
Development of CO2Selective Poly(Ethylene Oxide)-Based Membranes: From Laboratory to Pilot Plant Scale
Torsten Brinkmann, Jelena Lillepärg, Heiko Notzke, Jan Pohlmann, Sergey Shishatskiy, Jan Wind, Thorsten Wolff
Engineering ›› 2017, Vol. 3 ›› Issue (4) : 485-493.
Development of CO2Selective Poly(Ethylene Oxide)-Based Membranes: From Laboratory to Pilot Plant Scale
Membrane gas separation is one of the most promising technologies for the separation of carbon dioxide (CO2) from various gas streams. One application of this technology is the treatment of flue gases from combustion processes for the purpose of carbon capture and storage. For this application, poly(ethylene oxide)-containing block copolymers such as Pebax® or PolyActive™ polymer are well suited. The thin-film composite membrane that is considered in this overview employs PolyActive™ polymer as a selective layer material. The membrane shows excellent CO2 permeances of up to 4 m3(STP)·(m2·h·bar)−1 (1 bar= 105 Pa) at a carbon dioxide/nitrogen (CO2/N2) selectivity exceeding 55 at ambient temperature. The membrane can be manufactured reproducibly on a pilot scale and mounted into flat-sheet membrane modules of different designs. The operating performance of these modules can be accurately predicted by specifically developed simulation tools, which employ single-gas permeation data as the only experimental input. The performance of membranes and modules was investigated in different pilot plant studies, in which flue gas and biogas were used as the feed gas streams. The investigated processes showed a stable separation performance, indicating the applicability of PolyActive™ polymer as a membrane material for industrial-scale gas processing.
Gas permeation / Thin-film composite membrane / CO2 separation / Carbon capture and storage / Biogas processing / Membrane modules
[1] |
Sholl DS, Lively RP. Seven chemical separations to change the world. Nature 2016;532(7600):435–7.
CrossRef
Google scholar
|
[2] |
United Nations. Paris Agreement [Internet].Paris: United Nations Framework Convention on Climate Change. c2014 [cited 2017 Feb 14]. Available from: http://unfccc.int/meetings/paris_nov_2015/meeting/8926.php.
|
[3] |
Hawking S. This is the most dangerous time for our planet [Internet].London: Guardian News and Media Limited or its affiliated companies. c2017 [cited 2017 Feb 14]. Available from: https://www.theguardian.com/commentisfree/2016/dec/01/stephen-hawking-dangerous-time-planet-inequality.
|
[4] |
Notz RJ, Tönnies I, McCann N, Scheffknecht G, Hasse H. CO2 capture for fossil fuel fired power plants. Chemie Ingenieur Technik 2010;82(10):1639–53.German.
CrossRef
Google scholar
|
[5] |
Leung DYC, Caramanna G, Maroto-Valer MM. An overview of current status of carbon dioxide capture and storage technologies. Renew Sustain Energy Rev 2014;39:426–43.
CrossRef
Google scholar
|
[6] |
Huang Y, Merkel TC, Baker RW. Pressure ratio and its impact on membrane gas separation processes. J Membr Sci 2014;463:33–40.
CrossRef
Google scholar
|
[7] |
NETL. 2016 CO2 capture technology project review meeting [Internet]. [cited 2017 Jul 17]. Available from: http://www.netl.doe.gov/events/conference-proceedings/2016/2016-co2-capture-technology-project-review-meeting#t3.
|
[8] |
Yampol’Skii YP, Shishatskii SM, Shantorovich VP, Antipov EM, Kuzmin NN, Rykov SV, et al.Transport characteristics and other physicochemical properties of aged poly(1-(trimethylsilyl)-1-propyne). J Appl Polym Sci 1993;48(11):1935–44.
CrossRef
Google scholar
|
[9] |
Harms S, Rätzke K, Faupel F, Chaukura N, Budd PM, Egger W, et al.Aging and free volume in a polymer of intrinsic microporosity (PIM-1). J Adhes 2012;88(7):608–19.
CrossRef
Google scholar
|
[10] |
Khan MM, Filiz V, Bengtson G, Shishatskiy S, Rahman MM, Lillepaerg J, et al.Enhanced gas permeability by fabricating mixed matrix membranes of functionalized multiwalled carbon nanotubes and polymers of intrinsic microporosity (PIM). J Membr Sci 2013;436:109–20. Erratum in: J Membr Sci 2015;476:610–1.
CrossRef
Google scholar
|
[11] |
Kim TJ, Vrålstad H, Sandru M, Hägg MB. Separation performance of PVAm composite membrane for CO2 capture at various pH levels. J Membr Sci 2013;428:218–24.
CrossRef
Google scholar
|
[12] |
Hussain A, Hägg MB. A feasibility study of CO2 capture from flue gas by a facilitated transport membrane. J Membr Sci 2010;359(1–2):140–8.
CrossRef
Google scholar
|
[13] |
Liu J, Hou X, Park HB, Lin H. High-performance polymers for membrane CO2/N2 separation. Chemistry 2016;22(45):15980–90.
CrossRef
Google scholar
|
[14] |
Kuehne DL, Friedlander SK. Selective transport of sulfur dioxide through polymer membranes. 1. Polyacrylate and cellulose triacetate single-layer membranes. Ind Eng Chem Prod Res Dev 1980;19(4):609–16.
CrossRef
Google scholar
|
[15] |
Kawakami M, Iwanaga H, Hara Y, Iwamoto M, Kagawa S. Gas permeabilities of cellulose nitrate/poly(ethylene glycol) blend membranes. J Appl Polym Sci 1982;27(7):2387–93.
CrossRef
Google scholar
|
[16] |
Saha S, Chakma A. Separation of CO2 from gas mixtures with liquid membranes. Energy Convers Manage 1992;33(5–8):413–20.
CrossRef
Google scholar
|
[17] |
Chakma A. Separation of CO2 and SO2 from flue gas streams by liquid membranes. Energy Convers Manage 1995;36(6–9):405–10.
CrossRef
Google scholar
|
[18] |
Okamoto K, Umeo N, Okamyo S, Tanaka K, Kita H. Selective permeation of carbon dioxide over nitrogen through polyethyleneoxide-containing polyimide membranes. Chem Lett 1993;22(2):225–8.
CrossRef
Google scholar
|
[19] |
Bondar VI, Freeman BD, Pinnau I. Gas transport properties of poly(ether-b-amide) segmented block copolymers. J Polym Sci Pol Phys 2000;38(15):2051–62.
CrossRef
Google scholar
|
[20] |
Metz S, van de Ven WJC, Mulder MHV, Wessling M. Mixed gas water vapor/N2 transport in poly(ethylene oxide) poly(butylene terephthalate) block copolymers. J Membr Sci 2005;266(1–2):51–61.
CrossRef
Google scholar
|
[21] |
Lin H, Freeman BD. Materials selection guidelines for membranes that remove CO2 from gas mixtures. J Mol Struct 2005;739(1–3):57–74.
CrossRef
Google scholar
|
[22] |
Patel NP, Spontak RJ. Mesoblends of polyether block copolymers with poly(ethylene glycol). Macromolecules 2004;37(4):1394–402.
CrossRef
Google scholar
|
[23] |
Car A, Stropnik C, Yave W, Peinemann KV. PEG modified poly(amide-b-ethylene oxide) membranes for CO2 separation. J Membr Sci 2008;307(1):88–95.
CrossRef
Google scholar
|
[24] |
Lillepärg J, Georgopanos P, Shishatskiy S. Stability of blended polymeric materials for CO2 separation. J Membr Sci 2014;467:269–78.
CrossRef
Google scholar
|
[25] |
White LS, Wei X, Pande S, Wu T, Merkel TC. Extended flue gas trials with a membrane-based pilot plant at a one-ton-per-day carbon capture rate. J Membr Sci 2015;496:48–57.
CrossRef
Google scholar
|
[26] |
Merkel TC, Zhou M, Baker RW. Carbon dioxide capture with membranes at an IGCC power plant. J Membr Sci 2012;389:441–50.
CrossRef
Google scholar
|
[27] |
Car A, Stropnik C, Yave W, Peinemann KV. Tailor-made polymeric membranes based on segmented block copolymers for CO2 separation. Adv Funct Mater 2008;18(18):2815–23.
CrossRef
Google scholar
|
[28] |
Yave W, Car A, Wind J, Peinemann KV. Nanometric thin film membranes manufactured on square meter scale: Ultra-thin films for CO2 capture. Nanotechnology 2010;21(39):395301.
CrossRef
Google scholar
|
[29] |
Yave W, Car A, Funari SS, Nunes SP, Peinemann KV. CO2-philic polymer membrane with extremely high separation performance. Macromolecules 2010;43(1):326–33.
CrossRef
Google scholar
|
[30] |
Rahman MM, Lillepärg J, Neumann S, Shishatskiy S, Abetz V. A thermodynamic study of CO2 sorption and thermal transition of PolyActive™ under elevated pressure. Polymer 2016;93:132–41.
CrossRef
Google scholar
|
[31] |
Yave W, Car A. Polymeric membranes for post-combustion carbon dioxide (CO2) capture. In: Basile A, Nunes SP, editors Advanced membrane science and technology for sustainable energy and environmental applications. Cambridge: Woodhead Publishing; 2011. p. 160–83.
CrossRef
Google scholar
|
[32] |
Car A, Yave W, Peinemann KV, Stropnik C. Tailoring polymeric membrane based on segmented block copolymers for CO2 separation. In: Yampolskii Yu, Freeman B, editors Membrane gas separation.Chichester: John Wiley & Sons, Ltd.; 2010. p. 227–53.
CrossRef
Google scholar
|
[33] |
Lillepärg J, Pohlman J, Rahman M, Brinkmann T, Shishatskiy S, Wind J. Membranmaterialentwicklung für CO2-Abtrennungsverfahren. Chemie Ingenieur Technik 2016;88(9):1273.German.
CrossRef
Google scholar
|
[34] |
Scharnagl N, Buschatz H. Polyacrylonitrile (PAN) membranes for ultra- and microfiltration. Desalination 2001;139(1–3):191–8.
CrossRef
Google scholar
|
[35] |
Abetz V, Brinkmann T, Dijkstra M, Ebert K, Fritsch D, Ohlrogge K, et al.Developments in membrane research: From material via process design to industrial application. Adv Eng Mater 2006;8(5):328–58.
CrossRef
Google scholar
|
[36] |
Brinkmann T, Naderipour C, Pohlmann J, Wind J, Wolff T, Esche E, et al.Pilot scale investigations of the removal of carbon dioxide from hydrocarbon gas streams using poly(ethylene oxide)-poly(butylene terephthalate) PolyActiveTM thin film composite membranes. J Membr Sci 2015;489:237–47.
CrossRef
Google scholar
|
[37] |
Pohlmann J, Bram M, Wilkner K, Brinkmann T. Pilot scale separation of CO2 from power plant flue gases by membrane technology. Int J Greenh Gas Control 2016;53:56–64.
CrossRef
Google scholar
|
[38] |
Echt WI, Dortmundt DD, Malino HM. Fundamentals of membrane technology for CO2 removal from natural gas. In: Proceedings of the 52nd Laurance Reid Gas Conditioning Conference fundamentals manual; 2002 Feb 24–27; Norman, OK, USA. Norman: University of Oklahoma; 2002. p. 1–25.
|
[39] |
Baker RW. Membrane technology and applications.3rd ed. Chichester: John Wiley & Sons, Ltd.; 2012.
CrossRef
Google scholar
|
[40] |
Ohlrogge K, Wind J, Brinkmann T. Membranes for recovery of volatile organic compounds. In: Drioli E, Giorno L, editors Comprehensive membrane science and engineering .Oxford: Academic Press; 2010. p. 213–42.
CrossRef
Google scholar
|
[41] |
Brinkmann T, Pohlmann J, Withalm U, Wind J, Wolff T. Theoretical and experimental investigations of flat sheet membrane module types for high capacity gas separation applications. Chemie Ingenieur Technik 2013;85(8):1210–20.
CrossRef
Google scholar
|
[42] |
Notzke H, Brinkmann T, Wolff T, Zhao L, Luhr S. inventors; Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung GmbH, Forschungszentrum Jülich GmbH, assignee. Membranmodul . European Patent EP3072575 A1 .2015 Mar 25. German.
|
[43] |
Bird RB, Stewart WE, Lightfoot EN. Transport phenomena.New York: John Wiley & Sons, Ltd.; 1960.
|
[44] |
Marriott J, Sørensen E. A general approach to modelling membrane modules. Chem Eng Sci 2003;58(22):4975–90.
CrossRef
Google scholar
|
[45] |
Wolff T, Brinkmann T, Kerner M, Hindersin S. CO2 enrichment from flue gas for the cultivation of algae—A field test. Greenh Gas Sci Technol 2015;5(5):505–12.
CrossRef
Google scholar
|
[46] |
Efficient gas separation with SEPURAN® [Internet]. Essen: Evonik Industries AG. c2010 [cited 2017 Feb 13]. Available from: http://www.sepuran.com/product/sepuran/en/Pages/gas-separation.aspx.
|
[47] |
Shishatskiy S, Nistor C, Popa M, Nunes SP, Peinemann KV. Polyimide asymmetric membranes for hydrogen separation: Influence of formation conditions on gas transport properties. Adv Eng Mater 2006;8(5):390–7.
CrossRef
Google scholar
|
[48] |
Stünkel S, Drescher A, Wind J, Brinkmann T, Repke JU, Wozny G. Carbon dioxide capture for the oxidative coupling of methane process—A case study in mini-plant scale. Chem Eng Res Des 2011;89(8):1261–70.
CrossRef
Google scholar
|
[49] |
Franz A. Wasserstoff erzeugung mit Mikroalgen: Prozessstudien zur Dynamik von Wachstum, Produkterzeugung und Produktgasbehandlung [dissertation].Karlsruhe: Karlsruher Institut für Technologie; 2015. German.
|
/
〈 |
|
〉 |