
Advances in Cost-Efficient Thin-Film Photovoltaics Based on Cu(In,Ga)Se2
Michael Powalla, Stefan Paetel, Dimitrios Hariskos, Roland Wuerz, Friedrich Kessler, Peter Lechner, Wiltraud Wischmann, Theresa Magorian Friedlmeier
Engineering ›› 2017, Vol. 3 ›› Issue (4) : 445-451.
Advances in Cost-Efficient Thin-Film Photovoltaics Based on Cu(In,Ga)Se2
In this article, we discuss the leading thin-film photovoltaic (PV) technology based on the Cu(In,Ga)Se2 (CIGS) compound semiconductor. This contribution includes a general comparison with the conventional Si-wafer-based PV technology and discusses the basics of the CIGS technology as well as advances in world-record-level conversion efficiency, production, applications, stability, and future developments with respect to a flexible product. Once in large-scale mass production, the CIGS technology has the highest potential of all PV technologies for cost-efficient clean energy generation.
Thin-film photovoltaics / Solar energy / Flexible / Cu(InGa)Se2
[1] |
White paper for CIGS thin film solar cell technology [Internet]. Stuttgart: Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg; 2015 [cited 2017 Mar 1] Available from: http://cigs-pv.net/wortpresse/wp-content/uploads/2015/12/CIGS-WhitePaper.pdf.
|
[2] |
Mayer JN, Philipps S, Hussein NS, Schlegl T, Senkpiel C. Current and future cost of photovoltaics: Long-term scenarios for market development, system prices and LCOE of utility-scale PV systems [Internet]. Freiburg: Fraunhofer Institute for Solar Energy Systems; 2015 [cited 2017 Mar 1] Available from: https://www.agora-energiewende.de/fileadmin/Projekte/2014/Kosten-Photovoltaik-2050/AgoraEnergiewende_Current_and_Future_Cost_of_PV_Feb2015_web.pdf.
|
[3] |
De Wild-Scholten MJ. Energy payback time and carbon footprint of commercial photovoltaic systems. Sol Energ Mat Sol C 2013;119:296–305.
CrossRef
Google scholar
|
[4] |
Wuerz R, Eicke A, Kessler F, Rogin P, Yazdani-Assl O. Alternative sodium sources for Cu(In,Ga)Se2 thin-film solar cells on flexible substrates. Thin Solid Films 2011;519(21):7268–71.
CrossRef
Google scholar
|
[5] |
Niki S, Contreras M, Repins I, Powalla M, Kushiya K, Ishizuka S, et al.CIGS absorbers and processes. Prog Photovoltaics 2010;18(6):453–66.
CrossRef
Google scholar
|
[6] |
Kato T. Cu(In,Ga)(Se,S)2 solar cell research in Solar Frontier: Progress and current status. Jpn J Appl Phys 2017;56(4S):04CA02.
CrossRef
Google scholar
|
[7] |
Magorian Friedlmeier T, Jackson P, Bauer A, Hariskos D, Kiowski O, Menner R, et al.High-efficiency Cu(In,Ga)Se2 solar cells. Thin Solid Films 2017;633:13–7.
CrossRef
Google scholar
|
[8] |
Powalla M, Jackson P, Witte W, Hariskos D, Paetel S, Tschamber C, et al.High-efficiency Cu(In,Ga)Se2 cells and modules. Sol Energ Mat Sol C 2013;119:51–8.
CrossRef
Google scholar
|
[9] |
Jackson P, Würz RRau UMattheis J, Kurth M, Schlötzer T, et al.High quality baseline for high efficiency, Cu(In1−x,Gax)Se2 solar cells. Prog Photovoltaics 2007;15(6):507–19.
CrossRef
Google scholar
|
[10] |
Jackson P, W Rü Drz E, Hariskos W, Lotter M, Witte, Powalla. Effects of heavy alkali elements in Cu(In,Ga)Se2 solar cells with efficiencies up to 22.6%. Phys Status Solidi–R 2016;10(8):583–6.
CrossRef
Google scholar
|
[11] |
Siebentritt S. What limits the efficiency of chalcopyrite solar cells? Sol Energ Mat Sol C 2011;95(6):1471–6.
CrossRef
Google scholar
|
[12] |
Multicrystalline silicon solar cell with 21.9 percent efficiency: Fraunhofer ISE again holds world record [Internet]. Freiburg: Fraunhofer Institute for Solar Energy Systems; 2017 Feb 20 [cited 2017 Mar 1]. Available from: https://www.ise.fraunhofer.de/en/press-media/press-releases/2017/multicrystalline-silicon-solar-cell-with-21-point-9-percent-efficiency-fraunhofer-ise-again-holds-world-record.html.
|
[13] |
Reinhard P, Bissig B, Pianezzi F, Avancini E, Hagendorfer H, Keller D, et al.Features of KF and NaF postdeposition treatments of Cu(In,Ga)Se2 absorbers for high efficiency thin film solar cells. Chem Mater 2015;27(16):5755–64.
CrossRef
Google scholar
|
[14] |
Magorian Friedlmeier T, Jackson P, Bauer A, Hariskos D, Kiowski O, Würz R, et al.Improved Photocurrent in Cu(In,Ga)Se2 solar cells: From 20.8% to 21.7% efficiency with CdS buffer and 21.0% Cd-free. IEEE J Photovolt 2015;5(5):1487–91.
CrossRef
Google scholar
|
[15] |
Magorian Friedlmeier T, Jackson P, Kreikemeyer-Lorenzo D, Hauschild D, Kiowski O, Hariskos D, et al.A closer look at initial CdS growth on high-efficiency Cu(In,Ga)Se2 absorbers using surface-sensitive methods. In: Proceedings of the 43rd IEEE Photovoltaic Specialists Conference; 2016 Jun 5–10; Portland, OR, USA. Piscataway: The Institute of Electrical and Electronics Engineers, Inc.; 2016. p. 457–61.
|
[16] |
Hariskos D, Fuchs B, Menner R, Naghavi N, Hubert C, Lincot D, et al.The Zn(S,O,OH)/ZnMgO buffer in thin-film Cu(In,Ga)(Se,S)2-based solar cells part II: Magnetron sputtering of the ZnMgO buffer layer for in-line co-evaporated Cu(In,Ga)Se2 solar cells. Prog Photovoltaics 2009;17(7):479–88.
CrossRef
Google scholar
|
[17] |
Kamada R, Yagioka T, Adachi S, Handa A, Tai KF, Kato T, et al.New world record Cu(In,Ga)(Se,S)2 thin film solar cell efficiency beyond 22%. In: Proceedings of the 43rd IEEE Photovoltaic Specialists Conference; 2016 Jun 5–10; Portland, OR, USA. Piscataway: The Institute of Electrical and Electronics Engineers, Inc.; 2016. p. 1287–91.
|
[18] |
“Best research-cell efficiencies” chart [Internet]. Golden: National Renewable Energy Laboratory; 2016 Dec 2 [cited 2017 Mar 1]. Available from: https://www.nrel.gov/pv/assets/images/efficiency_chart.jpg.
|
[19] |
Solar Frontier’s CIS thin-film submodule achieves highest efficiency world record of 19.2% [Internet]. Tokyo: Solar Frontier K.K.; 2017 Feb 27 [cited 2017 Mar 1]. Available from: http://www.solar-frontier.com/eng/news/2017/0227_press.html.
|
[20] |
New world record efficiency for a CIGS PV module from Solibro [Internet]. Bitterfeld-Wolfen: Solibro GmbH; 2017 Jan [cited 2017 Mar 1]. Available from: http://solibro-solar.com/en/news-downloads/news/.
|
[21] |
Chirilă A, Reinhard P, Pianezzi F, Bloesch P, Uhl AR, Fella C, et al.Potassium-induced surface modification of Cu(In,Ga)Se2thin films for high-efficiency solar cells. Nat Mater 2013;12(12):1107–11.
CrossRef
Pubmed
Google scholar
|
[22] |
Würz R, Eicke A, Frankenfeld M, Kessler F, Powalla M, Rogin P, et al.CIGS thin-film solar cells on steel substrates. Thin Solid Films 2009;517(7):2415–8.
CrossRef
Google scholar
|
[23] |
Würz R, Eicke A, Kessler F, Paetel S, Efimenko S, Schlegel C. CIGS thin-film solar cells and modules on enamelled steel substrates. Sol Energ Mat Sol C 2012;100:132–7.
CrossRef
Google scholar
|
[24] |
Rudmann D, Brémaud D, Zogg H, Tiwari AN. Na incorporation into Cu(In,Ga)Se2for high-efficiency flexible solar cells on polymer foils. J Appl Phys 2005;97(8):084903.
CrossRef
Google scholar
|
[25] |
Powalla M, Witte W, Jackson P, Paetel S, Lotter E, Würz R, et al.CIGS cells and modules with high efficiency on glass and flexible substrates. IEEE J Photovolt 2014;4(1):440–6.
CrossRef
Google scholar
|
/
〈 |
|
〉 |