Noncoding RNAs and Their Potential Therapeutic Applications in Tissue Engineering

Shiying Li, Tianmei Qian, Xinghui Wang, Jie Liu, Xiaosong Gu

Engineering ›› 2017, Vol. 3 ›› Issue (1) : 3-15.

PDF(1142 KB)
PDF(1142 KB)
Engineering ›› 2017, Vol. 3 ›› Issue (1) : 3-15. DOI: 10.1016/J.ENG.2017.01.005
Research
Research

Noncoding RNAs and Their Potential Therapeutic Applications in Tissue Engineering

Author information +
History +

Abstract

Tissue engineering is a relatively new but rapidly developing field in the medical sciences. Noncoding RNAs (ncRNAs) are functional RNA molecules without a protein-coding function; they can regulate cellular behavior and change the biological milieu of the tissue. The application of ncRNAs in tissue engineering is starting to attract increasing attention as a means of resolving a large number of unmet healthcare needs, although ncRNA-based approaches have not yet entered clinical practice. In-depth research on the regulation and delivery of ncRNAs may improve their application in tissue engineering. The aim of this review is: to outline essential ncRNAs that are related to tissue engineering for the repair and regeneration of nerve, skin, liver, vascular system, and muscle tissue; to discuss their regulation and delivery; and to anticipate their potential therapeutic applications.

Keywords

Tissue engineering / Noncoding RNAs / MicroRNAs / Nerve / Skin / Liver / Vascular system / Muscle

Cite this article

Download citation ▾
Shiying Li, Tianmei Qian, Xinghui Wang, Jie Liu, Xiaosong Gu. Noncoding RNAs and Their Potential Therapeutic Applications in Tissue Engineering. Engineering, 2017, 3(1): 3‒15 https://doi.org/10.1016/J.ENG.2017.01.005

References

[1]
Berthiaume F, Maguire TJ, Yarmush ML. Tissue engineering and regenerative medicine: history, progress, and challenges. Annu Rev Chem Biomol Eng 2011;2:403–30.
CrossRef Pubmed Google scholar
[2]
Zhou S, Ding F, Gu X. Non-coding RNAs as emerging regulators of neural injury responses and regeneration. Neurosci Bull 2016;32(3):253–64.
CrossRef Pubmed Google scholar
[3]
Ponting CP, Oliver PL, Reik W. Evolution and functions of long noncoding RNAs. Cell 2009;136(4):629–41.
CrossRef Pubmed Google scholar
[4]
Kaikkonen MU, Lam MT, Glass CK. Non-coding RNAs as regulators of gene expression and epigenetics. Cardiovasc Res 2011;90(3):430–40.
CrossRef Pubmed Google scholar
[5]
Ivey KN, Srivastava D. microRNAs as regulators of differentiation and cell fate decisions. Cell Stem Cell 2010;7(1):36–41.
CrossRef Pubmed Google scholar
[6]
Khoshgoo N, Kholdebarin R, Iwasiow BM, Keijzer R. microRNAs and lung development. Pediatr Pulmonol 2013;48(4):317–23.
CrossRef Pubmed Google scholar
[7]
Small EM, Olson EN. Pervasive roles of microRNAs in cardiovascular biology. Nature 2011;469(7330):336–42.
CrossRef Pubmed Google scholar
[8]
Amodio N, Di Martino MT, Neri A, Tagliaferri P, Tassone P. Non-coding RNA: a novel opportunity for the personalized treatment of multiple myeloma. Expert Opin Biol Ther 2013;13Suppl 1:S125–37.
CrossRef Google scholar
[9]
Sana J, Faltejskova P, Svoboda M, Slaby O. Novel classes of non-coding RNAs and cancer. J Transl Med 2012;10:103.
CrossRef Pubmed Google scholar
[10]
Lin M, Pedrosa E, Shah A, Hrabovsky A, Maqbool S, Zheng D, et al. RNA-Seq of human neurons derived from iPS cells reveals candidate long non-coding RNAs involved in neurogenesis and neuropsychiatric disorders. PLoS One 2011;6(9):e23356.
CrossRef Pubmed Google scholar
[11]
Ng SY, Johnson R, Stanton LW. Human long non-coding RNAs promote pluripotency and neuronal differentiation by association with chromatin modifiers and transcription factors. EMBO J 2012;31(3):522–33.
CrossRef Pubmed Google scholar
[12]
Brett JO, Renault VM, Rafalski VA, Webb AE, Brunet A. The microRNA cluster miR-106b~25 regulates adult neural stem/progenitor cell proliferation and neuronal differentiation. Aging (Albany, NY) 2011;3(2):108–24.
CrossRef Pubmed Google scholar
[13]
Szulwach KE, Li X, Smrt RD, Li Y, Luo Y, Lin L, et al. Cross talk between microRNA and epigenetic regulation in adult neurogenesis. J Cell Biol 2010;189(1):127–41.
CrossRef Pubmed Google scholar
[14]
Liu C, Teng Z, Santistevan NJ, Szulwach KE, Guo W, Jin P, et al. Epigenetic regulation of miR-184 by MBD1 governs neural stem cell proliferation and differentiation. Cell Stem Cell 2010;6(5):433–44.
CrossRef Pubmed Google scholar
[15]
Liu C, Teng Z, McQuate AL, Jobe EM, Christ CC, von Hoyningen-Huene SJ, et al. An epigenetic feedback regulatory loop involving microRNA-195 and MBD1 governs neural stem cell differentiation. PLoS One 2013;8(1):e51436.
CrossRef Pubmed Google scholar
[16]
Zhao C, Sun G, Li S, Shi Y. A feedback regulatory loop involving microRNA-9 and nuclear receptor TLX in neural stem cell fate determination. Nat Struct Mol Biol 2009;16(4):365–71.
CrossRef Pubmed Google scholar
[17]
Zhao C, Sun G, Ye P, Li S, Shi Y. microRNA let-7d regulates the TLX/microRNA-9 cascade to control neural cell fate and neurogenesis. Sci Rep 2013;3:1329.
CrossRef Pubmed Google scholar
[18]
Aranha MM, Santos DM, Solá S, Steer CJ, Rodrigues CM. miR-34a regulates mouse neural stem cell differentiation. PLoS One 2011;6(8):e21396.
CrossRef Pubmed Google scholar
[19]
[] Zheng X, Lin C, Li Y, Ye J, Zhou J, Guo P. Long noncoding RNA BDNF-AS regulates ketamine-induced neurotoxicity in neural stem cell derived neurons. Biomed Pharmacother 2016;82:722–8.
CrossRef Google scholar
[20]
Han R, Kan Q, Sun Y, Wang S, Zhang G, Peng T, et al. miR-9 promotes the neural differentiation of mouse bone marrow mesenchymal stem cells via targeting zinc finger protein 521. Neurosci Lett 2012;515(2):147–52.
CrossRef Pubmed Google scholar
[21]
Zou D, Chen Y, Han Y, Lv C, Tu G. Overexpression of microRNA-124 promotes the neuronal differentiation of bone marrow-derived mesenchymal stem cells. Neural Regen Res 2014;9(12):1241–48.
CrossRef Pubmed Google scholar
[22]
Wu R, Tang Y, Zang W, Wang Y, Li M, Du Y, et al. microRNA-128 regulates the differentiation of rat bone mesenchymal stem cells into neuron-like cells by Wnt signaling. Mol Cell Biochem 2014;387(1–2):151–8.
CrossRef Pubmed Google scholar
[23]
Harraz MM, Eacker SM, Wang X, Dawson TM, Dawson VL. microRNA-223 is neuroprotective by targeting glutamate receptors. Proc Natl Acad Sci USA 2012;109(46):18962–7.
CrossRef Pubmed Google scholar
[24]
Hutchison ER, Kawamoto EM, Taub DD, Lal A, Abdelmohsen K, Zhang Y, et al. Evidence for miR-181 involvement in neuroinflammatory responses of astrocytes. Glia 2013;61(7):1018–28.
CrossRef Pubmed Google scholar
[25]
Irmady K, Jackman KA, Padow VA, Shahani N, Martin LA, Cerchietti L, et al. miR-592 regulates the induction and cell death-promoting activity of p75NTR in neuronal ischemic injury. J Neurosci 2014;34(9):3419–28.
CrossRef Pubmed Google scholar
[26]
Liu P, Zhao H, Wang R, Wang P, Tao Z, Gao L, et al. microRNA-424 protects against focal cerebral ischemia and reperfusion injury in mice by suppressing oxidative stress. Stroke 2015;46(2):513–9.
CrossRef Pubmed Google scholar
[27]
Zhao H, Tao Z, Wang R, Liu P, Yan F, Li J, et al. microRNA-23a-3p attenuates oxidative stress injury in a mouse model of focal cerebral ischemia-reperfusion. Brain Res 2014;1592:65–72.
CrossRef Pubmed Google scholar
[28]
Chen Q, Xu J, Li L, Li H, Mao S, Zhang F, et al. microRNA-23a/b and microRNA-27a/b suppress Apaf-1 protein and alleviate hypoxia-induced neuronal apoptosis. Cell Death Dis 2014;5:e1132.
CrossRef Pubmed Google scholar
[29]
Chi W, Meng F, Li Y, Wang Q, Wang G, Han S, et al. Downregulation of miRNA-134 protects neural cells against ischemic injury in N2A cells and mouse brain with ischemic stroke by targeting HSPA12B. Neuroscience 2014;277:111–22.
CrossRef Pubmed Google scholar
[30]
Stary CM, Xu L, Sun X, Ouyang YB, White RE, Leong J, et al. microRNA-200c contributes to injury from transient focal cerebral ischemia by targeting Reelin. Stroke 2015;46(2):551–6.
CrossRef Pubmed Google scholar
[31]
Wang P, Zhang N, Liang J, Li J, Han S, Li J. micro-RNA-30a regulates ischemia-induced cell death by targeting heat shock protein HSPA5 in primary cultured cortical neurons and mouse brain after stroke. J Neurosci Res 2015;93(11):1756–68.
CrossRef Pubmed Google scholar
[32]
Wang P, Liang J, Li Y, Li J, Yang X, Zhang X, et al. Down-regulation of miRNA-30a alleviates cerebral ischemic injury through enhancing Beclin 1-mediated autophagy. Neurochem Res 2014;39(7):1279–91.
CrossRef Pubmed Google scholar
[33]
Wang S, Zhang X, Yuan Y, Tan M, Zhang L, Xue X, et al. BRG1 expression is increased in thoracic aortic aneurysms and regulates proliferation and apoptosis of vascular smooth muscle cells through the long non-coding RNA HIF1A-AS1 in vitro. Eur J Cardiothorac Surg 2015;47(3):439–46.
CrossRef Pubmed Google scholar
[34]
J Zhu F, Liu J, Li J, Xiao F, Zhang Z, Zhang L. microRNA-124 (miR-124) regulates Ku70 expression and is correlated with neuronal death induced by ischemia/reperfusion. J Mol Neurosci 2014;52(1):148–55.
CrossRef Pubmed Google scholar
[35]
Sabirzhanov B, Stoica BA, Zhao Z, Loane DJ, Wu J, Dorsey SG, et al. miR-711 upregulation induces neuronal cell death after traumatic brain injury. Cell Death Differ 2016;23(4):654–68.
CrossRef Pubmed Google scholar
[36]
Jee MK, Jung JS, Im YB, Jung SJ, Kang S. Silencing of miR20a is crucial for Ngn1-mediated neuroprotection in injured spinal cord. Hum Gene Ther 2012;23(5):508–20.
CrossRef Pubmed Google scholar
[37]
Liu X, Zheng X, Zhang R, Guo Y, Wang J. Combinatorial effects of miR-20a and miR-29b on neuronal apoptosis induced by spinal cord injury. Int J Clin Exp Pathol 2015;8(4):3811–8.
Pubmed
[38]
Wang L, Chopp M, Szalad A, Zhang Y, Wang X, Zhang R, et al. The role of miR-146a in dorsal root ganglia neurons of experimental diabetic peripheral neuropathy. Neuroscience 2014;259:155–63.
CrossRef Pubmed Google scholar
[39]
Liu J, Githinji J, Mclaughlin B, Wilczek K, Nolta J. Role of miRNAs in neuronal differentiation from human embryonic stem cell-derived neural stem cells. Stem Cell Rev 2012;8(4):1129–37.
CrossRef Pubmed Google scholar
[40]
[] Strickland IT, Richards L, Holmes FE, Wynick D, Uney JB, Wong LF. Axotomy-induced miR-21 promotes axon growth in adult dorsal root ganglion neurons. PLoS One 2011;6(8):e23423.
CrossRef Pubmed Google scholar
[41]
Zhou S, Shen D, Wang Y, Gong L, Tang X, Yu B, et al. microRNA-222 targeting PTEN promotes neurite outgrowth from adult dorsal root ganglion neurons following sciatic nerve transection. PLoS One 2012;7(9):e44768. Erratum in: PLoS One 2012;7(9).
CrossRef Pubmed Google scholar
[42]
Lu CS, Zhai B, Mauss A, Landgraf M, Gygi S, Van Vactor D. microRNA-8 promotes robust motor axon targeting by coordinate regulation of cell adhesion molecules during synapse development. Philos Trans R Soc Lond B Biol Sci 2014;369(1652):20130517.
CrossRef Pubmed Google scholar
[43]
Wu D, Murashov AK. microRNA-431 regulates axon regeneration in mature sensory neurons by targeting the Wnt antagonist Kremen1. Front Mol Neurosci 2013;6:35.
CrossRef Pubmed Google scholar
[44]
Zhang H, Zheng S, Zhao J, Zhao W, Zheng L, Zhao D, et al. microRNAs 144, 145, and 214 are down-regulated in primary neurons responding to sciatic nerve transection. Brain Res 2011;1383:62–70
CrossRef Pubmed Google scholar
[45]
Yao C, Wang J, Zhang H, Zhou S, Qian T, Ding F, et al. Long non-coding RNA uc.217 regulates neurite outgrowth in dorsal root ganglion neurons following peripheral nerve injury. Eur J Neurosci 2015;42(1):1718–25.
CrossRef Pubmed Google scholar
[46]
Liu C, Wang R, Saijilafu Z, Jiao B, Zhang F, Zhou. microRNA-138 and SIRT1 form a mutual negative feedback loop to regulate mammalian axon regeneration. Genes Dev 2013;27(13):1473–83.
CrossRef Pubmed Google scholar
[47]
Banerjee S, Xie N, Cui H, Tan Z, Yang S, Icyuz M, et al. microRNA let-7c regulates macrophage polarization. J Immunol 2013;190(12):6542–9.
CrossRef Pubmed Google scholar
[48]
Ponomarev ED, Veremeyko T, Barteneva N, Krichevsky AM, Weiner HL. microRNA-124 promotes microglia quiescence and suppresses EAE by deactivating macrophages via the C/EBP-α-PU.1 pathway. Nat Med 2011;17(1):64–70.
CrossRef Pubmed Google scholar
[49]
Cardoso AL, Guedes JR, Pereira Lde Almeida MC, Pedrosode Lima. miR-155 modulates microglia-mediated immune response by down-regulating SOCS-1 and promoting cytokine and nitric oxide production. Immunology 2012;135(1):73–88.
CrossRef Pubmed Google scholar
[50]
Ni J, Wang X, Chen S, Liu H, Wang Y, Xu X, et al. microRNA let-7c-5p protects against cerebral ischemia injury via mechanisms involving the inhibition of microglia activation. Brain Behav Immun 2015;49:75–85.
CrossRef Pubmed Google scholar
[51]
Hong P, Jiang M, Li H. Functionalrequirement of Dicer1 and miR-17-5p in reactive astrocyte proliferation after spinal cord injury in the mouse. Glia 2014;62(12):2044–60.
CrossRef Pubmed Google scholar
[52]
Iyer A, Zurolo E, Prabowo A, Fluiter K, Spliet WG, van Rijen PC, et al. microRNA-146a: a key regulator of astrocyte-mediated inflammatory response. PLoS One 2012;7(9):e44789.
CrossRef Pubmed Google scholar
[53]
Wang J, Hu B, Cao F, Sun S, Zhang Y, Zhu Q. Down regulation of lncSCIR1 after spinal cord contusion injury in rat. Brain Res 2015;1624:314–20.
CrossRef Pubmed Google scholar
[54]
Yu B, Qian T, Wang Y, Zhou S, Ding G, Ding F, et al. miR-182 inhibits Schwann cell proliferation and migration by targeting FGF9 and NTM, respectively at an early stage following sciatic nerve injury. Nucleic Acids Res 2012;40(20):10356–65.
CrossRef Pubmed Google scholar
[55]
[] Li S, Wang X, Gu Y, Chen C, Wang Y, Liu J, et al. let-7 microRNAs regenerate peripheral nerve regeneration by targeting nerve growth factor. Mol Ther 2015;23(3):423–33. Erratum in: Mol Ther 2015;23(4):790.
CrossRef Google scholar
[56]
Yi S, Yuan Y, Chen Q, Wang X, Gong L, Liu J, et al. Regulation of Schwann cell proliferation and migration by miR-1 targeting brain-derived neurotrophic factor after peripheral nerve injury. Sci Rep 2016;6:29121.
CrossRef Pubmed Google scholar
[57]
Yu B, Zhou S, Wang Y, Qian T, Ding G, Ding F, et al. miR-221 and miR-222 promote Schwann cell proliferation and migration by targeting LASS2 after sciatic nerve injury. J Cell Sci 2012;125(11):2675–83.
CrossRef Pubmed Google scholar
[58]
Zhou S, Gao R, Hu W, Qian T, Wang N, Ding G, et al. miR-9 inhibits Schwann cell migration by targeting Cthrc1 following sciatic nerve injury. J Cell Sci 2014;127(5):967–76.
CrossRef Pubmed Google scholar
[59]
Yao C, Shi X, Zhang Z, Zhou S, Qian T, Wang Y,et al. Hypoxia-induced upregulation of miR-132 promotes Schwann cell migration after sciatic nerve injury by targeting PRKAG3. Mol Neurobiol 2016;53(8):5129–39.
CrossRef Pubmed Google scholar
[60]
Viader A, Chang LW, Fahrner T, Nagarajan R, Milbrandt J. microRNAs modulate Schwann cell response to nerve injury by reinforcing transcriptional silencing of dedifferentiation-related genes. J Neurosci 2011;31(48):17358–69.
CrossRef Pubmed Google scholar
[61]
Verrier JD, Lau P, Hudson L, Murashov AK, Renne R, Notterpek L. Peripheral myelin protein 22 is regulated post-transcriptionally by miRNA-29a. Glia 2009;57(12):1265–79.
CrossRef Pubmed Google scholar
[62]
Li S, Zhang R, Yuan Y, Yi S, Chen Q, Gong L, et al. miR-340 regulates fibrinolysis and axon regrowth following sciatic nerve injury. Mol Neurobiol. Epub 2016 Jun 25.
CrossRef Pubmed Google scholar
[63]
Alizadeh E, Akbarzadeh A, Eslaminejad MB, Barzegar A, Hashemzadeh S, Nejati-Koshki K, et al. Up regulation of liver-enriched transcription factors HNF4a and HNF6 and liver-specific microRNA (miR-122) by inhibition of let-7b in mesenchymal stem cells. Chem Biol Drug Des 2015;85(3):268–79.
CrossRef Pubmed Google scholar
[64]
Davoodian N, Lotfi AS, Soleimani M, Mola SJ, Arjmand S. let-7f microRNA negatively regulates hepatic differentiation of human adipose tissue-derived stem cells. J Physiol Biochem 2014;70(3):781–9.
CrossRef Pubmed Google scholar
[65]
Cui L, Shi Y, Zhou X, Wang X, Wang J, Lan Y, et al. A set of microRNAs mediate direct conversion of human umbilical cord lining-derived mesenchymal stem cells into hepatocytes. Cell Death Dis 2013;4:e918.
CrossRef Pubmed Google scholar
[66]
Doddapaneni R, Chawla YK, Das A, Kalra JK, Ghosh S, Chakraborti A. Overexpression of microRNA-122 enhances in vitro hepatic differentiation of fetal liver-derived stem/progenitor cells. J Cell Biochem 2013;114(7):1575–83.
CrossRef Pubmed Google scholar
[67]
Davoodian N, Lotfi AS, Soleimani M, Mowla SJ. microRNA-122 overexpression promotes hepatic differentiation of human adipose tissue-derived stem cells. J Cell Biochem 2014;115(9):1582–93.
CrossRef Pubmed Google scholar
[68]
Deng X, Qiu R, Wu Y, Li Z, Xie P, Zhang J, et al. Overexpression of miR-122 promotes the hepatic differentiation and maturation of mouse ESCs through a miR-122/FoxA1/HNF4a-positive feedback loop. Liver Int 2014;34(2):281–95.
CrossRef Pubmed Google scholar
[69]
Möbus S, Yang D, Yuan Q, Lüdtke TH, Balakrishnan A, Sgodda M, et al. microRNA-199a-5p inhibition enhances the liver repopulation ability of human embryonic stem cell-derived hepatic cells. J Hepatol 2015;62(1):101–10.
CrossRef Pubmed Google scholar
[70]
Song G, Sharma AD, Roll GR, Ng R, Lee AY, Blelloch RH, et al. microRNAs control hepatocyte proliferation during liver regeneration. Hepatology 2010;51(5):1735–43.
CrossRef Pubmed Google scholar
[71]
Ng R, Song G, Roll GR, Frandsen NM, Willenbring H. A microRNA-21 surge facilitates rapid cyclin D1 translation and cell cycle progression in mouse liver regeneration. J Clin Invest 2012;122(3):1097–108.
CrossRef Pubmed Google scholar
[72]
Bai Y, Yu Z, Luo L, Yi Q J, Xia Y, Zeng. microRNA-21 accelerates hepatocyte proliferation in vitro via PI3K/Akt signaling by targeting PTEN. Biochem Biophys Res Commun 2014;443(3):802–7.
CrossRef Pubmed Google scholar
[73]
Yuan Q, Loya K, Rani B, Möbus S, Balakrishnan A, Lamle J, et al. microRNA-221 overexpression accelerates hepatocyte proliferation during liver regeneration. Hepatology 2013;57(1):299–310.
CrossRef Pubmed Google scholar
[74]
Xu W, Zhang J, Dang Z, Li X, Zhou T, Liu J, et al. Long non-coding RNA URHC regulates cell proliferation and apoptosis via ZAK through the ERK/MAPK signaling pathway in hepatocellular carcinoma. Int J Biol Sci 2014;10(7):664–76.
CrossRef Pubmed Google scholar
[75]
Zhou J, Ju W, Wang D, Wu L, Zhu X, Guo Z, et al. Down-regulation of microRNA-26a promotes mouse hepatocyte proliferation during liver regeneration. PLoS One 2012;7(4):e33577.
CrossRef Pubmed Google scholar
[76]
Cirera-Salinas D, Pauta M, Allen RM, Salerno AG, Ramírez CM, Chamorro-Jorganes A, et al. miR-33 regulates cell proliferation and cell cycle progression. Cell Cycle 2012;11(5):922–33.
CrossRef Pubmed Google scholar
[77]
Pan C, Chen H, Wang L, Yang S, Fu H, Zheng Y, et al. Down-regulation of miR-127 facilitates hepatocyte proliferation during rat liver regeneration. PLoS One 2012;7(6):e39151.
CrossRef Pubmed Google scholar
[78]
Wang S, Wu X, Liu Y, Yuan J, Yang F, Huang J, et al. Long noncoding RNA H19 inhibits the proliferation of fetal liver cells and the Wnt signaling pathway. FEBS Lett 2016;590(4):559–70.
CrossRef Pubmed Google scholar
[79]
Lan X, Yan J, Ren J, Zhong B, Li J, Li Y, et al. A novel long noncoding RNA lnc-HC binds hnRNPA2B1 to regulate expressions of Cyp7a1 and Abca1 in hepatocytic cholesterol metabolism. Hepatology 2016;64(1):58–72.
CrossRef Pubmed Google scholar
[80]
Ding C, Cheng S, Yang Z, Lv Z, Xiao H, Du C, et al. Long non-coding RNA HOTAIR promotes cell migration and invasion via down-regulation of RNA binding motif protein 38 in hepatocellular carcinoma cells. Int J Mol Sci 2014;15(3):4060–76.
CrossRef Pubmed Google scholar
[81]
Su S, Liu J, He K, Zhang M, Feng C, Peng F, et al. Overexpression of the long noncoding RNA TUG1 protects against cold-induced injury of mouse livers by inhibiting apoptosis and inflammation. FEBS J 2016;283(7):1261–74.
CrossRef Pubmed Google scholar
[82]
Banales JM, Sáez E, Úriz M, Sarvide S, Urribarri AD, Splinter P, et al. Up-regulation of microRNA 506 leads to decreased Cl-/HCO3- anion exchanger 2 expression in biliary epithelium of patients with primary biliary cirrhosis. Hepatology 2012;56(2):687–97.
CrossRef Pubmed Google scholar
[83]
Yi R, Poy MN, Stoffel M, Fuchs E. A skin microRNA promotes differentiation by repressing ‘stemness’. Nature 2008;452(7184):225–9.
CrossRef Pubmed Google scholar
[84]
Lena AM, Shalom-Feuerstein R, Rivetti di Val Cervo P, Aberdam D, Knight RA, Melino G, et al. miR-203 represses ‘stemness’ by repressing ΔNp63. Cell Death Differ 2008;15(7):1187–95.
CrossRef Pubmed Google scholar
[85]
Koster MI, Kim S, Mills AA, DeMayo FJ, Roop DR. p63 is the molecular switch for initiation of an epithelial stratification program. Genes Dev 2004;18(2):126–31.
CrossRef Pubmed Google scholar
[86]
Sonkoly E, Wei T, Pavez Loriè E, Suzuki H, Kato M, Törmä H, et al. Protein kinase C-dependent upregulation of miR-203 induces the differentiation of human keratinocytes. J Invest Dermatol 2010;130(1):124–34.
CrossRef Pubmed Google scholar
[87]
Hildebrand J, Rütze M, Walz N, Gallinat S, Wenck H, Deppert W, et al. A comprehensive analysis of microRNA expression during human keratinocyte differentiation in vitro and in vivo. J Invest Dermatol 2011;131(1):20–9.
CrossRef Pubmed Google scholar
[88]
Peng H, Kaplan N, Hamanaka RB, Katsnelson J, Blatt H, Yang W, et al. microRNA-31/factor-inhibiting hypoxia-inducible factor 1 nexus regulates keratinocyte differentiation. Proc Natl Acad Sci USA 2012;109(35):14030–4.
CrossRef Pubmed Google scholar
[89]
Antonini D, Russo MT, De Rosa L, Gorrese M, Del Vecchio L, Missero C. Transcriptional repression of miR-34 family contributes to p63-mediated cell cycle progression in epidermal cells. J Invest Dermatol 2010;130(5):1249–57.
CrossRef Pubmed Google scholar
[90]
Chikh A, Matin RN, Senatore V, Hufbauer M, Lavery D, Raimondi C, et al. iASPP/p63 autoregulatory feedback loop is required for the homeostasis of stratified epithelia. EMBO J 2011;30(20):4261–73.
CrossRef Pubmed Google scholar
[91]
Biswas S, Roy S, Banerjee J, Hussain SRA, Khanna S, Meenakshisundaram G, et al. Hypoxia inducible microRNA 210 attenuates keratinocyte proliferation and impairs closure in a murine model of ischemic wounds. Proc Natl Acad Sci USA 2010;107(15):6976–81.
CrossRef Pubmed Google scholar
[92]
Zhang L, Stokes N, Polak L, Fuchs E. Specific microRNAs are preferentially expressed by skin stem cells to balance self-renewal and early lineage commitment. Cell Stem Cell 2011;8(3):294–308.
CrossRef Pubmed Google scholar
[93]
Xu N, Brodin P, Wei T, Meisgen F, Eidsmo L, Nagy N, et al. miR-125b, a microRNA downregulated in psoriasis, modulates keratinocyte proliferation by targeting FGFR2. J Invest Dermatol 2011;131(7):1521–9.
CrossRef Pubmed Google scholar
[94]
Amelio I, Lena AM, Viticchiè G, Shalom-Feuerstein R, Terrinoni A, Dinsdale D, et al. miR-24 triggers epidermal differentiation by controlling actin adhesion and cell migration. J Cell Biol 2012;199(2):347–63.
CrossRef Pubmed Google scholar
[95]
Yi R, O’Carroll D, Pasolli HA, Zhang Z, Dietrich FS, Tarakhovsky A, et al. Morphogenesis in skin is governed by discrete sets of differentially expressed microRNAs. Nat Genet 2006;38(3):356–62.
CrossRef Pubmed Google scholar
[96]
Yu J, Peng H, Ruan Q, Fatima A, Getsios S, Lavker RM. microRNA-205 promotes keratinocyte migration via the lipid phosphatase SHIP2. FASEB J 2010;24(10):3950–9.
CrossRef Pubmed Google scholar
[97]
Yu J, Ryan DG, Getsios S, Oliveira-Fernandes M, Fatima A, Lavker RM. microRNA-184 antagonizes microRNA-205 to maintain SHIP2 levels in epithelia. Proc Natl Acad Sci USA 2008;105(49):19300–5.
CrossRef Pubmed Google scholar
[98]
Bertero T, Gastaldi C, Bourget-Ponzio I, Imbert V, Loubat A, Selva E, et al. miR-483-3p controls proliferation in wounded epithelial cells. FASEB J 2011;25(9):3092–105.
CrossRef Pubmed Google scholar
[99]
Sundaram GM, Common JE, Gopal FE, Srikanta S, Lakshman K, Lunny DP, et al. ‘See-saw’ expression of microRNA-198 and FSTL1 from a single transcript in wound healing. Nature 2013;495(7439):103–6.
CrossRef Pubmed Google scholar
[100]
Pastar I, Khan AA, Stojadinovic O, Lebrun EA, Medina MC, Brem H, et al. Induction of specific microRNAs inhibits cutaneous wound healing. J Biol Chem 2012;287(35):29324–35.
CrossRef Pubmed Google scholar
[101]
Yang X, Wang J, Guo S, Fan K, Li J, Wang Y, et al. miR-21 promotes keratinocyte migration and re-epithelialization during wound healing. Int J Biol Sci 2011;7(5):685–90.
CrossRef Pubmed Google scholar
[102]
Li D, Li X, Wang A, Meisgen F, Pivarcsi A, Sonkoly E, eet al. microRNA-31 promotes skin wound healing by enhancing keratinocyte proliferation and migration. J Invest Dermatol 2015;135(6):1676–85.
CrossRef Pubmed Google scholar
[103]
Hall JR, Messenger ZJ, Tam HW, Phillips SL, Recio L, Smart RC. Long noncoding RNA lincRNA-p21 is the major mediator of UVB-induced and p53-dependent apoptosis in keratinocytes. Cell Death Dis 2015;6(3):e1700.
CrossRef Pubmed Google scholar
[104]
Suh EJ, Remillard MY, Legesse-Miller A, Johnson EL, Lemons JM, Chapman TR, et al. A microRNA network regulates proliferative timing and extracellular matrix synthesis during cellular quiescence in fibroblasts. Genome Biol 2012;13(12):R121.
CrossRef Pubmed Google scholar
[105]
Zhu H, Li C, Bai W, Su L, Liu J, Li Y, et al. microRNA-21 regulates hTERT via PTEN in hypertrophic scar fibroblasts. PLoS One 2014;9(5):e97114.
CrossRef Pubmed Google scholar
[106]
Polioudakis D, Bhinge AA, Killion PJ, Lee BK, Abell NS, Iyer VR. A Myc-microRNA network promotes exit from quiescence by suppressing the interferon response and cell-cycle arrest genes. Nucleic Acids Res 2013;41(4):2239–54.
CrossRef Pubmed Google scholar
[107]
Zhang J, Liu C, Wan Y, Peng L, Li W, Qiu J. Long non-coding RNA H19 promotes the proliferation of fibroblasts in keloid scarring. Oncol Lett 2016;12(4):2835–9.
CrossRef Pubmed Google scholar
[108]
Mancini M, Saintigny G, Mahé C, Annicchiarico-Petruzzelli M, Melino G, Candi E. microRNA-152 and-181a participate in human dermal fibroblasts senescence acting on cell adhesion and remodeling of the extra-cellular matrix. Aging (Albany, NY) 2012;4(11):843–53.
CrossRef Pubmed Google scholar
[109]
Dimri M, Carroll JD, Cho JH, Dimri GP. microRNA-141 regulates BMI1 expression and induces senescence in human diploid fibroblasts. Cell Cycle 2013;12(22):3537–46.
CrossRef Pubmed Google scholar
[110]
Bonifacio LN, Jarstfer MB. miRNA profile associated with replicative senescence, extended cell culture, and ectopic telomerase expression in human foreskin fibroblasts. PLoS One 2010;5(9):e12519.
CrossRef Pubmed Google scholar
[111]
van Kouwenhove M, Kedde M, Agami R. microRNAregulation by RNA-binding proteins and its implications for cancer. Nat Rev Cancer 2011;11(9):644–56.
CrossRef Pubmed Google scholar
[112]
Madhyastha R, Madhyastha H, Nakajima Y, Omura S, Maruyama M. microRNA signature in diabetic wound healing: promotive role of miR-21 in fibroblast migration. Int Wound J 2012;9(4):355–61.
CrossRef Pubmed Google scholar
[113]
Lu M, Jolly MK, Levine H, Onuchic JN, Ben-Jacob E. microRNA-based regulation of epithelial-hybrid-mesenchymal fate determination. Proc Natl Acad Sci USA 2013;110(45):18144–9.
CrossRef Pubmed Google scholar
[114]
Huleihel L, Ben-Yehudah A, Milosevic J, Yu G, Pandit K, Sakamoto K, et al. let-7d microRNA affects mesenchymal phenotypic properties of lung fibroblasts. Am J Physiol Lung Cell Mol Physiol 2014;306(6):L534–42.
CrossRef Pubmed Google scholar
[115]
Liu Z, Lu C, Cui L, Hu Y, Yu Q, Jiang Y, et al. microRNA-146a modulates TGF-β1-induced phenotypic differentiation in human dermal fibroblasts by targeting SMAD4. Arch Dermatol Res 2012;304(3):195–202.
CrossRef Pubmed Google scholar
[116]
Lan HY. Diverse roles of TGF-β/SMADs in renal fibrosis and inflammation. Int J Biol Sci 2011;7(7):1056–67.
CrossRef Pubmed Google scholar
[117]
Midgley AC, Bowen T, Phillips AO, Steadman R. microRNA-7 inhibition rescues age-associated loss of epidermal growth factor receptor and hyaluronan-dependent differentiation in fibroblasts. Aging Cell 2014;13(2):235–44.
CrossRef Pubmed Google scholar
[118]
Cheng J, Wang Y, Wang D, Wu Y. Identification of collagen 1 as a post-transcriptional target of miR-29b in skin fibroblasts: therapeutic implication for scar reduction. Am J Med Sci 2013;346(2):98–103.
CrossRef Pubmed Google scholar
[119]
Maurer B, Stanczyk J, Jüngel A, Akhmetshina A, Trenkmann M, Brock M, et al. microRNA-29, a key regulator of collagen expression in systemic sclerosis. Arthritis Rheum 2010;62(6):1733–43.
CrossRef Pubmed Google scholar
[120]
Honda N, Jinnin M, Kira-Etoh T, Makino K, Kajihara I, Makino T, et al. miR-150 down-regulation contributes to the constitutive type I collagen overexpression in scleroderma dermal fibroblasts via the induction of integrin β3. Am J Pathol 2013;182(1):206–16.
CrossRef Pubmed Google scholar
[121]
Ciechomska M, O’Reilly S, Suwara M, Bogunia-Kubik K, van Laar JM. miR-29a reduces TIMP-1 production by dermal fibroblasts via targeting TGF-β activated kinase 1 binding protein 1, implications for systemic sclerosis. PLoS One 2014;9(12):e115596.
CrossRef Pubmed Google scholar
[122]
Sing T, Jinnin M, Yamane K, Honda N, Makino K, Kajihara I, et al. microRNA-92a expression in the sera and dermal fibroblasts increases in patients with scleroderma. Rheumatology (Oxford) 2012;51(9):1550–6.
CrossRef Pubmed Google scholar
[123]
Weber M, Baker MB, Moore JP, Searles CD. miR-21 is induced in endothelial cells by shear stress and modulates apoptosis and eNOS activity. Biochem Biophys Res Commun 2010;393(4):643–8.
CrossRef Pubmed Google scholar
[124]
Wang T, Feng Y, Sun H, Zhang L, Hao L, Shi C, et al. miR-21 regulates skin wound healing by targeting multiple aspects of the healing process. Am J Pathol 2012;181(6):1911–20.
CrossRef Pubmed Google scholar
[125]
Zanotti S, Gibertini S, Savadori P, Curcio M, Mantegazza R, Morandi L, et al. P20.4 antithetic role of miR-21 and miR-29 in the progression of fibrosis in Duchenne muscular dystrophy. Neuromuscul Disord 2013;23(9–10):839–40.
CrossRef Google scholar
[126]
Wang Z, Jinnin M, Nakamura K, Harada M, Kudo H, Nakayama W, et al. Long non-coding RNA TSIX is upregulated in scleroderma dermal fibroblasts and controls collagen mRNA stabilization. Exp Dermatol 2016;25(2):131–6.
CrossRef Pubmed Google scholar
[127]
Levy C, Khaled M, Robinson KC, Veguilla RA, Chen PH, Yokoyama S, et al. Lineage-specific transcriptional regulation of DICER by MITF in melanocytes. Cell 2010;141(6):994–1005.
CrossRef Pubmed Google scholar
[128]
Bouillet P, Cory L S, Zhang JM, Strasser A, Adams. Degenerative disorders caused by Bcl-2 deficiency prevented by loss of its BH3-only antagonist Bim. Dev Cell 2001;1(5):645–53.
CrossRef Pubmed Google scholar
[129]
Cesana M, Cacchiarelli D, Legnini I, Santini T, Sthandier O, Chinappi M, et al. A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell 2011;147(2):358–69.
CrossRef Pubmed Google scholar
[130]
Chen J, Mandel EM, Thomson JM, Wu Q, Callis TE, Hammond SM, et al. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet 2006;38(2):228–33.
CrossRef Pubmed Google scholar
[131]
Gong C, Li Z, Ramanujan K, Clay I, Zhang Y, Lemire-Brachat S, et al. A long non-coding RNA, lncMyoD, regulates skeletal muscle differentiation by blocking IMP2-mediated mRNA translation. Dev Cell 2015;34(2):181–91.
CrossRef Pubmed Google scholar
[132]
Wang L, Zhao Y, Bao X, Zhu X, Kwok YK, Sun K, et al. lncRNA Dum interacts with DNMTs to regulate Dppa2 expression during myogenic differentiation and muscle regeneration. Cell Res 2015;25(3):335–50.
CrossRef Pubmed Google scholar
[133]
Mueller AC, Cichewicz MA, Dey BK, Layer R, Reon BJ, Gagan JR, et al. MUNC, a long noncoding RNA that facilitates the function of MyoD in skeletal myogenesis. Mol Cell Biol 2015;35(3):498–513.
CrossRef Pubmed Google scholar
[134]
Zhou L, Sun K, Zhao Y, Zhang S, Wang X, Li Y, et al. Linc-YY1 promotes myogenic differentiation and muscle regeneration through an interaction with the transcription factor YY1. Nat Commun 2015;6:10026.
CrossRef Pubmed Google scholar
[135]
Wang H, Garzon R, Sun H, Ladner KJ, Singh R, Dahlman J, et al. NF-κB-YY1-miR-29 regulatory circuitry in skeletal myogenesis and rhabdomyosarcoma. Cancer Cell 2008;14(5):369–81.
CrossRef Pubmed Google scholar
[136]
Naguibneva I, Ameyar-Zazoua M, Polesskaya A, Ait-Si-Ali S, Groisman R, Souidi M, et al. The microRNA miR-181 targets the homeobox protein Hox-A11 during mammalian myoblast differentiation. Nat Cell Biol 2006;8(3):278–84.
CrossRef Pubmed Google scholar
[137]
Dey BK, Pfeifer K, Dutta A. The H19 long noncoding RNA gives rise to microRNAs miR-675-3p and miR-675-5p to promote skeletal muscle differentiation and regeneration. Genes Dev 2014;28(5):491–501.
CrossRef Pubmed Google scholar
[138]
Sarkar S, Dey BK, Dutta A. miR-322/424 and-503 are induced during muscle differentiation and promote cell cycle quiescence and differentiation by down-regulation of Cdc25A. Mol Biol Cell 2010;21(13):2138–49.
CrossRef Pubmed Google scholar
[139]
Wang G, Wang Y, Xiong Y, Chen X, Ma M, Cai R, et al. Sirt1 AS lncRNA interacts with its mRNA to inhibit muscle formation by attenuating function of miR-34a. Sci Rep 2016;6:21865.
CrossRef Pubmed Google scholar
[140]
Watts R, Johnsen VL, Shearer J, Hittel DS. Myostatin-induced inhibition of the long noncoding RNA Malat1 is associated with decreased myogenesis. Am J Physiol Cell Physiol 2013;304(10):C995–1001.
CrossRef Pubmed Google scholar
[141]
Ballarino M, Cazzella V, D’Andrea D, Grassi L, Bisceglie L, Cipriano A, et al. Novel long noncoding RNAs (lncRNAs) in myogenesis: a miR-31 overlapping lncRNA transcript controls myoblast differentiation. Mol Cell Biol 2015;35(4):728–36.
CrossRef Pubmed Google scholar
[142]
Alexander MS, Casar JC, Motohashi N, Myers JA, Eisenberg I, Gonzalez RT, et al. Regulation of DMD pathology by an ankyrin-encoded miRNA. Skelet Muscle 2011;1(1):27.
CrossRef Pubmed Google scholar
[143]
Liu N, Williams AH, Maxeiner JM, Bezprozvannaya S, Shelton JM, Richardson JA, et al. microRNA-206 promotes skeletal muscle regeneration and delays progression of Duchenne muscular dystrophy in mice. J Clin Invest 2012;122(6):2054–65.
CrossRef Pubmed Google scholar
[144]
Juan AH, Kumar RM, Marx JG, Young RA, Sartorelli V. miR-214-dependent regulation of the polycomb protein Ezh2 in skeletal muscle and embryonic stem cells. Mol Cell 2009;36(1):61–74.
CrossRef Pubmed Google scholar
[145]
Crist CG, Montarras D, Pallafacchina G, Rocancourt D, Cumano A, Conway SJ, et al. Muscle stem cell behavior is modified by microRNA-27 regulation of Pax3 expression. Proc Natl Acad Sci USA 2009;106(32):13383–7.
CrossRef Pubmed Google scholar
[146]
Chen J, Tao Y, Li J, Deng Z, Yan Z, Xiao X, et al. microRNA-1 and microRNA-206 regulate skeletal muscle satellite cell proliferation and differentiation by repressing Pax7. J Cell Biol 2010;190(5):867–79.
CrossRef Pubmed Google scholar
[147]
Crippa S, Cassano M, Messina G, Galli D, Galvez BG, Curk T, et al. miR669a and miR669q prevent skeletal muscle differentiation in postnatal cardiac progenitors. J Cell Biol 2011;193(7):1197–212.
CrossRef Pubmed Google scholar
[148]
Sato T, Yamamoto T, Sehara-Fujisawa A. miR-195/497 induce postnatal quiescence of skeletal muscle stem cells. Nat Commun 2014;5:4597.
CrossRef Pubmed Google scholar
[149]
Zhao Y, Samal E, Srivastava D. Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature 2005;436(7048):214–20.
CrossRef Pubmed Google scholar
[150]
Liu N, Bezprozvannaya S, Williams AH, Qi X, Richardson JA, Bassel-Duby R, et al. microRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart. Genes Dev 2008;22(23):3242–54.
CrossRef Pubmed Google scholar
[151]
Sluijter JP, van Mil A, van Vliet P, Metz CH, Liu J, Doevendans PA, et al. microRNA-1 and-499 regulate differentiation and proliferation in human-derived cardiomyocyte progenitor cells. Arterioscler Thromb Vasc Biol 2010;30(4):859–68.
CrossRef Pubmed Google scholar
[152]
Montgomery RL, Hullinger TG, Semus HM, Dickinson BA, Seto AG, Lynch JM, et al. Therapeutic inhibition of miR-208a improves cardiac function and survival during heart failure. Circulation 2011;124(14):1537–47.
CrossRef Pubmed Google scholar
[153]
Callis TE, Pandya K, Seok HY, Tang RH, Tatsuguchi M, Huang ZP, et al. microRNA-208a is a regulator of cardiac hypertrophy and conduction in mice. J Clin Invest 2009;119(9):2772–86.
CrossRef Pubmed Google scholar
[154]
van Rooij E, Quiat D, Johnson BA, Sutherland LB, Qi X, Richardson JA, et al. A family of microRNAs encoded bymyosin genes governs myosin expression and muscle performance. Dev Cell 2009;17(5):662–73.
CrossRef Pubmed Google scholar
[155]
He S, Liu P, Jian Z, Li J, Zhu Y, Feng Z, et al. miR-138 protects cardiomyocytes from hypoxia-induced apoptosis via MLK3/JNK/c-jun pathway. Biochem Biophys Res Commun 2013;441(4):763–9.
CrossRef Pubmed Google scholar
[156]
Dong S, Cheng Y, Yang J, Li J, Liu X, Wang X, et al. microRNA expression signature and the role of microRNA-21 in the early phase of acute myocardial infarction. J Biol Chem 2009;284(43):29514–25.
CrossRef Pubmed Google scholar
[157]
Aurora AB, Mahmoud AI, Luo X, Johnson BA, van Rooij E, Matsuzaki S, et al. microRNA-214 protects the mouse heart from ischemic injury by controlling Ca2+ overload and cell death. J Clin Invest 2012;122(4):1222–32.
CrossRef Pubmed Google scholar
[158]
Zhang J, Gao C, Meng M, Tang H. Long noncoding RNA MHRT protects cardiomyocytes against H2O2-induced apoptosis. Biomol Ther (Seoul) 2016;24(1):19–24.
CrossRef Pubmed Google scholar
[159]
Thum T, Galuppo P, Wolf C, Fiedler J, Kneitz S, van Laake LW, et al. microRNAs in the human heart: a clue to fetal gene reprogramming in heart failure. Circulation 2007;116(3):258–67.
CrossRef Pubmed Google scholar
[160]
Gurha P,Wang T, Larimore AH, Sassi Y, Abreu-Goodger C, Ramirez MO, et al. microRNA-22 promotes heart failure through coordinate suppression of PPAR/ERR-nuclear hormone receptor transcription. PLoS One 2013;8(9):e75882.
CrossRef Pubmed Google scholar
[161]
Eulalio A, Mano M, Dal Ferro M, Zentilin L, Sinagra G, Zacchigna S, et al. Functional screening identifies miRNAs inducing cardiac regeneration. Nature 2012;492(7429):376–81.
CrossRef Pubmed Google scholar
[162]
Chen J, Huang Z, Seok HY, Ding J, Kataoka M, Zhang Z, et al. miR-17-92 cluster is required for and sufficient to induce cardiomyocyte proliferation in postnatal and adult hearts. Circ Res 2013;112(12):1557–66.
CrossRef Pubmed Google scholar
[163]
Liu L, An X, Li Z, Song Y, Li L, Zuo S, et al. The H19 long noncoding RNA is a novel negative regulator of cardiomyocyte hypertrophy. Cardiovasc Res 2016;111(1):56–65.
CrossRef Pubmed Google scholar
[164]
Wang K, Liu F, Liu C, An T, Zhang J, Zhou LY, et al. The long noncoding RNA NRF regulates programmed necrosis and myocardial injury during ischemia and reperfusion by targeting miR-873. Cell Death Differ 2016;23(8):1394–405.
CrossRef Pubmed Google scholar
[165]
Pan Z, Sun X, Shan H, Wang N, Wang J, Ren J, et al. microRNA-101 inhibited postinfarct cardiac fibrosis and improved left ventricular compliance via the FBJ osteosarcoma oncogene/transforming growth factor-β1 pathway. Circulation 2012;126(7):840–50.
CrossRef Pubmed Google scholar
[166]
JZhao J, Zhang W, Lin M, Wu W, Jiang P, Tou E, et al. MYOSLID is a novel serum response factor-dependent long noncoding RNA that amplifies the vascular smooth muscle differentiation program. Arterioscler Thromb Vasc Bio 2016;36(10):2088–99.
CrossRef Google scholar
[167]
Jayawardena TM, Egemnazarov B, Finch EA, Zhang L, Payne JA, Pandya K, et al. microRNA-mediated in vitro and in vivo direct reprogramming of cardiac fibroblasts to cardiomyocytes. Circ Res 2012;110(11):1465–73.
CrossRef Pubmed Google scholar
[168]
Ito T, Yagi S, Yamakuchi M. microRNA-34a regulation of endothelial senescence. Biochem Biophys Res Commun 2010;398(4):735–40.
CrossRef Pubmed Google scholar
[169]
Qin X, Wang X, Wang Y, Tang Z, Cui Q, Xi J, et al. microRNA-19a mediates the suppressive effect of laminar flow on cyclin D1 expression in human umbilical vein endothelial cells. Proc Natl Acad Sci USA 2010;107(7):3240–4.
CrossRef Pubmed Google scholar
[170]
Magenta A, Cencioni C, Fasanaro P, Zaccagnini G, Greco S, Sarra-Ferraris G, et al. miR-200c is upregulated by oxidative stress and induces endothelial cell apoptosis and senescence via ZEB1 inhibition. Cell Death Differ 2011;18(10):1628–39.
CrossRef Pubmed Google scholar
[171]
Schober A, Nazari-Jahantigh M, Wei Y, Bidzhekov K, Gremse F, Grommes J, et al. microRNA-126-5p promotes endothelial proliferation and limits atherosclerosis by suppressing Dlk1. Nat Med 2014;20(4):368–76.
CrossRef Pubmed Google scholar
[172]
Fasanaro P, D’Alessandra Y, Di Stefano V, Melchionna R, Romani S, Pompilio G, et al. microRNA-210 modulates endothelial cell response to hypoxia and inhibits the receptor tyrosine kinase ligand Ephrin-A3. J Biol Chem 2008;283(23):15878–83.
CrossRef Pubmed Google scholar
[173]
Ghosh G, Subramanian IV, Adhikari N, Zhang X, Joshi HP, Basi D, et al. Hypoxia-induced microRNA-424 expression in human endothelial cells regulates HIF-α isoforms and promotes angiogenesis. J Clin Invest 2010;120(11):4141–54.
CrossRef Pubmed Google scholar
[174]
Menghini R, Casagrande V, Cardellini M, Martelli E, Terrinoni A, Amati F, et al. microRNA 217 modulates endothelial cell senescence via silent information regulator 1. Circulation 2009;120(15):1524–32.
CrossRef Pubmed Google scholar
[175]
Doebele C, Bonauer A, Fischer A, Scholz A, Reiss Y, Urbich C, et al. Members of the microRNA-17-92 cluster exhibit a cell-intrinsic antiangiogenic function in endothelial cells. Blood 2010;115(23):4944–50.
CrossRef Pubmed Google scholar
[176]
Caporali A, Meloni M, Völlenkle C, Bonci D, Sala-Newby GB, Addis R, et al. Deregulation of microRNA-503 contributes to diabetes mellitus-induced impairment of endothelial function and reparative angiogenesis after limb ischemia. Circulation 2011;123(3):282–91.
CrossRef Pubmed Google scholar
[177]
Paul JD, Coulombe KL, Toth PT, Zhang Y, Marsboom G, Bindokas VP, et al. SLIT3-ROBO4 activation promotes vascular network formation in human engineered tissue and angiogenesis in vivo. J Mol Cell Cardiol 2013;64:124–31.
CrossRef Pubmed Google scholar
[178]
Smits M, Mir SE, Nilsson RJ, van der Stoop PM, Niers JM, Marquez VE, et al. Down-regulation of miR-101 in endothelial cells promotes blood vessel formation through reduced repression of EZH2. PLoS One 2011;6(1):e16282.
CrossRef Pubmed Google scholar
[179]
Suárez Y, Fernández-Hernando C, Yu J, Gerber SA, Harrison KD, Pober JS, et al. Dicer-dependent endothelial microRNAs are necessary for postnatal angiogenesis. Proc Natl Acad Sci USA 2008;105(37):14082–7.
CrossRef Pubmed Google scholar
[180]
Nicoli S, Standley C, Walker P, Hurlstone A, Fogarty KE, Lawson ND. microRNA-mediated integration of haemodynamics and Vegf signalling during angiogenesis. Nature 2010;464(7292):1196–200.
CrossRef Pubmed Google scholar
[181]
Jiang C, Fang X, Jiang Y, Shen F, Hu Z, Li X, et al. TNF-α induces vascular endothelial cells apoptosis through overexpressing pregnancy induced noncoding RNA in Kawasaki disease model. Int J Biochem Cell Biol 2016;72:118–24.
CrossRef Pubmed Google scholar
[182]
Weber M, Kim S, Patterson N, Rooney K, Searles CD. miRNA-155 targets myosin light chain kinase and modulates actin cytoskeleton organization in endothelial cells. Am J Physiol Heart Circ Physiol 2014;306(8):H1192–203.
CrossRef Pubmed Google scholar
[183]
Fang Y, Davies PF. Site-specific microRNA-92a regulation of Kruppel-like factors 4 and 2 in atherosusceptible endothelium. Arterioscler Thromb Vasc Biol 2012;32(4):979–87.
CrossRef Pubmed Google scholar
[184]
Ni CW, Qiu H, Jo H. microRNA-663 upregulated by oscillatory shear stress plays a role in inflammatory response of endothelial cells. Am J Physiol Heart Circ Physiol 2011;300(5):H1762–9.
CrossRef Pubmed Google scholar
[185]
Fang Y, Shi C, Manduchi E, Civelek M, Davies PF. microRNA-10a regulation of proinflammatory phenotype in athero-susceptible endothelium in vivo and in vitro. Proc Natl Acad Sci USA 2010;107(30):13450–5.
CrossRef Pubmed Google scholar
[186]
Kim CW, Kumar S, Son DJ, Jang IH, Griendling KK, Jo H. Prevention of abdominal aortic aneurysm by anti-microRNA-712 or anti-microRNA-205 in angiotensin II-infused mice. Arterioscler Thromb Vasc Biol 2014;34(7):1412–21.
CrossRef Pubmed Google scholar
[187]
Cordes KR, Sheehy NT, White MP, Berry EC, Morton SU, Muth AN, et al. miR-145 and miR-143 regulate smooth muscle cell fate and plasticity. Nature 2009;460(7256):705–10.
CrossRef Pubmed Google scholar
[188]
Chan MC, Hilyard AC, Wu C, Davis BN, Hill NS, Lal A, et al. Molecular basis for antagonism between PDGF and the TGFβ family of signalling pathways by control of miR-24 expression. EMBO J 2010;29(3):559–73.
CrossRef Pubmed Google scholar
[189]
Liu X, Cheng Y, Zhang S, Lin Y, Yang J, Zhang C. A necessary role of miR-221 and miR-222 in vascular smooth muscle cell proliferation and neointimal hyperplasia. Circ Res 2009;104(4):476–87.
CrossRef Pubmed Google scholar
[190]
Badi I, Burba I, Ruggeri C, Zeni M F, Bertolotti A, Scopece, et al. microRNA-34a induces vascular smooth muscle cells senescence by SIRT1 downregulation and promotes the expression of age-associated pro-inflammatory secretory factors. J Gerontol A Biol Sci Med Sci 2015;70(11):1304–11.
CrossRef Pubmed Google scholar
[191]
Ji R, Cheng Y, Yue J, Yang J, Liu X, Chen H, et al. microRNA expression signature and antisense-mediated depletion reveal an essential role of microRNA in vascular neointimal lesion formation. Circ Res 2007;100(11):1579–88.
CrossRef Pubmed Google scholar
[192]
Wu G, Cai J, Han ZP Y, Chen C J, Huang, Chen, et al. lincRNA-p21 regulates neointima formation, vascular smooth muscle cell proliferation, apoptosis, and atherosclerosis by enhancing p53 activity. Circulation 2014;130(17):1452–65.
CrossRef Pubmed Google scholar
[193]
Zhang P, Huang A, Ferruzzi J, Mecham RP, Starcher BC, Tellides G, et al. Inhibition of microRNA-29 enhances elastin levels in cells haploinsufficient for elastin and in bioengineered vessels─brief report. Arterioscler Thromb Vasc Biol 2012;32(3):756–9.
CrossRef Pubmed Google scholar
[194]
Bhattacharyya A, Lin S, Sandig M, Mequanint K. Regulation of vascular smooth muscle cell phenotype in three-dimensional coculture system by Jagged1-selective Notch3 signaling. Tissue Eng Part A 2014;20(7–8):1175–87.
CrossRef Pubmed Google scholar
[195]
Yamaguchi S, Yamahara K, Homma K, Suzuki S, Fujii S, Morizane R, et al. The role of microRNA-145 in human embryonic stem cell differentiation into vascular cells. Atherosclerosis 2011;219(2):468–74.
CrossRef Pubmed Google scholar
[196]
Luo Z, Wen G, Wang G, Pu X, Ye S, Xu Q, et al. microRNA-200C and-150 play an important role in endothelial cell differentiation and vasculogenesis by targeting transcription repressor ZEB1. Stem Cells 2013;31(9):1749–62.
CrossRef Pubmed Google scholar
[197]
Xie C, Huang H, Sun X, Guo Y, Hamblin M, Ritchie RP, et al. microRNA-1 regulates smooth muscle cell differentiation by repressing Kruppel-like factor 4. Stem Cells Dev 2011;20(2):205–10.
CrossRef Pubmed Google scholar
[198]
Huang H, Xie C, Sun X, Ritchie RP, Zhang J, Chen Y. miR-10a contributes to retinoid acid-induced smooth muscle cell differentiation. J Biol Chem 2010;285(13):9383–9.
CrossRef Pubmed Google scholar
[199]
Xiao Q, Luo Z, Pepe AE, Margariti A, Zeng L, Xu Q. Embryonic stem cell differentiation into smooth muscle cells is mediated by Nox4-produced H2O2. Am J Physiol Cell Physiol 2009;296(4):C711–23.
CrossRef Pubmed Google scholar
[200]
Spinetti G, Fortunato O, Caporali A, Shantikumar S, Marchetti M, Meloni M, et al. microRNA-15a and microRNA-16 impair human circulating proangiogenic cell functions and are increased in the proangiogenic cells and serum of patients with critical limb ischemia. Circ Res 2013;112(2):335–46.
CrossRef Pubmed Google scholar
[201]
Han F, Huo Y, Huang C, Chen C, Ye J. microRNA-30b promotes axon outgrowth of retinal ganglion cells by inhibiting Semaphorin3A expression. Brain Res 2015;1611:65–73.
CrossRef Pubmed Google scholar
[202]
Gu X, Ding F, Yang Y, Liu J. Construction of tissue engineered nerve grafts and their application in peripheral nerve regeneration. Prog Neurobiol 2011;93(2):204–30.
CrossRef Pubmed Google scholar
[203]
Nebrig M, Neuhaus P, Pascher A. Advances in the management of the explanted donor liver. Nat Rev Gastroenterol Hepatol 2014;11(8):489–96.
CrossRef Pubmed Google scholar
[204]
Dutkowski P, Linecker M, DeOliveira ML, Müllhaupt B, Clavien PA. Challenges to liver transplantation and strategies to improve outcomes. Gastroenterology 2015;148(2):307–23.
CrossRef Pubmed Google scholar
[205]
Uygun BE, Yarmush ML. Engineered liver for transplantation. Curr Opin Biotechnol 2013;24(5):893–9.
CrossRef Pubmed Google scholar
[206]
McDaniel K, Herrera L, Zhou T, Francis H, Han Y, Levine P, et al. The functional role of microRNAs in alcoholic liver injury. J Cell Mol Med 2014;18(2):197–207.
CrossRef Pubmed Google scholar
[207]
Padgett KA, Lan RY, Leung PC, Lleo A, Dawson K, Pfeiff J, et al. Primary biliary cirrhosis is associated with altered hepatic microRNA expression. J Autoimmun 2009;32(3–4):246–53.
CrossRef Pubmed Google scholar
[208]
Szabo G, Bala S. MicroRNAs in liver disease. Nat Rev Gastroenterol Hepatol 2013;10(9):542–52.
CrossRef Pubmed Google scholar
[209]
Janssen HL, Reesink HW, Lawitz EJ, Zeuzem S, Rodriguez-Torres M, Patel K, et al. Treatment of HCV infection by targeting microRNA. N Engl J Med 2013;368(18):1685–94.
CrossRef Pubmed Google scholar
[210]
Finch ML, Marquardt JU, Yeoh GC, Callus BA. Regulation of microRNAs and their role in liver development, regeneration and disease. Int J Biochem Cell Biol 2014;54:288–303.
CrossRef Pubmed Google scholar
[211]
Chen X, Murad M, Cui Y, Yao L, Venugopal SK, Dawson K, et al. miRNA regulation of liver growth after 50% partial hepatectomy and small size grafts in rats. Transplantation 2011;91(3):293–9.
CrossRef Pubmed Google scholar
[212]
Davoodian N, Lotfi AS, Soleimani M, Mowla SJ. microRNA-122 overexpression promotes hepatic differentiation of human adipose tissue-derived stem cells. J Cell Biochem 2014;115(9):1582–93.
CrossRef Pubmed Google scholar
[213]
Kasuya J, Tanishita K. Microporous membrane-based liver tissue engineering for the reconstruction of three-dimensional functional liver tissues in vitro. Biomatter 2012;2(4):290–5.
CrossRef Pubmed Google scholar
[214]
Katsuda T, Kojima N, Ochiya T, Sakai Y. Biliary epithelial cells play an essential role in the reconstruction of hepatic tissue with a functional bile ductular network. Tissue Eng Part A 2013;19(21–22):2402–11.
CrossRef Pubmed Google scholar
[215]
O’Hara SP, Gradilone SA, Masyuk TV, Tabibian JH, LaRusso NF. microRNAs in cholangiopathies. Curr Pathobiol Rep 2014;2(3):133–42.
CrossRef Pubmed Google scholar
[216]
Hu C, Huang F, Deng G, Nie W, Huang W, Zeng X. miR-31 promotes oncogenesis in intrahepatic cholangiocarcinoma cells via the direct suppression of RASA1. Exp Ther Med 2013;6(5):1265–70.
CrossRef Pubmed Google scholar
[217]
Wang Q, Tang H, Yin S, Dong C. Downregulation of microRNA-138 enhances the proliferation, migration and invasion of cholangiocarcinoma cells through the upregulation of RhoC/p-ERK/MMP-2/MMP-9. Oncol Rep 2013;29(5):2046–52.
Pubmed
[218]
Glaser S, Meng F, Han Y, Onori P, Chow BK, Francis H, et al. Secretin stimulates biliary cell proliferation by regulating expression of microRNA 125b and microRNA let7a in mice. Gastroenterology 2014;146(7):1795–808.
[219]
van Rooij E, Purcell AL, Levin AA. Developing microRNA therapeutics. Circ Res 2012;110(3):496–507.
CrossRef Pubmed Google scholar
[220]
Miller KJ, Brown DA, Ibrahim MM, Ramchal TD, Levinson H. microRNAs in skin tissue engineering. Adv Drug Deliv Rev 2015;88:16–36.
CrossRef Pubmed Google scholar
[221]
Yi R, Fuchs E. microRNA-mediated control in the skin. Cell Death Differ 2010;17(2):229–35.
CrossRef Pubmed Google scholar
[222]
Mills AA, Zheng B, Wang X, Vogel H, Roop DR, Bradley A. p63 is a p53 homologue required for limb and epidermal morphogenesis. Nature 1999;398(6729):708–13.
CrossRef Pubmed Google scholar
[223]
Yang A, Schweitzer R, Sun D, Kaghad M, Walker N, Bronson RT, et al. p63 is essential for regenerative proliferation in limb, craniofacial and epithelial development. Nature 1999;398(6729):714–8.
CrossRef Pubmed Google scholar
[224]
Senoo M, Pinto F, Crum CP, McKeon F. p63 is essential for the proliferative potential of stem cells in stratified epithelia. Cell 2007;129(3):523–36.
CrossRef Pubmed Google scholar
[225]
Bertero T, Gastaldi C, Bourget-Ponzio I, Mari B, Meneguzzi G, Barbry P, et al. CDC25A targeting by miR-483-3p decreases CCND-CDK4/6 assembly and contributes to cell cycle arrest. Cell Death Differ 2013;20(6):800–11.
CrossRef Pubmed Google scholar
[226]
Faraonio R, Salerno P, Passaro F, Sedia C, Iaccio A, Bellelli R, et al. A set of miRNAs participates in the cellular senescence program in human diploid fibroblasts. Cell Death Differ 2012;19(4):713–21.
CrossRef Pubmed Google scholar
[227]
Rehder J, Souto LRM, Issa CMBM, Puzzi MB. Model of human epidermis reconstructed in vitro with keratinocytes and melanocytes on dead de-epidermized human dermis. Sao Paulo Med J 2004;122(1):22–5.
CrossRef Pubmed Google scholar
[228]
Müller DW, Bosserhoff AK. Integrin β3 expression is regulated by let-7a miRNA in malignant melanoma. Oncogene 2008;27(52):6698–706.
CrossRef Pubmed Google scholar
[229]
Schultz J, Lorenz P, Gross G, Ibrahim S, Kunz M. microRNA let-7b targets important cell cycle molecules in malignant melanoma cells and interferes with anchorage-independent growth. Cell Res 2008;18(5):549–57.
CrossRef Pubmed Google scholar
[230]
Müller DW, Rehli M, Bosserhoff AK. miRNA expression profiling in melanocytes and melanoma cell lines reveals miRNAs associated with formation and progression of malignant melanoma. J Invest Dermatol 2009;129(7):1740–51.
CrossRef Pubmed Google scholar
[231]
Segura MF, Hanniford D, Menendez S, Reavie L, Zou X, Alvarez-Diaz S, et al. Aberrant miR-182 expression promotes melanoma metastasis by repressing FOXO3 and microphthalmia-associated transcription factor. Proc Natl Acad Sci USA 2009;106(6):1814–9.
CrossRef Pubmed Google scholar
[232]
Bemis LT, Chen R, Amato CM, Classen EH, Robinson SE, Coffey DG, et al. microRNA-137 targets microphthalmia-associated transcription factor in melanoma cell lines. Cancer Res 2008;68(5):1362–8.
CrossRef Pubmed Google scholar
[233]
Goswami S, Tarapore RS, Teslaa JJ, Grinblat Y, Setaluri V, Spiegelman VS. microRNA-340-mediated degradation of microphthalmia-associated transcription factor mRNA is inhibited by the coding region determinant-binding protein. J Biol Chem 2010;285(27):20532–40. Retraction in: Goswami S, Tarapore RS, Teslaa JJ, Grinblat Y, Setaluri V, Spiegelman VS. J Biol Chem 2014;289(17):11859.
CrossRef Pubmed Google scholar
[234]
Quattrocelli M, Sampaolesi M. The mesmiRizing complexity of microRNAs for striated muscle tissue engineering. Adv Drug Deliv Rev 2015;88:37–52.
CrossRef Pubmed Google scholar
[235]
Cezar CA, Mooney DJ. Biomaterial-based delivery for skeletal muscle repair. Adv Drug Deliv Rev 2015;84:188–97.
CrossRef Pubmed Google scholar
[236]
Pascual-Gil S, Garbayo E, Díaz-Herráez P, Prosper F, Blanco-Prieto MJ. Heart regeneration after myocardial infarction using synthetic biomaterials. J Control Release 2015;203:23–38.
CrossRef Pubmed Google scholar
[237]
[] Luo W, Nie Q, Zhang X. microRNAs involved in skeletal muscle differentiation. J Genet Genomics 2013;40(3):107–16.
CrossRef Google scholar
[238]
Williams AH, Valdez G, Moresi V, Qi X, McAnally J, Elliott JL, et al. microRNA-206 delays ALS progression and promotes regeneration of neuromuscular synapses in mice. Science 2009;326(5959):1549–54.
CrossRef Pubmed Google scholar
[239]
Chaturvedi P, Tyagi SC. Epigenetic mechanisms underlying cardiac degeneration and regeneration. Int J Cardiol 2014;173(1):1–11.
CrossRef Pubmed Google scholar
[240]
Gori M, Trombetta M, Santini D, Rainer A. Tissue engineering and microRNAs: future perspectives in regenerative medicine. Expert Opin Biol Ther 2015;15(11):1601–22.
CrossRef Pubmed Google scholar
[241]
Caputo M, Saif J, Rajakaruna C, Brooks M, Angelini GD, Emanueli C. microRNAs in vascular tissue engineering and post-ischemic neovascularization. Adv Drug Deliv Rev 2015;88:78–91.
CrossRef Pubmed Google scholar
[242]
Pober JS, Sessa WC. Evolving functions of endothelial cells in inflammation. Nat Rev Immunol 2007;7(10):803–15.
CrossRef Pubmed Google scholar
[243]
Yang W, Yang D, Na S, Sandusky G, Zhang Q, Zhao G. Dicer is required for embryonic angiogenesis during mouse development. J Biol Chem 2005;280(10):9330–5.
CrossRef Pubmed Google scholar
[244]
Kane NM, Howard L, Descamps B, Meloni M, McClure J, Lu R, et al. Role of microRNAs 99b, 181a, and 181b in the differentiation of human embryonic stem cells to vascular endothelial cells. Stem Cells 2012;30(4):643–54.
CrossRef Pubmed Google scholar
[245]
Zhang L, Zhou Y, Zhu J, Xu Q. An updated view on stem cell differentiation into smooth muscle cells. Vascul Pharmacol 2012;56(5–6):280–7.
CrossRef Pubmed Google scholar
[246]
Owens GK, Kumar MS, Wamhoff BR. Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol Rev 2004;84(3):767–801.
CrossRef Pubmed Google scholar
[247]
Lacolley P, Regnault V, Nicoletti A, Li Z, Michel JB. The vascular smooth muscle cell in arterial pathology: a cell that can take on multiple roles. Cardiovasc Res 2012;95(2):194–204.
CrossRef Pubmed Google scholar
[248]
Peng B, Chen Y, Leong KW. microRNA delivery for regenerative medicine. Adv Drug Deliv Rev 2015;88:108–22.
CrossRef Pubmed Google scholar
[249]
Dufait I, Liechtenstein T, Lanna A, Bricogne C, Laranga R, Padella A, et al. Retroviral and lentiviral vectors for the induction of immunological tolerance. Scientifica (Cairo) 2012;2012:694137.
CrossRef Google scholar
[250]
McBride JL, Behrstock SP, Chen EY, Jakel RJ, Siegel I, Svendsen CN, et al. Human neural stem cell transplants improve motor function in a rat model of Huntington’s disease. J Comp Neurol 2004;475(2):211–9.
CrossRef Pubmed Google scholar
[251]
Englund U, Fricker-Gates RA, Lundberg C, Björklund A, Wictorin K. Transplantation of human neural progenitor cells into the neonatal rat brain: extensive migration and differentiation with long-distance axonal projections. Exp Neurol 2002;173(1):1–21.
CrossRef Pubmed Google scholar
[252]
Dugas JC, Cuellar TL, Scholze A, Ason B, Ibrahim A, Emery B, et al. Dicer1 and miR-219 are required for normal oligodendrocyte differentiation and myelination. Neuron 2010;65(5):597–611.
CrossRef Pubmed Google scholar
[253]
McTigue DM, Wei P, Stokes BT. Proliferation of NG2-positive cells and altered oligodendrocyte numbers in the contused rat spinal cord. J Neurosci 2001;21(10):3392–400.
CrossRef Pubmed Google scholar
[254]
Beavers KR, Nelson CE, Duvall CL. miRNA inhibition in tissue engineering and regenerative medicine. Adv Drug Deliv Rev 2015;88:123–37.
CrossRef Pubmed Google scholar
[255]
Lin E, Nemunaitis J. Oncolytic viral therapies. Cancer Gene Ther 2004;11(10):643–64.
CrossRef Pubmed Google scholar
[256]
Nguyen LH, Diao HJ, Chew SY. microRNAs and their potential therapeutic applications in neural tissue engineering. Adv Drug Deliv Rev 2015;88:53–66.
CrossRef Pubmed Google scholar
[257]
Yau WW, Rujitanaroj PO, Lam L, Chew SY. Directing stem cell fate by controlled RNA interference. Biomaterials 2012;33(9):2608–28.
CrossRef Pubmed Google scholar
[258]
Muthiah M, Park IK, Cho CS. Nanoparticle-mediated delivery of therapeutic genes: focus on miRNA therapeutics. Expert Opin Drug Deliv 2013;10(9):1259–73.
CrossRef Pubmed Google scholar
[259]
Torrecilla J, Rodríguez-Gascón A, Solinís MÁ, del Pozo-Rodríguez A. Lipid nanoparticles as carriers for RNAi against viral infections: current status and future perspectives. Biomed Res Int 2014;2014:161794.
CrossRef Google scholar
[260]
Dalby B, Cates S, Harris A, Ohki EC, Tilkins ML, Price PJ, et al. Advanced transfection with Lipofectamine 2000 reagent: primary neurons, siRNA, and high-throughput applications. Methods 2004;33(2):95–103.
CrossRef Pubmed Google scholar
[261]
Nguyen LT, Atobe K, Barichello JM, Ishida T, Kiwada H. Complex formation with plasmid DNA increases the cytotoxicity of cationic liposomes. Biol Pharm Bull 2007;30(4):751–7.
CrossRef Pubmed Google scholar
[262]
Chen Y, Gao D, Huang L. In vivo delivery of miRNAs for cancer therapy: challenges and strategies. Adv Drug Deliv Rev 2015;81:128–41.
CrossRef Pubmed Google scholar
[263]
Boussif O, Lezoualc’h F, Zanta MA, Mergny MD, Scherman D, Demeneix B, et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci USA 1995;92(16):7297–301.
CrossRef Pubmed Google scholar
[264]
Park TG, Jeong JH, Kim SW. Current status of polymeric gene delivery systems. Adv Drug Deliv Rev 2006;58(4):467–86.
CrossRef Pubmed Google scholar
[265]
Akinc A, Thomas M, Klibanov AM, Langer R. Exploring polyethylenimine-mediated DNA transfection and the proton sponge hypothesis. J Gene Med 2005;7(5):657–63.
CrossRef Pubmed Google scholar
[266]
Davis S, Lollo B, Freier S, Esau C. Improved targeting of miRNA with antisense oligonucleotides. Nucleic Acids Res 2006;34(8):2294–304.
CrossRef Pubmed Google scholar
[267]
Chew SY, Mi R, Hoke A, Leong KW. The effect of the alignment of electrospun fibrous scaffolds on Schwann cell maturation. Biomaterials 2008;29(6):653–61.
CrossRef Pubmed Google scholar
[268]
Zhang B, Pan X, Cobb GP, Anderson TA. microRNAs as oncogenes and tumor suppressors. Dev Biol 2007;302(1):1–12.
CrossRef Pubmed Google scholar
[269]
Gillies JK, Lorimer IA. Regulation of p27Kip1 by miRNA 221/222 in glioblastoma. Cell Cycle 2007;6(16):2005–9.
CrossRef Pubmed Google scholar
[270]
Chen Q, Wei C, Wang Z, Sun M. Long non-coding RNAs in anti-cancer drug resistance. Oncotarget. Epub 2016Oct 4.
Pubmed

Acknowledgements

This work was supported by the National Basic Research Program of China (973 Program, 2014CB542202), the National Hi-Tech Research and Development Program of China (863 Program, 2012AA020502), the National Natural Science Foundation of China (81130080 and 31300879), and the Key University Science Research Project of Jiangsu Province (16KJA310005). It was also a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Compliance with ethics guidelines

Shiying Li, Tianmei Qian, Xinghui Wang, Jie Liu, and Xiaosong Gu declare that they have no conflict of interest or financial conflicts to disclose.
Funding
 

RIGHTS & PERMISSIONS

2017 2017 THE AUTHORS. Published by Elsevier LTD on behalf of the Chinese Academy of Engineering and Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
AI Summary AI Mindmap
PDF(1142 KB)

Accesses

Citations

Detail

Sections
Recommended

/