Social Influence Analysis: Models, Methods, and Evaluation

Kan Li, Lin Zhang, Heyan Huang

Engineering ›› 2018, Vol. 4 ›› Issue (1) : 40-46.

PDF(415 KB)
PDF(415 KB)
Engineering ›› 2018, Vol. 4 ›› Issue (1) : 40-46. DOI: 10.1016/j.eng.2018.02.004
Research
Research

Social Influence Analysis: Models, Methods, and Evaluation

Author information +
History +

Abstract

Social influence analysis (SIA) is a vast research field that has attracted research interest in many areas. In this paper, we present a survey of representative and state-of-the-art work in models, methods, and evaluation aspects related to SIA. We divide SIA models into two types: microscopic and macroscopic models. Microscopic models consider human interactions and the structure of the influence process, whereas macroscopic models consider the same transmission probability and identical influential power for all users. We analyze social influence methods including influence maximization, influence minimization, flow of influence, and individual influence. In social influence evaluation, influence evaluation metrics are introduced and social influence evaluation models are then analyzed. The objectives of this paper are to provide a comprehensive analysis, aid in understanding social behaviors, provide a theoretical basis for influencing public opinion, and unveil future research directions and potential applications.

Keywords

Social influence analysis / Online social networks / Social influence analysis models / Influence evaluation

Cite this article

Download citation ▾
Kan Li, Lin Zhang, Heyan Huang. Social Influence Analysis: Models, Methods, and Evaluation. Engineering, 2018, 4(1): 40‒46 https://doi.org/10.1016/j.eng.2018.02.004

References

[1]
J. Travers, S. Milgram. The small world problem. Psychol Today,1 (1967), pp. 61-67
[2]
W. Chen, L.V. Lakshmanan, C. Castillo. Information and influence propagation in social networks. Morgan & Claypool, San Rafael (2013)
[3]
L.C. Freeman. A set of measures of centrality based on betweenness. Sociometry,40 (1) (1977), pp. 35-41. DOI: 10.2307/3033543
[4]
F. Baas. A new product growth model for consumer durables. Manage Sci,15 (5) (1969), pp. 215-227
[5]
J.J. Brown, P.H. Reingen. Social ties and word-of-mouth referral behavior. J Consum Res,14 (3) (1987), pp. 350-362
[6]
V. Mahajan, E. Muller, F.M. Bass. New product diffusion models in marketing: A review and directions for research. J Mark,54 (1) (1990), pp. 1-26
[7]
Domingos P, Richardson M. Mining the network value of customers. In: Proceedings of the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; 2001 Aug 26-29; San Francisco, CA, USA; 2001. p. 57-66.
[8]
J. Goldenberg, B. Libai, E. Muller. Talk of the network: a complex systems look at the underlying process of word-of-mouth. Mark Lett,12 (3) (2001), pp. 211-223
[9]
Richardson M, Domingos P. Mining knowledge-sharing sites for viral marketing. In: Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; 2002 Jul 23-26; Edmonton, AB, Canada; 2002. p. 61-70.
[10]
J. Leskovec, L.A. Adamic, B.A. Huberman.The dynamics of viral marketing. J ACM Trans Web,1 (1) (2007), p. 5. DOI: 10.1145/1232722.1232727
[11]
Pálovics R, Benczúr AA, Kocsis L, Kiss T, Frigó E. Exploiting temporal influence in online recommendation. In: Proceedings of the 8th ACM Conference on Recommender Systems; 2014 Oct 6-10; Foster City, CA, USA; 2014. p. 273-80.
[12]
G. Wang, W. Jiang, J. Wu, Z. Xiong. Fine-grained feature-based social influence evaluation in online social networks. IEEE Trans Parallel Distrib Syst,25 (9) (2014), pp. 2286-2296
[13]
N.A. Christakis, J.H. Fowler. The spread of obesity in a large social network over 32 years. N Engl J Med,357 (4) (2007), pp. 370-379
[14]
J.H. Fowler, N.A. Christakis. Dynamic spread of happiness in a large social network: longitudinal analysis over 20 years in the Framingham Heart Study. Br Med J,338 (7685) (2009), pp. 23-27
[15]
Franks H, Griffiths N, Anand SS.Learning influence in complex social networks. In:Proceedings of the 2013 International Conference on Autonomous Agents and Multi-agent Systems; 2013 May 6-10; Saint Paul, MN, USA; 2013. p. 447-54.
[16]
Dong W, Pentland A.Modeling influence between experts. In:Proceedings of the ICMI 2006 and IJCAI 2007 International Conference on Artificial Intelligence for Human Computing; 2006 Nov 3; Banff, AB, Canada; 2007. p. 170-89.
[17]
Tang J, Sun J, Wang C, Yang Z. Social influence analysis in large-scale networks. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; 2009 Jun 28-Jul 1; Paris, France; 2009. p. 807-16.
[18]
He Z, Cai Z, Wang X. Modeling propagation dynamics and developing optimized countermeasures for rumor spreading in online social networks. In: Proceedings of the 2005 IEEE 35th International Conference on Distributed Computing Systems; 2015 Jun 29-Jul 2; Columbus, OH, USA; 2015. p. 205-14.
[19]
E. Katz, P.F. Lazarsfeld. Personal influence:The part played by people in the flow of mass communications. Free Press, New York (1965)
[20]
E.M. Rogers.Diffusion of innovations. (5th ed.), Free Press, New York (2003)
[21]
E. Keller, J. Berry. The influentials:one American in ten tells the other nine how to vote, where to eat, and what to buy. Free Press, New York (2003)
[22]
S. Peng, A. Yang, L. Cao, S. Yu, D. Xie. Social influence modeling using information theory in mobile social networks. Inf Sci,379 (2017), pp. 146-159
[23]
Kempe D, Kleinberg J, Tardos É. Maximizing the spread of influence through a social network. In: Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; 2003 Aug 24-27; Washington, DC, USA; 2003. p. 137-46.
[24]
Leskovec J, Mcglohon M, Faloutsos C, Glance NS, Hurst M. Patterns of cascading behavior in large blog graphs. In: Proceedings of the 2007 SIAM International Conference on Data Mining; 2007 Apr 26-28; Minneapolis, MN, USA; 2007.
[25]
Gruhl D, Guha R, Liben-Nowell D, Tomkins A. Information diffusion through blogspace. In: Proceedings of the 13th International Conference on World Wide Web; 2004 May 17-20; New York, NY, USA; 2004. p. 491-501.
[26]
M. Granovetter. Threshold models of collective behavior. Am J Sociol,83 (6) (1978), pp. 1420-1443
[27]
Chen W, Lu W, Zhang N. Time-critical influence maximization in social networks with time-delayed diffusion process. In: Proceedings of the 26th AAAI Conference on Artificial Intelligence; 2012 Jul 22-26; Toronto, ON, Canada; 2012. p. 592-8.
[28]
Feng S, Chen X, Cong G, Zeng Y, Chee YM, Xiang Y. Influence maximization with novelty decay in social networks. In: Proceedings of the 28th AAAI Conference on Artificial Intelligence; 2014 Jul 27-31; Québec City, QC, Canada; 2014. p. 37-43.
[29]
R. Mohamadi-Baghmolaei, N. Mozafari, A. Hamzeh. Trust based latency aware influence maximization in social networks. J Eng App Artif Intell, 41 (C) (2015), pp. 195-206
[30]
Budak C, Agrawal D, Abbadi AE. Limiting the spread of misinformation in social networks. In: Proceedings of the 20th International Conference on World Wide Web; 2011 Mar 28-Apr 1; Hyderabad, India; 2011. p. 665-74.
[31]
W. Liu, K. Yue, H. Wu, J. Li, D. Liu, D. Tang. Containment of competitive influence spread in social networks. Knowl Base Syst, 109 (C) (2016), pp. 266-275
[32]
Borodin A, Filmus Y, Oren J. Threshold models for competitive influence in social networks. In: Proceedings of the 6th International Conference on Internet and Network Economics; 2010 Dec 13-17; Stanford, CA, USA; 2010. p. 539-50.
[33]
A. Mohammadi, M. Saraee, A. Mirzaei. Time-sensitive influence maximization in social networks. J Inf Sci,41 (6) (2015), pp. 765-778. DOI: 10.1177/0165551515602808
[34]
Saito K, Ohara K, Yamagishi Y, Kimura M, Motoda H. Learning diffusion probability based on node attributes in social networks. In: Proceedings of the 19th International Conference on Foundations of Intelligent Systems; 2011 Jun 28-30; Warsaw, Poland; 2011. p. 153-62.
[35]
Guille A, Hacid H.A predictive model for the temporal dynamics of information diffusion in online social networks. In:Proceedings of the 21st International Conference on World Wide Web; 2012 Apr 16-20; Lyon, France; 2012. p. 1145-52.
[36]
Bharathi S, Kempe D, Salek M. Competitive influence maximization in social networks. In: Proceedings of the 3rd International Conference on Internet and Network Economics; 2007 Dec 12-14; San Diego, CA, USA; 2007. p. 306-11.
[37]
Carnes T, Nagarajan C, Wild SM, Zuylen AV. Maximizing influence in a competitive social network: A follower’s perspective. In: Proceedings of the 9th International Conference on Electronic Commerce; 2007 Aug 19-22; Minneapolis, MN, USA; 2007. p. 351-60.
[38]
Fan L, Lu Z, Wu W, Thuraisingham B, Ma H, Bi Y. Least cost rumor blocking in social networks. In:Proceedings of the 2013 IEEE 33rd International Conference on Distributed Computing Systems; 2013 Jul 8-11; Philadelphia, PA, USA; 2013. p. 540-9.
[39]
Lee W, Kim J, Yu H. CT-IC: Continuously activated and time-restricted independent cascade model for viral marketing. In: Proceedings of the 2012 IEEE 12th International Conference on Data Mining; 2012 Dec 10-13; Brussels, Belgium; 2013. p. 960-5.
[40]
Kostka J, Oswald YA, Wattenhofer R. Word of mouth: Rumor dissemination in social networks. In: Proceedings of the 15th International Colloquium on Structural Information and Communication Complexity; 2008 Jun 17-20; Villars-sur-Ollon, Switzerland; 2008. p. 185-96.
[41]
Chen W, Wang Y, Yang S.Efficient influence maximization in social networks. In:Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; 2009 Jun 28-Jul 1; Paris, France; 2009. p. 199-208.
[42]
Wang Y, Wang H, Li J, Gao H. Efficient influence maximization in weighted independent cascade model. In: Proceedings of the 21st International Conference on Database Systems for Advanced Applications; 2016 Mar 27-30; Dallas, TX, USA; 2016. p. 49-64.
[43]
Pathak N, Banerjee A, Srivastava J. A generalized linear threshold model for multiple cascades. In: Proceedings of the 2010 IEEE International Conference on Data Mining; 2010 Dec 13-17; Sydney, Australia; 2010. p. 965-70.
[44]
Bharathi S, Kempe D, Salek M. Competitive influence maximization in social networks. In: Proceedings of the 3rd International Workshop on Web and Internet Economics; 2007 Dec 12-14; San Diego, CA, USA; 2007. p. 306-11.
[45]
S. Galam. Modelling rumors: the no plane Pentagon French hoax case. Phys A,320 (2003), pp. 571-580
[46]
Lin SC, Lin SD, Chen MS. A learning-based framework to handle multi-round multi-party influence maximization on social networks. In: Proceedings of the 21st ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; 2015 Aug 10-13; Sydney, Australia; 2015. p. 695-704.
[47]
Golnari G, Asiaee A, Banerjee A, Zhang ZL. Revisiting non-progressive influence models: Scalable influence maximization. In: Proceedings of the 31st Conference on Uncertainty in Artificial Intelligence; 2015 Jul 12-16; Amsterdam, The Netherlands; 2015.
[48]
X. Wang, J. Jia, J. Tang, B. Wu, L. Cai, L. Xie. Modeling emotion influence in image social networks. IEEE Trans Affect Comp,6 (3) (2015), pp. 286-297
[49]
Gao D.Opinion influence and diffusion in social network. In:Proceedings of the 35th International ACM SIGIR Conference on Research and Development in Information; 2012 Aug 12-16; Portland, OR, USA; 2012. p. 997.
[50]
D.J. Daley, D.G. Kendall. Epidemics and rumors. Nature,204 (4963) (1964), p. 1118. DOI: 10.1038/2041118a0
[51]
Y. Moreno, M. Nekovee, A.F. Pacheco. Dynamics of rumor spreading in complex networks. Phys Rev E Stat Nonlin Soft Matter Phys,69 (6 Pt 2) (2004), p. 066130
[52]
M. Nekovee, Y. Moreno, G. Bianconi, M. Marsili. Theory of rumor spreading in complex social networks. Phys A,374 (1) (2007), pp. 457-470
[53]
J. Zhou, Z. Liu, B. Li. Influence of network structure on rumor propagation. Phys Lett A,368 (6) (2007), pp. 458-463
[54]
Wang H, Deng L, Xie F, Xu H, Han J. A new rumor propagation model on SNS structure. In: Proceedings of the 2012 IEEE International Conference on Granular Computing; 2012 Aug 11-13; Hangzhou, China; 2012. p. 499-503.
[55]
Y. Wang, X. Yang, Y. Han, X. Wang. Rumor spreading model with trust mechanism in complex social networks. Commum Theor Phys,59 (4) (2013), pp. 510-516. DOI: 10.1088/0253-6102/59/4/21
[56]
L. Xia, G. Jiang, B. Song, Y. Song. Rumor spreading model considering hesitating mechanism in complex social networks. Phys A,437 (2015), pp. 295-303
[57]
Q. Su, J. Huang, X. Zhao. An information propagation model considering incomplete reading behavior in microblog. Phys A,419 (2015), pp. 55-63
[58]
Q. Liu, T. Li, M. Sun. The analysis of an SEIR rumor propagation model on heterogeneous network. Phys A,469 (2017), pp. 372-380
[59]
L. Zhao, J. Wang, Y. Chen, Q. Wang, J. Cheng, H. Cui. SIHR rumor spreading model in social networks. Phys A,391 (7) (2012), pp. 2444-2453
[60]
L. Zhao, X. Qiu, X. Wang, J. Wang. Rumor spreading model considering forgetting and remembering mechanisms in inhomogeneous networks. Phys A,392 (4) (2013), pp. 987-994
[61]
Leskovec J, Krause A, Guestrin C, Faloutsos C, VanBriesen J, Glance N.Cost-effective outbreak detection in networks. In:Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; 2007 Aug 12-15; San Jose, CA, USA; 2007.p.420-9.
[62]
C. Zhou, P. Zhang, W. Zang, L. Guo. On the upper bounds of spread for greedy algorithms in social network influence maximization. IEEE Trans Knowl Data Eng,27 (10) (2015), pp. 2770-2783
[63]
Chen W, Wang C, Wang Y.Scalable influence maximization for prevalent viral marketing in large-scale social networks. In:Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; 2010 Jul 25-28, Washington, DC, USA; 2010. p. 1029-38.
[64]
Goyal A, Lu W, Lakshmanan LVS. SIMPATH: An efficient algorithm for influence maximization under the linear threshold model. In: Proceedings of the 2011 IEEE 11th International Conference on Data Mining; 2011 Dec 11-14; Vancouver, BC, Canada; 2012. p. 211-20.
[65]
K. Jung, W. Heo, W. Chen. IRIE: a scalable influence maximization algorithm for independent cascade model and its extensions. Rev Crim,56 (10) (2011), pp. 1451-1455
[66]
Borgs C, Brautbar M, Chayes J, Lucier B. Maximizing social influence in nearly optimal time. In:Proceedings of the 25th Annual ACM-SIAM Symposium on Discrete Algorithms; 2014 Jan 5-7; Portland, OR, USA; 2014. p. 946-57.
[67]
Tang Y, Xiao X, Shi Y. Influence maximization: Near-optimal time complexity meets practical efficiency. In: Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data; 2014 June 22-27; Snowbird, UT, USA; 2014. p. 75-86.
[68]
Li CT, Lin SD, Shan MK. Influence propagation and maximization for heterogeneous social networks. In:Proceedings of the 21st International Conference on World Wide Web; 2012 Apr 16-20; Lyon, France; 2012. p. 559-60.
[69]
Subbian K, Sharma D, Wen Z, Srivastava J. Social capital: The power of influencers in networks. In: Proceedings of the 2013 International Conference on Autonomous Agents and Multi-agent Systems; 2013 May 6-10; Saint Paul, MN, USA; 2013. p. 1243-4.
[70]
Li H, Bhowmick SS, Sun A. CINEMA: Conformity-aware greedy algorithm for influence maximization in online social networks. In: Proceedings of the 16th International Conference on Extending Database Technology; 2013 Mar 18-22; Genoa, Italy; 2013. p. 323-34.
[71]
J.R. Lee, C.W. Chung. A query approach for influence maximization on specific users in social networks. IEEE Trans Knowl Data Eng,27 (2) (2015), pp. 340-353
[72]
X. Deng, Y. Pan, H. Shen, J. Gui. Credit distribution for influence maximization in online social networks with node features. J Intell Fuzzy Syst,31 (2) (2016), pp. 979-990
[73]
Yao Q, Zhou C, Shi R, Wang P, Guo L. Topic-aware social influence minimization. In: Proceedings of the 24th International Conference on World Wide Web; 2015 May 18-22; Florence, Italy; 2015. p. 139-40.
[74]
B. Wang, G. Chen, L. Fu, L. Song, X. Wang. DRIMUX: dynamic rumor influence minimization with user experience in social networks. IEEE Trans Knowl Data Eng,29 (10) (2017), pp. 2168-2181
[75]
P. Groeber, J. Lorenz, F. Schweitzer. Dissonance minimization as a microfoundation of social influence in models of opinion formation. J Math Sociol,38 (3) (2014), pp. 147-174
[76]
Chang CW, Yeh MY, Chuang KT. On the guarantee of containment probability in influence minimization. In: Proceedings of the 2016 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining; 2016 Aug 18-21; San Francisco, CA, USA; 2016. p. 231-8.
[77]
Faisan MM, Bhavani SD. Maximizing information or influence spread using flow authority model in social networks. In:Proceedings of the 10th International Conference on Distributed Computing and Internet Technology; 2014 Feb 6-9; Bhubaneswar, India; 2014. p. 233-8.
[78]
Subbian K, Aggarwal C, Srivastava J. Content-centric flow mining for influence analysis in social streams. In: Proceedings of the 22nd ACM International Conference on Information & Knowledge Management; 2013 Oct 27-Nov 1; San Francisco, CA, USA; 2013. p. 841-6.
[79]
Kutzkov K, Bifet A, Bonchi F, Gionis A. STRIP: Stream learning of influence probabilities. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; 2013 Aug 11-14; Chicago, IL, USA; 2013. p. 275-83.
[80]
X. Teng, S. Pei, F. Morone, H.A. Makse. Collective influence of multiple spreaders evaluated by tracing real information flow in large-scale social networks. Sci Rep,6 (1) (2016), p. 36043
[81]
Chintakunta H, Gentimis A.Influence of topology in information flow in social networks. In:Proceedings of the 2016 Asilomar Conference on Signals, Systems and Computers; 2016 Nov 6-9; Pacific Grove, CA, USA; 2017. p. 67-71.
[82]
Subbian K, Sharma D, Wen Z, Srivastava J. Finding influencers in networks using social capital. In: Proceedings of the 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining; 2013 Aug 25-28; Niagara Falls, ON, Canada; 2013. p. 592-9.
[83]
G. Liu, F. Zhu, K. Zheng, A. Liu, Z. Li, L. Zhao, et al. TOSI: a trust-oriented social influence evaluation method in contextual social networks. Neurocomputing,210 (2016), pp. 130-140
[84]
Deng X, Pan Y, Wu Y, Gui J. Credit distribution and influence maximization in online social networks using node features. In: Proceedings of the 2015 12th International Conference on Fuzzy Systems and Knowledge Discovery; 2015 Aug 15-17; Zhangjiajie, China; 2016. p. 2093-100.
[85]
Y. Zhu, W. Wu, Y. Bi, L. Wu, Y. Jiang, W. Xu. Better approximation algorithms for influence maximization in online social networks. J Comb Optim,30 (1) (2015), pp. 97-108. DOI: 10.1007/s10878-013-9635-7
[86]
J. He, M. Hu, M. Shi, Y. Liu. Research on the measure method of complaint theme influence on online social network. Expert Syst Appl,41 (13) (2014), pp. 6039-6046
[87]
J. Gehrke, P. Ginsparg, J. Kleinberg. Overview of the 2003 KDD cup. ACM SIGKDD Explor Newslett,5 (2) (2003), pp. 149-151. DOI: 10.1145/980972.980992
[88]
J. Yang, J. Leskovec. Defining and evaluating network communities based on ground-truth. Knowl Inf Syst,42 (1) (2015), pp. 181-213. DOI: 10.1007/s10115-013-0693-z
[89]
Tang J, Zhang J, Yao L, Li J, Zhang L, Su Z. ArnetMiner: Extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; 2008 Aug 24-27; Las Vegas, NV, USA; 2008. p. 990-8.
AI Summary AI Mindmap
PDF(415 KB)

Accesses

Citations

Detail

Sections
Recommended

/