Tethering of Gly-Arg-Gly-Asp-Ser-Pro-Lys Peptides on Mg-Doped Hydroxyapatite

Alessandro Pistone, Daniela Iannazzo, Claudia Espro, Signorino Galvagno, Anna Tampieri, Monica Montesi, Silvia Panseri, Monica Sandri

Engineering ›› 2017, Vol. 3 ›› Issue (1) : 55-59.

PDF(1209 KB)
PDF(1209 KB)
Engineering ›› 2017, Vol. 3 ›› Issue (1) : 55-59. DOI: 10.1016/J.ENG.2017.01.007
Research
Research

Tethering of Gly-Arg-Gly-Asp-Ser-Pro-Lys Peptides on Mg-Doped Hydroxyapatite

Author information +
History +

Abstract

Stem cell homing, namely the recruitment of mesenchymal stem cells (MSCs) to injured tissues, is highly effective for bone regeneration in vivo. In order to explore whether the incorporation of mimetic peptide sequences on magnesium-doped (Mg-doped) hydroxyapatite (HA) may regulate the homing of MSCs, and thus induce cell migration to a specific site, we covalently functionalized MgHA disks with two chemotactic/haptotactic factors: either the fibronectin fragment III1-C human (FF III1-C), or the peptide sequence Gly-Arg-Gly-Asp-Ser-Pro-Lys, a fibronectin analog that is able to bind to integrin transmembrane receptors. Preliminary biological evaluation of MSC viability, analyzed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test, suggested that stem cells migrate to the MgHA disks in response to the grafted haptotaxis stimuli.

Keywords

Mg-doped hydroxyapatite / Mesenchymal stem cells / Chemotactic/haptotactic factors / Bone tissue engineering

Cite this article

Download citation ▾
Alessandro Pistone, Daniela Iannazzo, Claudia Espro, Signorino Galvagno, Anna Tampieri, Monica Montesi, Silvia Panseri, Monica Sandri. Tethering of Gly-Arg-Gly-Asp-Ser-Pro-Lys Peptides on Mg-Doped Hydroxyapatite. Engineering, 2017, 3(1): 55‒59 https://doi.org/10.1016/J.ENG.2017.01.007

References

[1]
Laurencin CT, Khan Y. Regenerative Engineering. Sci Transl Med  2012;4(160):160ed9.
CrossRef Google scholar
[2]
Amini AR, Laurencin CT, Nukavarapu SP. Bone tissue engineering: recent advances and challenges. Crit Rev Biomed Eng  2012;40(5):363–408.
CrossRef Pubmed Google scholar
[3]
Dawson JI, Kanczler J, Tare R, Kassem M, Oreffo RO. Concise review: bridging the gap: bone regeneration using skeletal stem cell-based strategies—where are we now? Stem Cells 2014;32(1):35–44.
CrossRef Pubmed Google scholar
[4]
Wang P, Zhao L, Liu J, Weir MD, Zhou X, Xu HH. Bone tissue engineering via nanostructured calcium phosphate biomaterials and stem cells. Bone Res 2014;2:14017.
CrossRef Pubmed Google scholar
[5]
Gong T, Xie J, Liao J, Zhang T, Lin S, Lin Y. Nanomaterials and bone regeneration. Bone Res 2015;3:15029.
CrossRef Pubmed Google scholar
[6]
Iannazzo D, Pistone A, Espro C, Galvagno S. Drug delivery strategies for bone tissue regeneration. In: Panseri S, Taraballi F, Cunha C, editors Biomimetic approaches for tissue healing. Foster City: OMICS Group eBooks; 2015. p. 1–39.
[7]
Panseri S, Cunha C, D’Alessandro T, Sandri M, Russo A, Giavaresi G, et al. Magnetic hydroxyapatite bone substitutes to enhance tissue regeneration: evaluation in vitro using osteoblast-like cells and in vivo in a bone defect. PLoS One 2012;7(6):e38710.
CrossRef Pubmed Google scholar
[8]
Cunha C, Panseri S, Iannazzo D, Piperno A, Pistone A, Fazio M, et al. Hybrid composites made of multiwalled carbon nanotubes functionalized with Fe3O4 nanoparticles for tissue engineering applications. Nanotechnology 2012;23(46):465102.
CrossRef Pubmed Google scholar
[9]
Wang DX, He Y, Bi L, Qu ZH, Zou JW, Pan Z, et al. Enhancing the bioactivity of Poly(lactic-co-glycolic acid) scaffold with a nano-hydroxyapatite coating for the treatment of segmental bone defect in a rabbit model. Int J Nanomedicine 2013;8: 1855–65.
CrossRef Pubmed Google scholar
[10]
Yoshikawa H, Myoui A. Bone tissue engineering with porous hydroxyapatite ceramics. J Artif Organs 2005;8(3):131–6.
CrossRef Pubmed Google scholar
[11]
Bellucci D, Sola A, Gazzarri M, Chiellini F, Cannillo V. A new hydroxyapatite-based biocomposite for bone replacement. Mater Sci Eng C Mater Biol Appl 2013;33(3):1091–101.
CrossRef Pubmed Google scholar
[12]
Pistone A, Iannazzo D, Panseri S, Montesi M, Tampieri A, Galvagno S. Hydroxyapatite-magnetite-MWCNT nanocomposite as a biocompatible multifunctional drug delivery system for bone tissue engineering. Nanotechnology 2014;25(42):425701.
CrossRef Pubmed Google scholar
[13]
Laurencin D, Almora-Barrios N, de Leeuw NH, Gervais C, Bonhomme C, Mauri F, et al. Magnesium incorporation into hydroxyapatite. Biomaterials 2011;32(7):1826–37.
CrossRef Pubmed Google scholar
[14]
Landi E, Logroscino G, Proietti L, Tampieri A, Sandri M, Sprio S. Biomimetic Mg-substituted hydroxyapatite: from synthesis to in vivo behaviour. J Mater Sci Mater Med 2008;19(1):239–47.
CrossRef Pubmed Google scholar
[15]
Barthes J, Özçelik H, Hindié M, Ndreu-Halili A, Hasan A, Vrana NE. Cell microenvironment engineering and monitoring for tissue engineering and regenerative medicine: the recent advances. Biomed Res Int 2014;2014:921905.
CrossRef Google scholar
[16]
Schantz JT, Chim H, Whiteman M. Cell guidance in tissue engineering: SDF-1 mediates site-directed homing of mesenchymal stem cells within three-dimensional polycaprolactone scaffolds. Tissue Eng 2007;13(11):2615–24.
CrossRef Pubmed Google scholar
[17]
Vo TN, Kasper FK, Mikos AG. Strategies for controlled delivery of growth factors and cells for bone regeneration. Adv Drug Deliv Rev 2012;64(12):1292–309.
CrossRef Pubmed Google scholar
[18]
García AJ, Reyes CD. Bio-adhesive surfaces to promote osteoblast differentiation and bone formation. J Dent Res 2005;84(5):407–13.
CrossRef Pubmed Google scholar
[19]
Yun YR, Pham BH, Yoo YR, Lee S, Kim HW, Jang JH. Engineering of self-assembled fibronectin matrix protein and its effects on mesenchymal stem cells. Int J Mol Sci 2015;16(8):19645–56.
CrossRef Pubmed Google scholar
[20]
Liu Y, Peterson DA, Kimura H, Schubert D. Mechanism of cellular 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction. J Neurochem 1997;69(2):581–93.
CrossRef Pubmed Google scholar

Compliance with ethics guidelines

Alessandro Pistone, Daniela Iannazzo, Claudia Espro, Signorino Galvagno, Anna Tampieri, Monica Montesi, Silvia Panseri, and Monica Sandri declare that they have no conflict of interest or financial conflicts to disclose.
Funding
 

RIGHTS & PERMISSIONS

2017 2017 THE AUTHORS. Published by Elsevier LTD on behalf of the Chinese Academy of Engineering and Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
AI Summary AI Mindmap
PDF(1209 KB)

Accesses

Citations

Detail

Sections
Recommended

/