem Technol Biot 2013;88(3):327–39.
CrossRef
Google scholar
|
[85] |
Sun J, Zhao X, Illeperuma WR, Chaudhuri O, Oh KH, Mooney DJ, et al. Highly stretchable and tough hydrogels. Nature 2012;489(7414):133–6.
CrossRef
Pubmed
Google scholar
|
[86] |
Amini AA, Nair LS.Injectable hydrogels for bone and cartilage repair. Biomed Mater 2012;7(2):024105.
CrossRef
Pubmed
Google scholar
|
[87] |
Chung C, Burdick JA. Influence of three-dimensional hyaluronic acid microenvironments on mesenchymal stem cell chondrogenesis. Tissue Eng Part A 2009;15(2):243–54.
CrossRef
Pubmed
Google scholar
|
[88] |
Roberts JJ, Nicodemus GD, Giunta S, Bryant SJ.Incorporation of biomimetic matrix molecules in PEG hydrogels enhances matrix deposition and reduces load-induced loss of chondrocyte-secreted matrix. J Biomed Mater Res A 2011;97(3):281–91.
CrossRef
Pubmed
Google scholar
|
[89] |
Bhattacharjee M, Coburn J, Centola M, Murab S, Barbero A, Kaplan DL, et al. Tissue engineering strategies to study cartilage development, degeneration and regeneration. Adv Drug Deliv Rev 2015;84:107–22.
CrossRef
Pubmed
Google scholar
|
[90] |
Lam J, Clark EC, Fong EL, Lee EJ, Lu S, Tabata Y, et al. Evaluation of cell-minus;laden polyelectrolyte hydrogels incorporating poly(L-lysine) for applications in cartilage tissue engineering. Biomaterials 2016;83:332–46.
CrossRef
Pubmed
Google scholar
|
[91] |
Re’em T, Tsur-minus;Gang O, Cohen S.The effect of immobilized RGD peptide in macroporous alginate scaffolds on TGFβ1-induced chondrogenesis of human mesenchymal stem cells. Biomaterials 2010;31(26):6746–55.
CrossRef
Pubmed
Google scholar
|
[92] |
Zhang L, Yuan T, Guo L, Zhang X.An in vitro study of collagen hydrogel to induce the chondrogenic differentiation of mesenchymal stem cells. J Biomed Mater Res A 2012;100(10):2717–25.
CrossRef
Pubmed
Google scholar
|
[93] |
Strehin I, Nahas Z, Arora K, Nguyen T, Elisseeff J.A versatile pH sensitive chondroitin sulfate-PEG tissue adhesive and hydrogel. Biomaterials 2010;31(10):2788–97.
CrossRef
Pubmed
Google scholar
|
[94] |
Bulpitt P, Aeschlimann D.New strategy for chemical modification of hyaluronic acid: preparation of functionalized derivatives and their use in the formation of novel biocompatible hydrogels. J BiomedMater Res 1999;47(2):152–69.
CrossRef
Pubmed
Google scholar
|
[95] |
Collins MN, Birkinshaw C.Hyaluronic acid based scaffolds for tissue engineering−a review. Carbohydr Polym 2013;92(2):1262–79.
CrossRef
Pubmed
Google scholar
|
[96] |
Domingues RM, Silva M, Gershovich P, Betta S, Babo P, Caridade SG, et al. Development of injectable hyaluronic acid/cellulose nanocrystals bionanocomposite hydrogels for tissue engineering applications. Bioconjug Chem 2015;26(8):1571–81.
CrossRef
Pubmed
Google scholar
|
[97] |
Su W, Chen Y, Lin F.Injectable oxidized hyaluronic acid/adipic acid dihydrazide hydrogel for nucleus pulposus regeneration. Acta Biomater 2010;6(8):3044–55.
CrossRef
Pubmed
Google scholar
|
[98] |
Wu A, Senter PD.Arming antibodies: prospects and challenges for immunoconjugates. Nat Biotechnol 2005;23(9):1137–46.
CrossRef
Pubmed
Google scholar
|
[99] |
Oommen OP, Wang S, Kisiel M,Sloff M, Hilborn J, Varghese OP.Smart design of stable extracellular matrix mimetic hydrogel: synthesis, characterization, and in vitro and in vivo evaluation for tissue engineering. Adv Funct Mater 2013;23(10):1273–80.
CrossRef
Google scholar
|
[100] |
Wang S, Oommen OP, Yan H, Varghese OP. Mild and efficient strategy for site-selective aldehyde modification of glycosaminoglycans: tailoring hydrogels with tunable release of growth factor. Biomacromolecules 2013;14(7):2427–32.
CrossRef
Pubmed
Google scholar
|
[101] |
Zheng-Shu X, Liu Y, Palumbo FS, Luo Y, Prestwich GD. In situ crosslinkable hyaluronan hydrogels for tissue engineering. Biomaterials 2004;25(7-8):1339–48.
CrossRef
Pubmed
Google scholar
|
[102] |
Burdick JA, Prestwich GD. Hyaluronic acid hydrogels for biomedical applications. Adv Mater 2011;23(12):H41–56.
CrossRef
Pubmed
Google scholar
|
[103] |
Jin R, Moreira Teixeira LS, Krouwels A, Dijkstra PJ, van Blitterswijk CA, Karperien M, et al. Synthesis and characterization of hyaluronic acid-poly(ethylene glycol) hydrogels via Michael addition: an injectable biomaterial for cartilage repair. Acta Biomater 2010;6(6):1968–77.
CrossRef
Pubmed
Google scholar
|
[104] |
Leach BJ, Bivens KA, Patrick CWJr, Schmidt CE. Photocrosslinked hyaluronic acid hydrogels: natural, biodegradable tissue engineering scaffolds. BiotechnolBioeng 2003;82(5):578–89.
CrossRef
Pubmed
Google scholar
|
[105] |
Yang X, Bakaic E, Hoare T, Cranston ED.Injectable polysaccharide hydrogels reinforced with cellulose nanocrystals: morphology, rheology, degradation, and cytotoxicity. Biomacromolecules 2013;14(12):4447–55.
CrossRef
Pubmed
Google scholar
|
[106] |
Moutos FT, Guilak F.Functional properties of cell-minus;seeded three-dimensionally woven poly(ϵ-minus;caprolactone) scaffolds for cartilage tissue engineering. Tissue Eng Part A 2010;16(4):1291–301.
CrossRef
Pubmed
Google scholar
|
[107] |
Nguyen LH, Kudva AK, Saxena NS, Roy K.Engineering articular cartilage with spatially-varying matrix composition and mechanical properties from a single stem cell population using a multi-layered hydrogel. Biomaterials 2011;32(29):6946–52.
CrossRef
Pubmed
Google scholar
|
[108] |
Song J, Kim R, Lee C, Tripathy N, Yoon KH, Lee G, et al. Effects of purified alginate sponge on the regeneration of chondrocytes: in vitro and in vivo. J Biomater Sci Polym E 2015;26(3):181–95.
CrossRef
Google scholar
|
[109] |
Wang C, Yang K, Lin K, Liu Y, Liu H, Lin F.Cartilage regeneration in SCID mice using a highly organized three-dimensional alginate scaffold. Biomaterials 2012;33(1):120–7.
CrossRef
Pubmed
Google scholar
|
[110] |
Zhang Q, Lu H, Kawazoe N, Chen G. Pore size effect of collagen scaffolds on cartilage regeneration. Acta Biomater 2014;10(5):2005–13.
CrossRef
Pubmed
Google scholar
|
[111] |
Nanda HS, Chen S, Zhang Q, Kawazoe N, Chen G. Collagen scaffolds with controlled insulin release and controlled pore structure for cartilage tissue engineering. BioMed Res Int 2014;2014(24):623805.
CrossRef
Google scholar
|
[112] |
Xu C, Lu W, Bian S, Liang J, Fan Y, Zhang X.Porous collagen scaffold reinforced with surfaced activated PLLA nanoparticles. Sci World J 2012;2012:695137.
CrossRef
Google scholar
|
[113] |
Foss C, Merzari E, Migliaresi C, Motta A.Silk fibroin/hyaluronic acid 3D matrices for cartilage tissue engineering. Biomacromolecules 2013;14(1):38–47.
CrossRef
Pubmed
Google scholar
|
[114] |
Ko CL, Tien YC, Wang J, Chen W.Characterization of controlled highly porous hyaluronan/gelatin cross-linking sponges for tissue engineering. J Mech Behav Biomed Mater 2012;14:227–38.
CrossRef
Pubmed
Google scholar
|
[115] |
Schwartz Z, Griffon DJ, Fredericks LP, Lee HB, Weng HY.Hyaluronic acid and chondrogenesis of murine bone marrow mesenchymal stem cells in chitosan sponges. Am J Vet Res 2011;72(1):42–50.
CrossRef
Pubmed
Google scholar
|
[116] |
Dinescu S, Galateanu B, Radu E, Hermenean A, Lungu A, Stancu IC,et al. A 3D porous gelatin-alginate-minus;based-minus;IPN acts as an efficient promoter of chondrogenesis from human adipose-derived stem cells. Stem Cells Int 2015;2015:252909.
|
[117] |
Zhu Y, Wan Y, Zhang J, Yin D, Cheng W.Manufacture of layered collagen/chitosan-polycaprolactone scaffolds with biomimetic microarchitecture. Colloids Surf B Biointerfaces 2014;113:352–60.
CrossRef
Pubmed
Google scholar
|
[118] |
Silva JM, Georgi N, Costa R, Sher P, Reis RL, Van Blitterswijk CA, et al. Nanostructured 3D constructs based on chitosan and chondroitin sulphate multilayers for cartilage tissue engineering. PLoS One 2013;8(2):e55451.
CrossRef
Pubmed
Google scholar
|
[119] |
Steele JA, McCullen SD, Callanan A, Autefage H, Accardi MA, Dini D, et al. Combinatorial scaffold morphologies for zonal articular cartilage engineering. Acta Biomater 2014;10(5):2065–75.
CrossRef
Pubmed
Google scholar
|
[120] |
Moutos FT, Estes BT, Guilak F.Multifunctional hybrid three-dimensionally woven scaffolds for cartilage tissue engineering. Macromol Biosci 2010;10(11):1355–64.
CrossRef
Pubmed
Google scholar
|
[121] |
Garrigues NW, Little D, Sanchez-minus;Adams J, Ruch DS, Guilak F.Electrospun cartilage-derived matrix scaffolds for cartilage tissue engineering. J Biomed Mater Res A 2014;102(11):3998–4008.
CrossRef
Pubmed
Google scholar
|
[122] |
Levorson EJ, Raman Sreerekha P, Chennazhi KP, Kasper FK, Nair SV, Mikos AG.Fabrication and characterization of multiscale electrospun scaffolds for cartilage regeneration. Biomed Mater 2013;8(1):014103.
CrossRef
Pubmed
Google scholar
|
[123] |
Li W, Tuli R, Huang X, Laquerriere P, Tuan R.Multilineage differentiation of human mesenchymal stem cells in a three-dimensional nanofibrous scaffold. Biomaterials 2005;26(25):5158–66.
CrossRef
Pubmed
Google scholar
|
[124] |
McCullen SD, Autefage H, Callanan A, Gentleman E, Stevens MM.Anisotropic fibrous scaffolds for articular cartilage regeneration. Tissue Eng Part A 2012;18(19–20):2073–83.
CrossRef
Pubmed
Google scholar
|
[125] |
Camarero-Espinosa S, Rothen–Rutishauser B, Foster EJ, Weder C.Articular cartilage: from formation to tissue engineering. Biomater Sci 2016;4(5):734–67.
CrossRef
Pubmed
Google scholar
|
[126] |
Torricelli P, Gioffrè M, Fiorani A, Panzavolta S, Gualandi C, Fini M, et al. Co-electrospun gelatin–poly(L-minus;lactic acid) scaffolds: modulation of mechanical properties and chondrocyte response as a function of composition. Mater Sci Eng C Mater Biol Appl 2014;36:130–8.
CrossRef
Pubmed
Google scholar
|
[127] |
Younesi M, Islam A, Kishore V, Panit S, Akkus O.Fabrication of compositionally and topographically complex robust tissue forms by 3D-electrochemical compaction of collagen. Biofabrication 2015;7(3):035001.
CrossRef
Pubmed
Google scholar
|
[128] |
Gupta PK, Das AK, Chullikana A, Majumdar AS .Mesenchymal stem cells for cartilage repair in osteoarthritis. Stem Cell Res Ther 2012;3(4):25.
CrossRef
Pubmed
Google scholar
|
[129] |
Caplan AI, Dennis JE.Mesenchymal stem cells as trophic mediators. J Cell Biochem 2006;98(5):1076–84.
CrossRef
Pubmed
Google scholar
|
[130] |
Agung M, Ochi M, Yanada S, Adachi N, Izuta Y, Yamasaki T, et al. Mobilization of bone marrow-derived mesenchymal stem cells into the injured tissues after intraarticular injection and their contribution to tissue regeneration. Knee Surg Sports Traumatol Arthrosc 2006;14(12):1307–14.
CrossRef
Pubmed
Google scholar
|
[131] |
Al Faqeh H, Nor Hamdan BM, Chen HC, Aminuddin BS, Ruszymah BH.The potential of intra-articular injection of chondrogenic-induced bone marrow stem cells to retard the progression of osteoarthritis in a sheep model. Exp Gerontol 2012;47(6):458–64.
CrossRef
Pubmed
Google scholar
|
[132] |
Centeno CJ, Busse D, Kisiday J, Keohan C, Freeman M, Karli D.Increased knee cartilage volume in degenerative joint disease using percutaneously implanted, autologous mesenchymal stem cells. Pain Physician 2008;11(3):343–53.
Pubmed
|
[133] |
Centeno CJ, Busse D, Kisiday J, Keohan C, Freeman M, Karli D.Regeneration of meniscus cartilage in a knee treated with percutaneously implanted autologous mesenchymal stem cells. Med Hypotheses 2008;71(6):900–8.
CrossRef
Pubmed
Google scholar
|
[134] |
Centeno CJ, Schultz JR, Cheever M, Robinson B, Freeman M, Marasco W.Safety and complications reporting on the re-implantation of culture-expanded mesenchymal stem cells using autologous platelet lysate technique. Curr Stem Cell Res Ther 2010;5(1):81–93.
CrossRef
Pubmed
Google scholar
|
[135] |
Davatchi F, Abdollahi BS, Mohyeddin M, Shahram F, Nikbin B.Mesenchymal stem cell therapy for knee osteoarthritis. Preliminary report of four patients. Int J Rheum Dis 2011;14(2):211–5.
CrossRef
Pubmed
Google scholar
|
[136] |
Emadedin M, Aghdami N, Taghiyar L, Fazeli R, Moghadasali R, Jahangir S, et al. Intra-articular injection of autologous mesenchymal stem cells in six patients with knee osteoarthritis. Arch Iran Med 2012;15(7):422–8.
Pubmed
|
[137] |
Orozco L, Munar A, Soler R, Alberca M, Soler F, Huguet M, et al. Treatment of knee osteoarthritis with autologous mesenchymal stem cells: a pilot study. Transplantation 2013;95(12):1535–41.
CrossRef
Pubmed
Google scholar
|
[138] |
Soler R, Orozco L, Munar A, Huguet M, López R, Vives J, et al. Final results of a phase I-II trial using ex vivo expanded autologous mesenchymal stromal cells for the treatment of osteoarthritis of the knee confirming safety and suggesting cartilage regeneration. Knee 2016;23(4):647–54.
CrossRef
Pubmed
Google scholar
|
[139] |
Li J, Pei M.Cell senescence: a challenge in cartilage engineering and regeneration. Tissue Eng Part B Rev 2012;18(4):270–87.
CrossRef
Pubmed
Google scholar
|
[140] |
He F, Chen X, Pei M.Reconstruction of an in vitro tissue-specific microenvironment to rejuvenate synovium-derived stem cells for cartilage tissue engineering. Tissue Eng Part A 2009;15(12):3809–21.
CrossRef
Pubmed
Google scholar
|
[141] |
Diekman BO, Rowland CR, Lennon DP, Caplan AI, Guilak F.Chondrogenesis of adult stem cells from adipose tissue and bone marrow: induction by growth factors and cartilage-derived matrix. Tissue Eng Part A 2010;16(2):523–33.
CrossRef
Pubmed
Google scholar
|
[142] |
ter Huurne M, Schelbergen R, Blattes R, Blom A, de Munter W, Grevers LC, et al. Antiinflammatory and chondroprotective effects of intraarticular injection of adipose-derived stem cells in experimental osteoarthritis. Arthritis Rheum 2012;64(11):3604–13.
CrossRef
Pubmed
Google scholar
|
[143] |
Toghraie F, Razmkhah M, Gholipour MA, Faghih Z, Chenari N, Torabi Nezhad S, et al. Scaffold-free adipose-derived stem cells (ASCs) improve experimentally induced osteoarthritis in rabbits. Arch Iran Med 2012;15(8):495–9.
Pubmed
|
[144] |
Vilar JM, Batista M, Morales M, Santana A, Cuervo B, Rubio M, et al. Assessment of the effect of intraarticular injection of autologous adipose-derived mesenchymal stem cells in osteoarthritic dogs using a double blinded force platform analysis. BMC Vet Res 2014;10:143.
CrossRef
Pubmed
Google scholar
|
[145] |
Koh YG, Choi YJ, Kwon SK, Kim YS, Yeo JE.Clinical results and second-look arthroscopic findings after treatment with adipose-derived stem cells for knee osteoarthritis. Knee Surg Sports Traumatol Arthrosc 2015;23(5):1308–16.
CrossRef
Pubmed
Google scholar
|
[146] |
Jo CH, Lee YG, Shin WH, Kim H, Chai JW, Jeong EC, et al. Intra-minus;articular injection of mesenchymal stem cells for the treatment of osteoarthritis of the knee: a proof-of-minus;concept clinical trial. Stem Cells 2014;32(5):1254–66.
CrossRef
Pubmed
Google scholar
|
[147] |
Segawa Y, Muneta T, Makino H, Nimura A, Mochizuki T, Ju YJ, et al. Mesenchymal stem cells derived from synovium, meniscus, anterior cruciate ligament, and articular chondrocytes share similar gene expression profiles. J Orthop Res 2009;27(4):435–41.
CrossRef
Pubmed
Google scholar
|
[148] |
Fan J, Varshney RR, Ren L, Cai D, Wang DA.Synovium-derived mesenchymal stem cells: a new cell source for musculoskeletal regeneration. Tissue Eng Part B Rev 2009;15(1):75–86.
CrossRef
Pubmed
Google scholar
|
[149] |
Pei M, He F, Li J, Tidwell JE, Jones AC, McDonough EB.Repair of large animal partial-thickness cartilage defects through intraarticular injection of matrix-rejuvenated synovium-derived stem cells. Tissue Eng Part A 2013;19(9–10):1144–54.
CrossRef
Pubmed
Google scholar
|
[150] |
Mak J, Jablonski CL, Leonard CA, Dunn JF, Raharjo E, Matyas JR, et al. Intra-minus;articular injection of synovial mesenchymal stem cells improves cartilage repair in a mouse injury model. Sci Rep 2016;6:23076.
CrossRef
Pubmed
Google scholar
|
[151] |
Ozeki N, Muneta T, Koga H, Nakagawa Y, Mizuno M, Tsuji K, et al. Not single but periodic injections of synovial mesenchymal stem cells maintain viable cells in knees and inhibit osteoarthritis progression in rats. Osteoarthr Cartilage 2016;24(6):1061–70.
CrossRef
Pubmed
Google scholar
|
/
〈 |
|
〉 |