Mapping Sea Level Rise Behavior in an Estuarine Delta System: A Case Study along the Shanghai Coast

H.Q. Cheng, J.Y. Chen, Z.J. Chen, R.L. Ruan, G.Q. Xu, G. Zeng, J.R. Zhu, Z.J. Dai, X.Y. Chen, S.H. Gu, X.L. Zhang, H.M. Wang

Engineering ›› 2018, Vol. 4 ›› Issue (1) : 156-163.

PDF(3616 KB)
PDF(3616 KB)
Engineering ›› 2018, Vol. 4 ›› Issue (1) : 156-163. DOI: 10.1016/j.eng.2018.02.002
Research
Research

Mapping Sea Level Rise Behavior in an Estuarine Delta System: A Case Study along the Shanghai Coast

Author information +
History +

Abstract

Sea level rise (SLR) is a major projected threat of climate change that is expected to affect developing coastal cities located in estuarine delta regions. Shanghai is one such city, being located in the Yangtze River Delta (YRD). It is difficult, however, for decision-makers to implement adaptation due to the uncertain causes, magnitudes, and timings of SLR behaviors. This paper attempts to map the causes and magnitudes of SLR behaviors on a decadal scale. We analyze the tidal level records from 11 tidal gauge stations and the corresponding bathymetry measurements around these stations since 1921. We identify three new SLR behaviors along the Shanghai coast due to anthropogenic geomorphologic changes (AGCs), besides the well-known eustatic sea level rise (ESLR), tectonic subsidence (TS), and urban land subsidence (ULS). The first new behavior is regional sea level rise (RSLR), which occurs as a result of land reclamation and deep waterway regulation. The second is regional sea level fall (RSLF), which occurs because the channel bed is eroded due to sediment supply decline in the river catchment. The last SLR behavior is local tidal datum rise (LTDR). Thus, we project that the magnitude of SLR for the Shanghai coast ranges from 10 cm to 16 cm from 2011 to 2030. Clarifying SLR behaviors is important to aid local decision-makers in planning structural and non-structural measures to combat escalating flood damage costs in an estuarine delta system; this field is full of future challenges.

Graphical abstract

Keywords

Sea level rise behavior / Anthropogenic geomorphologic change / Local tidal datum / Flood management / Adaptation

Cite this article

Download citation ▾
H.Q. Cheng, J.Y. Chen, Z.J. Chen, R.L. Ruan, G.Q. Xu, G. Zeng, J.R. Zhu, Z.J. Dai, X.Y. Chen, S.H. Gu, X.L. Zhang, H.M. Wang. Mapping Sea Level Rise Behavior in an Estuarine Delta System: A Case Study along the Shanghai Coast. Engineering, 2018, 4(1): 156‒163 https://doi.org/10.1016/j.eng.2018.02.002

References

[1]
R.E. Flick, K. Knuuti, S.K. Gill. Matching mean sea level rise projections to local elevation datums. J Waterw Port Coast Ocean Eng,139 (2) (2013), pp. 142-146
[2]
J.R. Houston. Methodology for combining coastal design-flood levels and sea-level rise projections. J Waterw Port Coast Ocean Eng,139 (5) (2013), pp. 341-345
[3]
R.K. Pachauri. The IPCC Fifth Assessment Report and its implications for human health and urban areas. C. Marolla (Ed.), Climate health risks in megacities:Sustainable management and strategic planning, CRC Press, Boca Raton (2016), pp. 7-12. DOI: 10.1201/9781315367323-3
[4]
S. Wu, Y. Luo, H. Wang, J. Gao, C. Li. Climate change impacts and adaptation in China: Current situation and future prospect. Chin Sci Bull,61 (10) (2016), pp. 1042-1054 [Chinese].
[5]
H. Cheng, Z. Chen, R. Ruan, G. Xu, G. Zeng, J. Zhu, et al. Sea level change and city safety—The Shanghai as an example. Quat Sci,35 (2) (2015), pp. 363-373 [Chinese].
[6]
C.C. Hay, E. Morrow, R.E. Kopp, J.X. Mitrovica. Probabilistic reanalysis of twentieth-century sea-level rise. Nature,517 (7535) (2015), pp. 481-484. DOI: 10.1038/nature14093
[7]
I.D. Haigh, T. Wahl, E.J. Rohling, R.M. Price, C.B. Pattiaratchi, F.M. Calafat, et al. Timescales for detecting a significant acceleration in sea level rise. Nat Commun,5 (2014), p. 3635
[8]
C.D. Rye, A.C.N. Garabato, P.R. Holland, M.P. Meredith, A.J.G. Nurser, C.W. Hughes, et al. Rapid sea-level rise along the antarctic margins in response to increased glacial discharge. Nat Geosci,7 (10) (2014), pp. 732-735. DOI: 10.1038/ngeo2230
[9]
T. Wahl, F.M. Calafat, M.E. Luther. Rapid changes in the seasonal sea level cycle along the US gulf coast from the late 20th century. Geophys Res Lett,41 (2) (2014), pp. 491-498
[10]
G.A. Meehl, W.M. Washington, W.D. Collins, J.M. Arblaster, A. Hu, L.E. Buja, et al. How much more global warming and sea level rise?. Science,307 (5716) (2005), pp. 1769-1772. DOI: 10.1126/science.1106663
[11]
J.A. Church, N.J. White. A 20th century acceleration in global sea-level rise. Geophys Res Lett,33 (1) (2006), p. L01602
[12]
A. Levermann, P.U. Clark, B. Marzeion, G.A. Milne, D. Pollard, V. Radic, et al. The multimillennial sea-level commitment of global warming. Proc Natl Acad Sci USA,110 (34) (2013), pp. 13745-13750. DOI: 10.1073/pnas.1219414110
[13]
M. Shaeffer, W. Hare, S. Rahmstorf, M. Vermeer. Long-term sea-level rise implied by 1.5 °C and 2 °C warming levels. Nat Clim Change,2 (12) (2012), pp. 867-870
[14]
R.J. Nicholls, A. Cazenave. Sea-level rise and its impact on coastal zones. Science,328 (5985) (2010), pp. 1517-1520. DOI: 10.1126/science.1185782
[15]
P.C. Roos, J.J. Velema, S. J.M.H. Hulscher, A. Stolk. An idealized model of tidal dynamics in the North Sea: Resonance properties and response to large-scale changes. Ocean Dynam,61 (12) (2011), pp. 2019-2035. DOI: 10.1007/s10236-011-0456-x
[16]
J.D. Woodruff, J.L. Irish, S.J. Camargo. Coastal flooding by tropical cyclones and sea-level rise. Nature,504 (7478) (2013), pp. 44-52. DOI: 10.1038/nature12855
[17]
J.P.M. Syvitski, A.J. Kettner, I. Overeem, E.W.H. Hutton, M.T. Hannon, G.R. Brakenridge, et al. Sinking deltas due to human activities. Nat Geosci,2 (10) (2009), pp. 681-686. DOI: 10.1038/ngeo629
[18]
A. Smajgl, T.Q. Toan, D.K. Nhan, J. Ward, N.H. Trung, L.Q. Tri, et al. Responding to rising sea levels in the Mekong Delta. Nat Clim Change,5 (2) (2015), pp. 167-174. DOI: 10.1038/nclimate2469
[19]
P. Kabat, L.O. Fresco, M.J.F. Stive, C.P. Veerman, J. S.L.J. van Alphen, B. W.A.H. Parmet, et al. Dutch coasts in transition. Nat Geosci,2 (7) (2009), pp. 450-452. DOI: 10.1038/ngeo572
[20]
C.A. Katsman, A. Sterl, J.J. Beersma, H.W. van den Brink, J.A. Church, W. Hazeleger, et al. Exploring high-end scenarios for local sea level rise to develop flood protection strategies for a low-lying delta—The Netherlands as an example. Clim Change,109 (3-4) (2011), pp. 617-645. DOI: 10.1007/s10584-011-0037-5
[21]
F. Klijn, H. Kreibich, H. de Moel, E. Penning-Rowsell. Adaptive flood risk management planning based on a comprehensive flood risk conceptualization. Mitig Adapt Strat Gl,20 (6) (2015), pp. 845-864. DOI: 10.1007/s11027-015-9638-z
[22]
H.Q. Cheng, J.Y. Chen. Adapting cities to sea level rise: A perspective from Chinese deltas. Adv Clim Chang Res,8 (2) (2017), pp. 130-136
[23]
J. Xia, Y. Zhang, L. Xiong, S. He, L. Wang, Z. Yu. Opportunities and challenges of the sponge city construction related to urban water issues in China. Sci China: Earth Sci,60 (4) (2017), pp. 652-658. DOI: 10.1007/s11430-016-0111-8
[24]
H.R. Stevens, A.S. Kiem. Developing hazard lines in response to coastal flooding and sea level change. Urban Policy Res,32 (3) (2014), pp. 341-360. DOI: 10.1080/08111146.2013.877388
[25]
K.L. McInnes, C.J. White, I.D. Haigh, M.A. Hemer, R.K. Hoeke, N.J. Holbrook, et al. Natural hazards in Australia: Sea level and coastal extremes. Clim Change,139 (1) (2016), pp. 69-83. DOI: 10.1007/s10584-016-1647-8
[26]
F. Johnson, C.J. White, A. van Dijk, M. Ekstrom, J.P. Evans, D. Jakob, et al. Natural hazards in Australia: Floods. Clim Change,139 (1) (2016), pp. 21-35. DOI: 10.1007/s10584-016-1689-y
[27]
M. Leonard, S. Westra, A. Phatak, M. Lambert, B. van den Hurk, K. McInnes, et al. A compound event framework for understanding extreme impacts. Wires Clim Change,5 (1) (2014), pp. 113-128. DOI: 10.1002/wcc.252
[28]
A.B.A. Slangen, J.A. Church, X. Zhang, D. Monselesan. Detection and attribution of global mean thermosteric sea level change. Geophys Res Lett,41 (16) (2014), pp. 5951-5959
[29]
A.B.A. Slangen, J.A. Church, C. Agosta, X. Fettweis, B. Marzeion, K. Richter.Anthropogenic forcing dominates global mean sea-level rise since 1970. Nat Clim Change,6 (7) (2016), pp. 701-705. DOI: 10.1038/nclimate2991
[30]
B.D. Hamlington, M.W. Strassburg, R.R. Leben, W. Han, R.S. Nerem, K.Y. Kim. Uncovering an anthropogenic sea-level rise signal in the Pacific Ocean. Nat Clim Change,4 (9) (2014), pp. 782-785. DOI: 10.1038/nclimate2307
[31]
S. Jevrejeva, A. Grinsted, J.C. Moore.Anthropogenic forcing dominates sea level rise since 1850. Geophys Res Lett,36 (20) (2009), p. L20707
[32]
S.J. Bentley, M.D. Blum, J. Maloney, L. Pond, R. Paulsell. The Mississippi River source-to-sink system: Perspectives on tectonic, climatic, and anthropogenic influences, Miocene to Anthropocene. Earth Sci Rev,153 (2016), pp. 139-174
[33]
Shanghai Municipal Statistics Bureau. Statistical bulletin of the national economic and social development in Shanghai for 2015. Zhejiang Stat,3 (2016), pp. 19-28 [Chinese].
[34]
Shanghai Urban Planning and Land Resources Bureau. Shanghai geological environmental bulletin 2015. Shanghai Urban Planning and Land Resources Bureau, Shanghai (2016) [Chinese].
[35]
Shanghai 2012 water resource bulletin [Internet]. Shanghai: Shanghai Water Authority; [cited 2015 Sep 20]. Available from: http://bmxx.shanghaiwater.gov.cn/BMXX/default.htm. Chinese.
[36]
Z. Gong, C.K. Zhang, L.M. Wan, J.C. Zuo. Tidal level response to sea-level rise in the Yangtze Estuary. China Ocean Eng,26 (1) (2012), pp. 109-122. DOI: 10.1007/s13344-012-0008-2
[37]
T. Hu, J. Gu, X.L. Wang, D.Q. Ma, J.Z. Yang, Y. Wang. Numerical analysis of the influence of sea level rise on flood and tidal stage in the Yangtze River estuary. Adv Mater Res, 807-809 (2013), pp. 1608-1611
[38]
J. Wang, Y. Liu, M. Ye, S. Xu. Potential impact of sea level rise on the tidal wetlands of the Yangtze River estuary, China. Disaster Adv,5 (4) (2012), pp. 1076-1081
[39]
W.B. Chen, W.C. Liu, M.H. Hsu. Modeling assessment of a saltwater intrusion and a transport time scale response to sea-level rise in a tidal estuary. Environ Fluid Mech,15 (3) (2015), pp. 491-514. DOI: 10.1007/s10652-014-9367-y
[40]
X. Xi, L. Wang, Y. Tang, X. Fu, Y. Le. Response of soil microbial respiration of tidal wetlands in the Yangtze River estuary to increasing temperature and sea level: A simulative study. Ecol Eng,49 (2012), pp. 104-111
[41]
X. Zhou, J. Zheng, D.J. Doong, Z. Demirbilek. Sea level rise along the East Asia and Chinese coasts and its role on the morphodynamic response of the Yangtze River estuary. Ocean Eng,71 (10) (2013), pp. 40-50
[42]
H. Wang, Z. Ge, L. Yuan, L. Zhang. Evaluation of the combined threat from sea-level rise and sedimentation reduction to the coastal wetlands in the Yangtze estuary, China. Ecol Eng (2014), pp. 71346-71354
[43]
Shanghai City Water Conservancy Bureau. Sea level rise in Shanghai influence and countermeasure research series report. Shanghai City Water Conservancy Bureau, Shanghai (1996) [Chinese].
[44]
Goodwin J. The authority of the IPCC First Assessment Report and the manufacture of consensus. In: Proceedingsof the National Communication Association Conference; Nov 12-15 2009 ; Chicago, IL, USA; 2009.
[45]
H. Cheng, J. Chen. Study on the influence of sea level rise on Yangtze River estuary. Science Press, Beijing (2016) [Chinese].
[46]
Z. Yang, F. Shu. Monitoring radial tectonic motions of continental borders around the Atlantic Ocean and regional sea level changes by space geodetic observations. E. Chuvieco, J. Li, X. Yang (Eds.), Advances in earth observation of global change, Springer, Dordrecht (2010), pp. 145-157. DOI: 10.1007/978-90-481-9085-0_11
[47]
Z. Qin, Y. Li. Study on the law of Shanghai sea level changes and its long-term prediction method. Acta Oceanol Sin,19 (1) (1997), pp. 1-7 [Chinese].
[48]
D. Wang, H. Cheng, X. Zhang, R. Ruan. Impact of multifactors and prediction technique of relative sea level in Shanghai. Shanghai Land Resour,32 (3) (2011), pp. 35-40 [Chinese].
[49]
H. Cheng, D. Wang, J. Chen. Study and prediction of the relative sea level rise in 2030 in Shanghai area. Adv Climat Chang Res,11 (4) (2015), pp. 231-238 [Chinese].
[50]
C. Hou, J. Zhu.Study on the quantitative relationship of the location of the tidal current limit and the river discharge in the Changjiang estuary. J East China Norm Univ (Nat Sci), 28 (5) (2013), pp. 18-26 [Chinese].. DOI: 10.1111/jvh.12060
[51]
Solheim JE. Climate change:The variation of the ice-edge in the Barents Sea—Related to the moon, sun and planets [presentation]. In: The4th World Conference on Climate Change; Oct 19-21 2017 ; Rome, Italy; 2017.
[52]
Mörner NA. Climate change:Evidence of Holocene high-amplitude events [presentation]. In: The4th World Conference on Climate Change; Oct 19-21 2017 ; Rome, Italy; 2017.
[53]
X. Chen. Sea-level changes from 1922 to 1987 in the Yangtze estuary and its significance. Acta Geogr Sin,45 (4) (1990), pp. 387-398 [Chinese].
[54]
V. Gornitz. Global coastal hazards from future sea level rise. Palaeogeogr Palaeoclimatol Palaeoecol,89 (4) (1991), pp. 379-398
[55]
X. Dong, C. Huang. Monitoring global mean sea level variation with TOPEX/Poseidon altimetry. Acta Geod Cartogr Sin,29 (3) (2000), pp. 266-272 [Chinese].
[56]
J.A. Church, N.J. White, L.F. Konikow, C.M. Domingues, J. Graham Cogley, E. Rignot, et al. Correction to “Revisiting the Earth’s sea-level and energy budgets from 1961 to 2008”. Geophys Res Lett,40 (15) (2013), p. 4066. DOI: 10.1002/grl.50752
[57]
C. Cabanes, A. Cazenave, C. Le Provost. Sea level rise during past 40 years determined from satellite and in situ observations. Science,294 (5543) (2001), pp. 840-842
[58]
M. Ishii, M. Kimoto, M. Kachi. Historical ocean subsurface temperature analysis with error estimates. Mon Weather Rev,131 (1) (2003), pp. 51-73
[59]
M. Ren.Relative sea level rise in Huanghe, Changjiang and Zhujiang (Yellow, Yangtze and Pearl River) delta over the last 30 years and predictation for the next 40 years (2030). Acta Geogr Sin,60 (5) (1993), pp. 385-393 [Chinese].
[60]
Y. Shi, J. Zhu, Z. Xie, Z. Ji, Z. Jiang, G. Yang.Impact prediction and prevention countermeasures of sea level rise in the Changjiang (Yangtze River) delta and adjacent area. Sci China (Ser D), 30 (3) (2000), pp. 225-232 [Chinese].. DOI: 10.1142/9789812792907_others06
[61]
Q. Wu, X. Zheng, Y. Ying, Y. Hou, X. Xie. Relative sea level rise in coastal areas of China in 21st century and its prediction and prevention countermeasures. Sci China (Ser D),32 (9) (2002), pp. 760-766 [Chinese].
[62]
H. Wang, X. Jiao. Control strategy of land subsidence in Shanghai under sea-level rise. Adv Clim Chang Res,11 (4) (2015), pp. 256-262 [Chinese].
[63]
G. Fu. Recent change of tidal characteristics in the Yangtze estuary. Port Waterw Eng,11 (2013), pp. 61-69 [Chinese].
[64]
H. Xu. Channel in the Yangtze River estuary. J. Chen (Ed.),Yangtze River estuary in the 21st Century, China Ocean Press, Beijing (2009), pp. 19-41 [Chinese].
[65]
N. Ji, H. Cheng, Z. Yang, H. Hu, Z. Chen.Sedimentary and morphological evolution of nearshore coast of Yangtze estuary in the last 30 years. Acta Geogr Sin,68 (7) (2013), pp. 945-954 [Chinese].
[66]
X. Zhang, J. Li, W. Zhu, H. Cheng, W. Chen. The self-regulation process and its mechanism of channels’ bed changes in the Changjiang (Yangtze) estuary in China. Acta Oceanol Sin,34 (7) (2015), pp. 123-130. DOI: 10.1007/s13131-015-0699-3
[67]
Z. Yang, H. Cheng, J. Li. Nonlinear advection, Coriolis force, and frictional influence in the South Channel of the Yangtze estuary, China. Sci China Earth Sci,58 (3) (2015), pp. 429-435. DOI: 10.1007/s11430-014-4946-9
[68]
Z. Yang, H.E. de Swart, H. Cheng, C. Jiang, A. Valle-Levinson. Modelling lateral entrapment of suspended sediment in estuaries: The role of spatial lags in settling and M4 tidal flow. Cont Shelf Res,85 (2014), pp. 126-142
[69]
Z. Yang, H. Cheng, Z. Cao, X. Guo, X. Shi. Effect of riverbed morphology on lateral sediment distribution in estuaries. J Coast Res,34 (1) (2018), pp. 202-214. DOI: 10.2112/jcoastres-d-16-00157.1
[70]
E. Ensing, H.E. de Swart, H.M. Schuttelaars. Sensitivity of tidal motion in well-mixed estuaries to cross-sectional shape, deepening, and sea level rise. Ocean Dyn,65 (7) (2015), pp. 933-950. DOI: 10.1007/s10236-015-0844-8
[71]
N.C. Alebregtse, H.E. de Swart. Effect of river discharge and geometry on tides and net water transport in an estuarine network, an idealized model applied to the Yangtze estuary. Cont Shelf Res,123 (2016), pp. 29-49
[72]
N.C. Alebregtse, H.E. de Swart, H.M. Schuttelaars. Resonance characteristics of tides in branching channels. J Fluid Mech,728 (2013), p. R3
[73]
N.C. Alebregtse, H.E. de Swart. Effect of a secondary channel on the linear tidal dynamics in a semi-enclosed channel: A simple model. Ocean Dyn,64 (4) (2014), pp. 573-585. DOI: 10.1007/s10236-014-0690-0
[74]
S. Shi, H. Cheng, S. Zheng, W. Xu, X. Lu, Y. Jiang, et al. Erosional topography of the tidal limit in the Yangtze River in flood seasons after the river closure at Three Gorges. Acta Oceanol Sin,39 (3) (2017), pp. 85-95 [Chinese].
AI Summary AI Mindmap
PDF(3616 KB)

Accesses

Citations

Detail

Sections
Recommended

/