
Improved Oxygen Evolution Kinetics and Surface States Passivation of Ni-Bi Co-Catalyst for a Hematite Photoanode
Ke Dang, Tuo Wang, Chengcheng Li, Jijie Zhang, Shanshan Liu, Jinlong Gong
Engineering ›› 2017, Vol. 3 ›› Issue (3) : 285-289.
Improved Oxygen Evolution Kinetics and Surface States Passivation of Ni-Bi Co-Catalyst for a Hematite Photoanode
This paper describes the combinational surface kinetics enhancement and surface states passivation of nickel-borate (Ni-Bi) co-catalyst for a hematite (Fe2O3) photoanode. The Ni-Bi-modified Fe2O3 photoanode exhibits a cathodic onset potential shift of 230 mV and a 2.3-fold enhancement of the photocurrent at 1.23 V, versus the reversible hydrogen electrode (RHE). The borate (Bi) in the Ni-Bi film promotes the release of protons for the oxygen evolution reaction (OER).
Nickel-borate / Hematite / Oxygen evolution reaction / Co-catalyst
[1] |
Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972;238(5358):37–8.
CrossRef
Google scholar
|
[2] |
Nellist MR, Laskowski FAL, Lin F, Mills TJ, Boettcher SW. Semiconductor-electrocatalyst interfaces: Theory, experiment, and applications in photoelectrochemical water splitting. Acc Chem Res 2016;49(4):733–40.
CrossRef
Google scholar
|
[3] |
Gao M, Sheng W, Zhuang Z, Fang Q, Gu S, Jiang J, et al.Efficient water oxidation using nanostructured α-nickel-hydroxide as an electrocatalyst. J Am Chem Soc 2014;136(19):7077–84.
CrossRef
Google scholar
|
[4] |
Zhong DK, Cornuz M, Sivula K, Gratzel M, Gamelin DR. Photo-assisted electrodeposition of cobalt-phosphate (Co-Pi) catalyst on hematite photoanodes for solar water oxidation. Energy Environ Sci 2011;4(5):1759–64.
CrossRef
Google scholar
|
[5] |
Seabold JA, Choi KS. Effect of a cobalt-based oxygen evolution catalyst on the stability and the selectivity of photo-oxidation reactions of a WO3 photoanode. Chem Mater 2011;23(5):1105–12.
CrossRef
Google scholar
|
[6] |
Dincă M, Surendranath Y, Nocera DG. Nickel-borate oxygen-evolving catalyst that functions under benign conditions. Proc Natl Acad Sci USA 2010;107(23):10337–41.
CrossRef
Google scholar
|
[7] |
Bediako DK, Lassalle-Kaiser B, Surendranath Y, Yano J, Yachandra VK, Nocera DG. Structure-activity correlations in a nickel-borate oxygen evolution catalyst. J Am Chem Soc 2012;134(15):6801–9.
CrossRef
Google scholar
|
[8] |
Choi SK, Choi W, Park H. Solar water oxidation using nickel-borate coupled BiVO4 photoelectrodes. Phys Chem Chem Phys 2013;15(17):6499–507.
CrossRef
Google scholar
|
[9] |
Gan J, Lu X, Rajeeva BB, Menz R, Tong Y, Zheng Y. Efficient photoelectrochemical water oxidation over hydrogen-reduced nanoporous BiVO4 with Ni-Bi electrocatalyst. Chem Electro Chem 2015;2(9):1385–95.
|
[10] |
Zhang P, Wang T, Chang X, Zhang L, Gong J. Synergistic cocatalytic effect of carbon nanodots and Co3O4 nanoclusters for the photoelectrochemical water oxidation on hematite. Angew Chem Int Ed 2016;128(19):5945–9.
CrossRef
Google scholar
|
[11] |
Li C, Hisatomi T, Watanabe O, Nakabayashi M, Shibata N, Domen K, et al.Positive onset potential and stability of Cu2O-based photocathodes in water splitting by atomic layer deposition of a Ga2O3 buffer layer. Energy Environ Sci 2015;8(5):1493–500.
CrossRef
Google scholar
|
[12] |
Berglund SP, Abdi FF, Bogdanoff P, Chemseddine A, Friedrich D, van de Krol R. Comprehensive evaluation of CuBi2O4 as a photocathode material for photoelectrochemical water splitting. Chem Mater 2016;28(12):4231–42.
CrossRef
Google scholar
|
[13] |
Kumagai H, Minegishi T, Sato N, Yamada T, Kubota J, Domen K. Efficient solar hydrogen production from neutral electrolytes using surface-modified Cu(In,Ga)Se2 photocathodes. J Mater Chem A 2015;3(16):8300–7.
CrossRef
Google scholar
|
[14] |
Wang Z, Liu G, Ding C, Chen Z, Zhang F, Shi J, et al.Synergetic effect of conjugated Ni(OH)2/IrO2 cocatalyst on titanium-doped hematite photoanode for solar water splitting. J Phys Chem C 2015;119(34):19607–12.
CrossRef
Google scholar
|
[15] |
Kim JY, Youn DH, Kang K, Lee JS. Highly conformal deposition of an ultrathin FeOOH layer on a hematite nanostructure for efficient solar water splitting. Angew Chem 2016;128(36):11012–6.
CrossRef
Google scholar
|
[16] |
Ahmed AY, Ahmed MG, Kandiel TA. Modification of hematite photoanode with cobalt based oxygen evolution catalyst via bifunctional linker approach for efficient water splitting. J Phys Chem C 2016;120(41):23415–20.
CrossRef
Google scholar
|
[17] |
Malara F, Minguzzi A, Marelli M, Morandi S, Psaro R, Dal Santo V, et al.α-Fe2O3/NiOOH: An effective heterostructure for photoelectrochemical water oxidation. ACS Catal 2015;5(9):5292–300.
CrossRef
Google scholar
|
[18] |
Klahr B, Hamann T. Water oxidation on hematite photoelectrodes: Insight into the nature of surface states through in situ spectroelectrochemistry. J Phys Chem C 2014;118(19):10393–9.
CrossRef
Google scholar
|
[19] |
Yatom N, Neufeld O, Toroker MC. Toward settling the debate on the role of Fe2O3 surface states for water splitting. J Phys Chem C 2015;119(44):24789–95.
CrossRef
Google scholar
|
[20] |
Le Formal F, Tetreault N, Cornuz M, Moehl T, Gratzel M, Sivula K. Passivating surface states on water splitting hematite photoanodes with alumina overlayers. Chem Sci 2011;2(4):737–43.
CrossRef
Google scholar
|
[21] |
Du C, Yang X, Mayer MT, Hoyt H, Xie J, McMahon G, et al.Hematite-based water splitting with low turn-on voltages. Angew Chem Int Ed 2013;52(48):12692–5.
CrossRef
Google scholar
|
[22] |
Kim TW, Choi KS. Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science 2014;343(6174):990–4.
CrossRef
Google scholar
|
[23] |
Luo Z, Li C, Liu S, Wang T, Gong J. Gradient doping of phosphorus in Fe2O3 nanoarray photoanodes for enhanced charge separation. Chem Sci 2016;2017(8):91–100.
|
[24] |
Chang X, Wang T, Zhang P, Zhang J, Li A, Gong J. Enhanced surface reaction kinetics and charge separation of p-n heterojunction Co3O4/BiVO4 photoanodes. J Am Chem Soc 2015;137(26):8356–9.
CrossRef
Google scholar
|
[25] |
Xu Y, Wang X, Chen H, Kuang D, Su C. Toward high performance photoelectrochemical water oxidation: Combined effects of ultrafine cobalt iron oxide nanoparticle. Adv Funct Mater 2016;26(24):4414–21.
CrossRef
Google scholar
|
[26] |
Zhang M, Luo W, Zhang N, Li Z, Yu T, Zou Z. A facile strategy to passivate surface states on the undoped hematite photoanode for water splitting. Electrochem Commun 2012;23:41–3.
CrossRef
Google scholar
|
[27] |
Han L, Dong S, Wang E. Transition-metal (Co, Ni, and Fe)-based electrocatalysts for the water oxidation reaction. Adv Mater 2016;28(42):9266–91.
CrossRef
Google scholar
|
[28] |
Ye KH, Wang Z, Gu J, Xiao S, Yuan Y, Zhu Y, et al.Carbon quantum dots as a visible light sensitizer to significantly increase the solar water splitting performance of bismuth vanadate photoanodes. Energy Environ Sci 2017;10(3):772–9.
CrossRef
Google scholar
|
[29] |
Trześniewski BJ, Diaz-Morales O, Vermaas DA, Longo A, Bras W, Koper MTM, et al.In situ observation of active oxygen species in Fe-containing Ni-based oxygen evolution catalysts: The effect of pH on electrochemical activity. J Am Chem Soc 2015;137(48):15112–21.
CrossRef
Google scholar
|
[30] |
Dionigi F, Strasser P. NiFe-based (oxy)hydroxide catalysts for oxygen evolution reaction in non-acidic electrolytes. Adv Energy Mater 2016;6(23):1600621–40.
CrossRef
Google scholar
|
[31] |
Pham HH, Cheng MJ, Frei H, Wang LW. Surface proton hopping and fast-kinetics pathway of water oxidation on Co3O4 (001) surface. ACS Catal 2016;6(8):5610–7.
CrossRef
Google scholar
|
[32] |
Friebel D, Louie MW, Bajdich M, Sanwald KE, Cai Y, Wise AM, et al. Identification of highly active Fe sites in (Ni,Fe)OOH for electrocatalytic water splitting. J Am Chem Soc 2015;137(3):1305–13.
CrossRef
Google scholar
|
[33] |
Koper MTM. Theory of the transition from sequential to concerted electrochemical proton-electron transfer. Phys Chem Chem Phys 2013;15(5):1399–407.
CrossRef
Google scholar
|
/
〈 |
|
〉 |