New Insight into the Development of Oxygen Carrier Materials for Chemical Looping Systems

Zhuo Cheng, Lang Qin, Jonathan A. Fan, Liang-Shih Fan

PDF(2604 KB)
PDF(2604 KB)
Engineering ›› 2018, Vol. 4 ›› Issue (3) : 343-351. DOI: 10.1016/j.eng.2018.05.002
Research
Research Green Industrial Processes—Review

New Insight into the Development of Oxygen Carrier Materials for Chemical Looping Systems

Author information +
History +

Abstract

Chemical looping combustion (CLC) and chemical looping reforming (CLR) are innovative technologies for clean and efficient hydrocarbon conversion into power, fuels, and chemicals through cyclic redox reactions. Metal oxide materials play an essential role in the chemical looping redox processes. During reduction, the oxygen carriers donate the required amount of oxygen ions for hydrocarbon conversion and product synthesis. In the oxidation step, the depleted metal oxide oxygen carriers are replenished with molecular oxygen from the air while heat is released. In recent years, there have been significant advances in oxygen carrier materials for various chemical looping applications. Among these metal oxide materials, iron-based oxygen carriers are attractive due to their high oxygen-carrying capacity, cost benefits, and versatility in applications for chemical looping reactions. Their reactivity can also be enhanced via structural design and modification. This review discusses recent advances in the development of oxygen carrier materials and the mechanisms of hydrocarbon conversion over these materials. These advances will facilitate the development of oxygen carrier materials for more efficient chemical looping technology applications.

Keywords

Chemical looping / Oxygen carrier / Hydrocarbon conversion / Ionic diffusion / Mechanism

Cite this article

Download citation ▾
Zhuo Cheng, Lang Qin, Jonathan A. Fan, Liang-Shih Fan. New Insight into the Development of Oxygen Carrier Materials for Chemical Looping Systems. Engineering, 2018, 4(3): 343‒351 https://doi.org/10.1016/j.eng.2018.05.002

References

[[1]]
Qin L., Guo M., Cheng Z., Xu M., Liu Y., Xu D., . Improved cyclic redox reactivity of lanthanum modified iron-based oxygen carriers in carbon monoxide chemical looping combustion. J Mater Chem A. 2017; 5(38): 20153-20160.
[[2]]
Mattisson T., Lyngfelt A., Leion H.. Chemical-looping with oxygen uncoupling for combustion of solid fuels. Int J Greenh Gas Control. 2009; 3(1): 11-19.
[[3]]
Hallberg P., Källén M., Jing D., Snijkers F., van Noyen J., Rydén M., . Experimental investigation of based oxygen carriers used in continuous chemical-looping combustion. Int J Chem Eng. 2014; 2014: 1-9.
[[4]]
Bakken E., Norby T., Stølen S.. Nonstoichiometry and reductive decomposition of CaMnO3−δ. Solid State Ion. 2005; 176(1–2): 217-223.
[[5]]
Gu H., Shen L., Xiao J., Zhang S., Song T.. Chemical looping combustion of biomass/coal with natural iron ore as oxygen carrier in a continuous reactor. Energy Fuels. 2011; 25(1): 446-455.
[[6]]
Li F., Kim H.R., Sridhar D., Wang F., Zeng L., Chen J., . Syngas chemical looping gasification process: oxygen carrier particle selection and performance. Energy Fuels. 2009; 23(8): 4182-4189.
[[7]]
Li F., Sun Z., Luo S., Fan L.S.. Ionic diffusion in the oxidation of iron—effect of support and its implications to chemical looping applications. Energy Environ Sci. 2011; 4(3): 876-880.
[[8]]
Day R.J., Frisch M.A.. Chromium chromate as an inert marker in copper oxidation. Surf Interface Anal. 1986; 8(1): 33-36.
[[9]]
Chiang Y.M., Birnie D.P., Kingery W.D.. Physical ceramics: principles for ceramic science and engineering.
[[10]]
Qin L., Majumder A., Fan J.A., Kopechek D., Fan L.S.. Evolution of nanoscale morphology in single and binary metal oxide microparticles during reduction and oxidation processes. J Mater Chem A. 2014; 2(41): 17511-17520.
[[11]]
Qin L., Cheng Z., Fan J.A., Kopechek D., Xu D., Deshpande N., . Nanostructure formation mechanism and ion diffusion in iron–titanium composite materials with chemical looping redox reactions. J Mater Chem A. 2015; 3(21): 11302-11312.
[[12]]
Fu Y., Chen J., Zhang H.. Synthesis of Fe2O3 nanowires by oxidation of iron. Chem Phys Lett. 2001; 350(5–6): 491-494.
[[13]]
Wen X., Wang S., Ding Y., Wang Z.L., Yang S.. Controlled growth of large-area, uniform, vertically aligned arrays of α-Fe2O3 nanobelts and nanowires. J Phys Chem B. 2005; 109(1): 215-220.
[[14]]
Dang H.Y., Wang J., Fan S.S.. The synthesis of metal oxide nanowires by directly heating metal samples in appropriate oxygen atmospheres. Nanotechnology. 2003; 14(7): 738-741.
[[15]]
Fan L.S.. Chemical looping systems for fossil energy conversions.
[[16]]
Wilson N.C., Muscat J., Mkhonto D., Ngoepe P.E., Harrison N.M.. Structure and properties of ilmenite from first principles. Phys Rev B. 2005; 71(7): 075202.
[[17]]
Yang Z., Woo T.K., Baudin M., Hermansson K.. Atomic and electronic structure of unreduced and reduced CeO2 surfaces: a first-principles study. J Chem Phys. 2004; 120(16): 7741-7749.
[[18]]
Chen L., Lu Y., Hong Q., Lin J., Dautzenberg F.M.. Catalytic partial oxidation of methane to syngas over Ca-decorated-Al2O3-supported Ni and NiB catalysts. Appl Catal A Gen. 2005; 292: 295-304.
[[19]]
Sauer J., Dobler J.. Structure and reactivity of V2O5: bulk solid, nanosized clusters, species supported on silica and alumina, cluster cations and anions. Dalton Trans. 2004; 19(19): 3116-3121.
[[20]]
Thomas TJ, Fan LS, Gupta P, Velazquez-Vargas LG, inventors; The Ohio State University, assignee. Combustion looping using composite oxygen carriers. United States patent US 7767191. 2010 Aug 3.
[[21]]
Tong A., Zeng L., Kathe M.V., Sridhar D., Fan L.S.. Application of the moving-bed chemical looping process for high methane conversion. Energy Fuels. 2013; 27(8): 4119-4128.
[[22]]
Pineau A., Kanari N., Gaballah I.. Kinetics of reduction of iron oxides by H2: Part I: low temperature reduction of hematite. Thermochim Acta. 2006; 447(1): 89-100.
[[23]]
Pineau A., Kanari N., Gaballah I.. Kinetics of reduction of iron oxides by H2: Part II: low temperature reduction of magnetite. Thermochim Acta. 2007; 456(2): 75-88.
[[24]]
Cheng Z., Qin L., Guo M., Fan J.A., Xu D., Fan L.S.. Methane adsorption and dissociation on iron oxide oxygen carriers: the role of oxygen vacancies. Phys Chem Chem Phys. 2016; 18(24): 16423-16435.
[[25]]
De Diego L.F., Ortiz M., Adánez J., García-Labiano F., Abad A., Gayán P.. Synthesis gas generation by chemical-looping reforming in a batch fluidized bed reactor using Ni-based oxygen carriers. Chem Eng J. 2008; 144(2): 289-298.
[[26]]
Fan L.S.. Chemical looping partial oxidation: gasification, reforming, and chemical syntheses.
[[27]]
He F., Wei Y., Li H., Wang H.. Synthesis gas generation by chemical-looping reforming using Ce-based oxygen carriers modified with Fe, Cu, and Mn oxides. Energy Fuels. 2009; 23(4): 2095-2102.
[[28]]
Azimi G., Mattisson T., Leion H., Rydén M., Lyngfelt A.. Comprehensive study of Mn–Fe–Al oxygen-carriers for chemical-looping with oxygen uncoupling (CLOU). Int J Greenh Gas Control. 2015; 34: 12-24.
[[29]]
Qin L., Cheng Z., Guo M., Fan J.A., Fan L.S.. Morphology evolution and nanostructure of chemical looping transition metal oxide materials upon redox processes. Acta Mater. 2017; 124: 568-578.
[[30]]
Luo S., Zeng L., Xu D., Kathe M., Chung E., Deshpande N., . Shale gas-to-syngas chemical looping process for stable shale gas conversion to high purity syngas with a H2:CO ratio of 2:1. Energy Environ Sci. 2014; 7(12): 4104-4117.
[[31]]
Jin Y., Sun C., Su S.. Experimental and theoretical study of the oxidation of ventilation air methane over Fe2O3 and CuO. Phys Chem Chem Phys. 2015; 17(25): 16277-16284.
[[32]]
Cheng Z., Qin L., Guo M., Xu M., Fan J.A., Fan L.S.. Oxygen vacancy promoted methane partial oxidation over iron oxide oxygen carriers in the chemical looping process. Phys Chem Chem Phys. 2016; 18(47): 32418-32428.
[[33]]
Monazam E.R., Breault R.W., Siriwardane R., Richards G., Carpenter S.. Kinetics of the reduction of hematite (Fe2O3) by methane (CH4) during chemical looping combustion: a global mechanism. Chem Eng J. 2013; 232: 478-487.
[[34]]
Liu S., Tan X., Li K., Hughes R.. Methane coupling using catalytic membrane reactors. Catal Rev. 2001; 43(1–2): 147-198.
[[35]]
Malekzadeh A., Khodadadi A., Abedini M., Amini M., Bahramian A., Dalai A.K.. Correlation of electrical properties and performance of OCM MOx/Na2WO4/SiO2 catalysts. Catal Commun. 2001; 2(8): 241-247.
[[36]]
Hutchings G.J., Scurrell M.S., Woodhouse J.R.. Oxidative coupling of methane using oxide catalysts. Chem Soc Rev. 1989; 18: 251-283.
[[37]]
Choudhary V.R., Rane V.H.. Acidity/basicity of rare-earth oxides and their catalytic activity in oxidative coupling of methane to C2-hydrocarbons. J Catal. 1991; 130(2): 411-412.
[[38]]
Dubois J.L., Cameron C.J.. Common features of oxidative coupling of methane cofeed catalysts. Appl Catal. 1990; 67(1): 49-71.
[[39]]
Greish A.A., Glukhov L.M., Finashina E.D., Kustov L.M., Sung J., Choo K., . Oxidative coupling of methane in the redox cyclic mode over the catalysts on the basis of CeO2 and La2O3. Mendeleev Commun. 2010; 20(1): 28-30.
[[40]]
Sung J.S., Choo K.Y., Kim T.H., Greish A., Glukhov L., Finashina E., . Peculiarities of oxidative coupling of methane in redox cyclic mode over Ag-La2O3/SiO2 catalysts. Appl Catal A Gen. 2010; 380(1–2): 28-32.
[[41]]
Huang K., Zhan X.L., Chen F.Q., Lü D.W.. Catalyst design for methane oxidative coupling by using artificial neural network and hybrid genetic algorithm. Chem Eng Sci. 2003; 58(1): 81-87.
[[42]]
Chua Y.T., Mohamed A.R., Bhatia S.. Oxidative coupling of methane for the production of ethylene over sodium-tungsten-manganese-supported-silica catalyst (Na-W-Mn/SiO2). Appl Catal A Gen. 2008; 343(1–2): 142-148.
[[43]]
Sahebdelfar S., Ravanchi M.T., Gharibi M., Hamidzadeh M.. Rule of 100: an inherent limitation or performance measure in oxidative coupling of methane?. J Nat Gas Chem. 2012; 21(3): 308-313.
[[44]]
Cao Y., Sit S.P., Pan W.P.. Preparation and characterization of lanthanum-promoted copper-based oxygen carriers for chemical looping combustion process. Aerosol Air Qual Res. 2014; 14(2): 572-584.
[[45]]
Cao Y., Sit S.P., Pan W.P.. Lanthanum-promoted copper-based oxygen carriers for chemical looping combustion process. J Therm Anal Calorim. 2014; 116(3): 1257-1266.
[[46]]
Niu T., Liu G.L., Chen Y., Yang J., Wu J., Cao Y., . Hydrothermal synthesis of graphene-LaFeO3 composite supported with Cu-Co nanocatalyst for higher alcohol synthesis from syngas. Appl Surf Sci. 2016; 364: 388-399.
[[47]]
Liu L., Zachariah M.R.. Enhanced performance of alkali metal doped Fe2O3 and Fe2O3/Al2O3 composites as oxygen carrier material in chemical looping combustion. Energy Fuels. 2013; 27(8): 4977-4983.
[[48]]
Wang M., Liu J., Hu J., Liu F.. O2–CO2 mixed gas production using a Zr-doped Cu-based oxygen carrier. Ind Eng Chem Res. 2015; 54(40): 9805-9812.
[[49]]
Mohamed S.A., Quddus M.R., Razzak S.A., Hossain M.M., de Lasa H.I.. NiO/Ce-γAl2O3 oxygen carrier for chemical looping combustion. Energy Fuels. 2015; 29(9): 6095-6103.
[[50]]
Chen S., Zeng L., Tian H., Li X., Gong J.. Enhanced lattice oxygen reactivity over Ni-modified WO3-based redox catalysts for chemical looping partial oxidation of methane. ACS Catal. 2017; 7(5): 3548-3559.
[[51]]
Qin L., Cheng Z., Guo M., Fan J.A., Fan L.S.. Impact of 1% lanthanum dopant on carbonaceous fuel redox reactions with an iron-based oxygen carrier in chemical looping processes. ACS Energy Lett. 2017; 2(1): 70-74.
[[52]]
Chung C., Qin L., Shah V., Fan L.S.. Chemically and physically robust, commercially-viable iron-based composite oxygen carriers sustainable over 3000 redox cycles at high temperatures for chemical looping applications. Energy Environ Sci. 2017; 10: 2318.
[[53]]
Hsia C., St Pierre G.R., Raghunathan K., Fan L.S.. Diffusion through the CaSO4 formed during the reaction of CaO with SO2 and O2. AIChE J. 1993; 39(4): 698-700.
[[54]]
Hsia C., St Pierre G.R., Fan L.S.. Isotope study on diffusion in the CaSO4 formed in the sorbent-flue gas reaction. AIChE J. 1995; 41(10): 2337-2340.

RIGHTS & PERMISSIONS

2018 THE AUTHORS
AI Summary AI Mindmap
PDF(2604 KB)

Accesses

Citations

Detail

Sections
Recommended

/