
Surface-Driven High-Pressure Processing
Keith E. Gubbins, Kai Gu, Liangliang Huang, Yun Long, J. Matthew Mansell, Erik E. Santiso, Kaihang Shi, Małgorzata Śliwińska-Bartkowiak, Deepti Srivastava
Engineering ›› 2018, Vol. 4 ›› Issue (3) : 311-320.
Surface-Driven High-Pressure Processing
The application of high pressure favors many chemical processes, providing higher yields or improved rates in chemical reactions and improved solvent power in separation processes, and allowing activation barriers to be overcome through the increase in molecular energy and molecular collision rates. High pressures—up to millions of bars using diamond anvil cells—can be achieved in the laboratory, and lead to many new routes for chemical synthesis and the synthesis of new materials with desirable thermodynamic, transport, and electronic properties. On the industrial scale, however, high-pressure processing is currently limited by the cost of compression and by materials limitations, so that few industrial processes are carried out at pressures above 25 MPa. An alternative approach to high-pressure processing is proposed here, in which very high local pressures are generated using the surface-driven interactions from a solid substrate. Recent experiments and molecular simulations show that such interactions can lead to local pressures as high as tens of thousands of bars (1 bar = 1 × 105 Pa), and even millions of bars in some cases. Since the active high-pressure processing zone is inhomogeneous, the pressure is different in different directions. In many cases, it is the pressure in the direction parallel to the surface of the substrate (the tangential pressure) that is most greatly enhanced. This pressure is exerted on the molecules to be processed, but not on the solid substrate or the containing vessel. Current knowledge of such pressure enhancement is reviewed, and the possibility of an alternative route to high-pressure processing based on surface-driven forces is discussed. Such surface-driven high-pressure processing would have the advantage of achieving much higher pressures than are possible with traditional bulk-phase processing, since it eliminates the need for mechanical compression. Moreover, no increased pressure is exerted on the containing vessel for the process, thus eliminating concerns about materials failure.
Confinement / High pressure / High pressure phase / High pressure reaction / High pressure manufacture / High pressure chemical processing
[1] |
Zhang L., Wang Y., Lv J., Ma Y.. Materials discovery at high pressures. Nat Rev Mater. 2017; 2(4): 17005.
|
[2] |
Gregg S.J., Sing K.S.W.. Adsorption surface area and porosity.
|
[3] |
Gregg S.J., Sing K.S.W.. Adsorption, surface area and porosity. 2nd ed.
|
[4] |
Karnaukhov A.P.. Improvement of methods for surface-area determinations. J Colloid Interface Sci. 1985; 103(2): 311-320.
|
[5] |
Aranovich G.L., Donohue M.D.. Surface compression in adsorption systems. Colloids Surf. 2001; 187–188: 95-108.
|
[6] |
Chu Y.S., Robinson I.K., Gewirth A.A.. Properties of an electrochemically deposited Pb monolayer on Cu(111). Phys Rev B. 1997; 55(12): 7945-7954.
|
[7] |
Schabes-Retchkiman S., Venables J.A.. Structural studies of xenon and krypton solid monolayers on graphite using transmission electron diffraction. Surf Sci. 1981; 105(2–3): 536-564.
|
[8] |
Calisti S., Suzanne J., Venables J.A.. A LEED study of adsorbed neon on graphite. Surf Sci. 1982; 115(3): 455-468.
|
[9] |
Van Bavel A.P., Hopstaken M.J.P., Curulla D., Niemantsverdriet J.W., Lukkien J.J., Hilbers P.A.J.. Quantification of lateral repulsion between coadsorbed Co and N on Rh(100) using temperature-programmed desorption, low-energy electron diffraction, and Monte Carlo simulations. J Chem Phys. 2003; 119(1): 524-532.
|
[10] |
Al-Sarraf N., King D.A.. Calorimetric adsorption heats on low-index nickel surfaces. Surf Sci. 1994; 307–309(Pt A): 1-7.
|
[11] |
Ghorbanfekr-Kalashami H., Vasu K.S., Nair R.R., Peeters F.M., Neek-Amal M.. Dependence of the shape of graphene nanobubbles on trapped substance. Nat Commun. 2017; 8: 15844.
|
[12] |
Vasu K.S., Prestat E., Abraham J., Dix J., Kashtiban R.J., Beheshtian J.,
|
[13] |
Khestanova E., Guinea F., Fumagalli L., Geim A.K., Grigorieva I.V.. Universal shape and pressure inside bubbles appearing in van der Waals heterostructures. Nat Commun. 2016; 7: 12587.
|
[14] |
Zamborlini G., Imam M., Patera L.L., Menteş T.O., Stojić N., Africh C.,
|
[15] |
Parsonage N.G.. Monte Carlo studies of a two-dimensional commensurate-incommensurate system—effects of change of particle size and interaction parameters at constant number density. J Chem Soc Faraday Trans. 1992; 88(6): 777-787.
|
[16] |
Rittner F., Boddenberg B., Bojan M.J., Steele W.A.. Adsorption of nitrogen on rutile(110): Monte Carlo computer simulations. Langmuir. 1999; 15(4): 1456-1462.
|
[17] |
Nguyen V.T., Do D.D., Nicholson D.. On the heat of adsorption at layering transitions in adsorption of noble gases and nitrogen on graphite. J Phys Chem C. 2010; 114(50): 22171-22180.
|
[18] |
Aranovich G.L., Donohue M.D.. Adsorption compression: an important new aspect of adsorption behavior and capillarity. Langmuir. 2003; 19(7): 2722-2735.
|
[19] |
Wetzel T.E., Erickson J.S., Donohue P.S., Charniak C.L., Aranovich G.L., Donohue M.D.. Monte Carlo simulations on the effect of substrate geometry on adsorption and compression. J Chem Phys. 2004; 120(24): 11765-11774.
|
[20] |
Long Y., Palmer J.C., Coasne B., Śliwinska-Bartkowiak M., Gubbins K.E.. Pressure enhancement in carbon nanopores: a major confinement effect. Phys Chem Chem Phys. 2011; 13(38): 17163-17170.
|
[21] |
Śliwińska-Bartkowiak M., Drozdowski H., Kempiński M., Jażdżewska M., Long Y., Palmer J.C.,
|
[22] |
Long Y., Palmer J.C., Coasne B., Śliwinska-Bartkowiak M., Gubbins K.E.. Under pressure: quasi-high pressure effects in nanopores. Microporous Mesoporous Mater. 2012; 154(19): 19-23.
|
[23] |
Abaza S., Aranovich G.L., Donohue M.D.. Adsorption compression in surface layers. Mol Phys. 2012; 110(11–12): 1289-1298.
|
[24] |
Long Y., Śliwinska-Bartkowiak M., Drozdowski H., Kempinski M., Phillips K.A., Palmer J.C.,
|
[25] |
Long Y., Palmer J.C., Coasne B., Śliwinska-Bartkowiak M., Jackson G., Müller E.A.,
|
[26] |
Coasne B., Long Y., Gubbins K.E.. Pressure effects in confined nanophases. Mol Simul. 2014; 40(7–9): 721-730.
|
[27] |
Addington C.K., Mansell J.M., Gubbins K.E.. Computer simulation of conductive linear sulfur chains confined in carbon nanotubes. Mol Simul. 2017; 43(7): 519-525.
|
[28] |
Srivastava D., Santiso E.E., Gubbins K.E.. Pressure enhancement in confined fluids: effect of molecular shape and fluid-wall interactions. Langmuir. 2017; 33(42): 11231-11245.
|
[29] |
Schofield P., Henderson J.R.. Statistical mechanics of inhomogeneous fluids. Proc R Soc A. 1982; 379(1776): 231-246.
|
[30] |
Gray C.G., Gubbins K.E., Joslin C.G.. Theory of molecular fluids. 2. Applications.
|
[31] |
Addington C.K., Long Y., Gubbins K.E.. The pressure in interfaces having cylindrical geometry. J Chem Phys. 2018; In press
|
[32] |
Irving J.H., Kirkwood J.G.. The statistical mechanical theory of transport processes. IV. The equations of hydrodynamics. J Chem Phys. 1950; 18(6): 817-829.
|
[33] |
Shi K., Gu K., Shen Y., Srivastava D., Santiso E.E., Gubbins K.E.. High density equation of state for a two-dimensional Lennard-Jones solid. J Chem Phys. 2018; 148(17): 174505.
|
[34] |
Günther G., Prass J., Paris O., Schoen M.. Novel insights into nanopore deformation caused by capillary condensation. Phys Rev Lett. 2008; 101(8): 086104.
|
[35] |
Urita K., Shiga Y., Fujimori T., Iiyama T., Hattori Y., Kanoh H.,
|
[36] |
Cui S.T., McCabe C., Cummings P.T., Cochran H.D.. Molecular dynamics study of the nano-rheology of n-dodecane confined between planar surfaces. J Chem Phys. 2003; 118(19): 8941-8944.
|
[37] |
Kumacheva E., Klein J.. Simple liquids confined to molecularly thin layers. II. Shear and frictional behavior of solidified films. J Chem Phys. 1998; 108(16): 7010-7022.
|
[38] |
Klein J., Kumacheva E.. Simple liquids confined to molecularly thin layers. I. Confinement-induced liquid-to-solid phase transitions. J Chem Phys. 1998; 108(16): 6996-7009.
|
[39] |
Klein J., Kumacheva E.. Confinement-induced phase transitions in simple liquids. Science. 1995; 269(5225): 816-819.
|
[40] |
Hu H.W., Carson G.A., Granick S.. Relaxation time of confined liquids under shear. Phys Rev Lett. 1991; 66(21): 2758-2761.
|
[41] |
Fujiwara Y., Nishikawa K., Iijima T., Kaneko K.. Simulation of small-angle X-ray scattering behavior of activated carbon fibers adsorbing water. J Chem Soc Faraday Trans. 1991; 87(17): 2763-2768.
|
[42] |
Asaumi K., Mori T.. High-pressure optical absorption and X-ray-diffraction studies in RbI and KI approaching the metallization transition. Phys Rev B. 1983; 28(6): 3529-3533.
|
[43] |
Casco M.E., Silvestre-Albero J., Ramírez-Cuesta A.J., Rey F., Jordá J.L., Bansode A.,
|
[44] |
Fu Q., Bao X.. Surface chemistry and catalysis confined under two-dimensional materials. Chem Soc Rev. 2017; 46(7): 1842-1874.
|
[45] |
Novoselov K.S., Mishchenko A., Carvalho A., Castro Neto A.H.. 2D materials and van der Waals heterostructures. Science. 2016; 353(6298): aac9439.
|
[46] |
Lim C.H., Nesladek M., Loh K.P.. Observing high-pressure chemistry in graphene bubbles. Angew Chem Int Ed. 2014; 53(1): 215-219.
|
[47] |
Lim C.H., Sorkin A., Bao Q., Li A., Zhang K., Nesladek M.,
|
[48] |
Kaneko K., Fukuzaki N., Kakei K., Suzuki T., Ozeki S.. Enhancement of NO dimerization by micropore fields of activated carbon-fibers. Langmuir. 1989; 5(4): 960-965.
|
[49] |
Byl O., Kondratyuk P., Yates J.T.. Adsorption and dimerization of NO inside single-walled carbon nanotubes—an infrared spectroscopic study. J Phys Chem B. 2003; 107(18): 4277-4279.
|
[50] |
Lísal M., Brennan J.K., Smith W.R.. Chemical reaction equilibrium in nanoporous materials: NO dimerization reaction in carbon slit nanopores. J Chem Phys. 2006; 124(6): 064712.
|
[51] |
Tripathi S., Chapman W.G.. A density functional approach to chemical reaction equilibria in confined systems: application to dimerization. J Chem Phys. 2003; 118(17): 7993-8003.
|
[52] |
Turner C.H., Johnson J.K., Gubbins K.E.. Effect of confinement on chemical reaction equilibria: the reactions 2NO ⇔ (NO)2 and N2 + 3H2 ⇔ 2NH3 in carbon micropores. J Chem Phys. 2001; 114(4): 1851-1859.
|
[53] |
Srivastava D., Turner C.H., Santiso E.E., Gubbins K.E.. The nitric oxide dimer reaction in carbon nano-pores. J Phys Chem B. 2018; 122(13): 3604-3614.
|
[54] |
Marshall W.L., Franck E.U.. Ion product of water substance, 0–1000 °C, 1–10 000 bars new international formulation and its background. J Phys Chem Ref Data. 1981; 10(2): 295-304.
|
[55] |
Ding Y., Zhang G.T., Wu H., Hai B., Wang L.B., Qian Y.T.. Nanoscale magnesium hydroxide and magnesium oxide powders: control over size, shape, and structure via hydrothermal synthesis. Chem Mater. 2001; 13(2): 435-440.
|
[56] |
Fujimori T., Morelos-Gómez A., Zhu Z., Muramatsu H., Futamura R., Urita K.,
|
[57] |
Fujimori T., dos Santos R.B., Hayashi T., Endo M., Kaneko K., Tománek D.. Formation and properties of selenium double-helices inside double-wall carbon nanotubes: experiment and theory. ACS Nano. 2013; 7(6): 5607-5613.
|
[58] |
Medeiros P.V.C., Marks S., Wynn J.M., Vasylenko A., Ramasse Q.M., Quigley D.,
|
[59] |
Stillinger F.H., Weber T.A.. Molecular dynamics study of chemical reactivity in liquid sulfur. J Phys Chem. 1987; 91(19): 4899-4907.
|
[60] |
Chipot C., Pohorille A.. Free energy calculations.
|
[61] |
Hu Y., Huang L., Zhao S., Liu H., Gubbins K.E.. Effect of confinement in nano-porous materials on the solubility of a supercritical gas. Mol Phys. 2016; 114(22): 3294-3306.
|
[62] |
Streett W.B.. Gas-gas equilibrium: high pressure limits. Can J Chem Eng. 1974; 52(1): 92-97.
|
[63] |
Schneider G.M.. High pressure thermodynamics of mixtures. Pure Appl Chem. 1976; 47(4): 277-291.
|
[64] |
Rowlinson J.S., Swinton F.L.. Liquids and liquid mixtures. 3rd ed.
|
[65] |
Schneider G.M.. High pressure investigations on fluid systems—a challenge to experiment, theory, and application. J Chem Thermodyn. 1991; 23(4): 301-326.
|
[66] |
Minomura S.. Pressure-induced insulator-metal transition. In:
|
[67] |
Chacham H, Zhu X, Louie SG. Pressure-induced insulator-metal transitions in solid xenon and hydrogen: a first-principles quasiparticle study. Phys Rev B 1992;46(11):6688–99; Erratum in: Phys Rev B 1993;48(3):2025.
|
[68] |
Hemley R.J., Ashcroft N.W.. The revealing role of pressure in the condensed matter sciences. Phys Today. 1998; 51(8): 26-32.
|
[69] |
Imada M., Fujimori A., Tokura Y.. Metal-insulator transitions. Rev Mod Phys. 1998; 70(4): 1039-1263.
|
Keith E. Gubbins, Kai Gu, Liangliang Huang, Yun Long, J. Matthew Mansell, Erik E. Santiso, Kaihang Shi, Małgorzata Śliwińska-Bartkowiak, and Deepti Srivastava declare that they have no conflict of interest or financial conflicts to disclose.
/
〈 |
|
〉 |