Progress in the Physisorption Characterization of Nanoporous Gas Storage Materials

Katie A. Cychosz, Matthias Thommes

Engineering ›› 2018, Vol. 4 ›› Issue (4) : 559-566.

PDF(1940 KB)
PDF(1940 KB)
Engineering ›› 2018, Vol. 4 ›› Issue (4) : 559-566. DOI: 10.1016/j.eng.2018.06.001
Research
Research Green Industrial Processes—Review

Progress in the Physisorption Characterization of Nanoporous Gas Storage Materials

Author information +
History +

Abstract

Assessing the adsorption properties of nanoporous materials and determining their structural characterization is critical for progressing the use of such materials for many applications, including gas storage. Gas adsorption can be used for this characterization because it assesses a broad range of pore sizes, from micropore to mesopore. In the past 20 years, key developments have been achieved both in the knowledge of the adsorption and phase behavior of fluids in ordered nanoporous materials and in the creation and advancement of state-of-the-art approaches based on statistical mechanics, such as molecular simulation and density functional theory. Together with high-resolution experimental procedures for the adsorption of subcritical and supercritical fluids, this has led to significant advances in physical adsorption textural characterization. In this short, selective review paper, we discuss a few important and central features of the underlying adsorption mechanisms of fluids in a variety of nanoporous materials with well-defined pore structure. The significance of these features for advancing physical adsorption characterization and gas storage applications is also discussed.

Keywords

Adsorption / Characterization / High-pressure adsorption / Nanoporous materials

Cite this article

Download citation ▾
Katie A. Cychosz, Matthias Thommes. Progress in the Physisorption Characterization of Nanoporous Gas Storage Materials. Engineering, 2018, 4(4): 559‒566 https://doi.org/10.1016/j.eng.2018.06.001

References

[1]
Thommes M., Kaneko K., Neimark A.V., Olivier J.P., Rodriguez-Reinoso F., Rouquerol J., . Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report). Pure Appl Chem. 2015; 87(9–10): 1051-1069.
[2]
Thommes M.. Textural characterization of zeolites and ordered mesoporous materials by physical adsorption. In: editor. Introduction to zeolite science and practice. Amsterdam: Elsevier Ltd.; 2007. p. 495-523.
[3]
Thommes M., Cychosz K.A.. Physical adsorption characterization of nanoporous materials: progress and challenges. Adsorption. 2014; 20(2–3): 233-250.
[4]
Cychosz K.A., Guillet-Nicolas R., Garcia-Martinez J., Thommes M.. Recent advances in the textural characterization of hierarchically structured nanoporous materials. Chem Soc Rev. 2017; 46(2): 389-414.
[5]
Thommes M., Cychosz K.A., Neimark A.V.. Advanced physical adsorption characterization of nanoporous carbons. In: editor. Novel carbon adsorbents. Amsterdam: Elsevier Ltd.; 2012. p. 107-145.
[6]
Senkovska I., Cychosz K.A., Llewellyn P., Thommes M., Kaskel S.. Adsorption methodology. In: editor. The chemistry of metal-organic frameworks: synthesis, characterization, and applications. New York: John Wiley & Sons; 2016. p. 575-605.
[7]
Lässig D., Lincke J., Moellmer J., Reichenbach C., Moeller A., Gläser R., . A microporous copper metal-organic framework with high H2 and CO2 adsorption capacity at ambient pressure. Angew Chem Int Ed. 2011; 50(44): 10344-10348.
[8]
Silvestre-Albero J., Silvestre-Albero A., Rodriguez-Reinoso F., Thommes M.. Physical characterization of activated carbons with narrow microporosity by nitrogen (77.4 K), carbon dioxide (273 K) and argon (87.3 K) adsorption in combination with immersion calorimetry. Carbon. 2012; 50(9): 3128-3133.
[9]
Neimark A.V., Coudert F.X., Boutin A., Fuchs A.H.. Stress-based model for the breathing of metal-organic frameworks. J Phys Chem Lett. 2010; 1(1): 445-449.
[10]
Landers J., Gor G.Y., Neimark A.V.. Density functional theory methods for characterization of porous materials. Colloids Surf A Physicochem Eng Asp. 2013; 437: 3-32.
[11]
Monson P.A.. Contact angles, pore condensation, and hysteresis: insights from a simple molecular model. Langmuir. 2008; 24(21): 12295-12302.
[12]
Monson P.A.. Understanding adsorption/desorption hysteresis for fluids in mesoporous materials using simple molecular models and classical density functional theory. Microporous Mesoporous Mater. 2012; 160: 47-66.
[13]
Ravikovitch P.I., Neimark A.V.. Density functional theory of adsorption in spherical cavities and pore size characterization of templated nanoporous silicas with cubic and three-dimensional hexagonal structures. Langmuir. 2002; 18(5): 1550-1560.
[14]
Ravikovitch P.I., Neimark A.V.. Experimental confirmation of different mechanisms of evaporation from ink-bottle type pores: equilibrium, pore blocking, and cavitation. Langmuir. 2002; 18(25): 9830-9837.
[15]
Thommes M., Smarsly B.M., Groenewolt M., Ravikovitch P.I., Neimark A.V.. Adsorption hysteresis of nitrogen and argon in pore networks and characterization of novel micro- and mesoporous silicas. Langmuir. 2006; 22(2): 756-764.
[16]
Van Bemmelen J.M.. Die Absorption. Des Wasser in den Kolloïden, besonders in dem Gel der Kieselsäure. Anorg Allg Chem. 1897; 13(1): 233-356. German
[17]
Everett D.H.. The solid-gas interface.
[18]
Cychosz K.A., Guo X., Fan W., Cimino R., Gor G.Y., Tsapatsis M., . Characterization of the pore structure of three-dimensionally ordered mesoporous carbons using high resolution gas sorption. Langmuir. 2012; 28(34): 12647-12654.
[19]
Cimino R., Cychosz K.A., Thommes M., Neimark A.V.. Experimental and theoretical studies of scanning adsorption-desorption isotherms. Colloids Surf A Physicochem Eng Asp. 2013; 437: 76-89.
[20]
Galarneau A., Desplantier D., Dutartre R., Di Renzo F.. Micelle-templated silicates as a test bed for methods of mesopore size evaluation. Microporous Mesoporous Mater. 1999; 27(2–3): 297-308.
[21]
Rouquerol F., Rouquerol J., Peres C., Grillet Y., Boudellal M.. Calorimetric study of nitrogen and argon adsorption on porous silicas. In: editor. Characterization of porous solids. Luton: The Society of Chemical Industry; 1979. p. 107-116.
[22]
Jelinek L., Kovats E.. True surface area from nitrogen adsorption experiments. Langmuir. 1994; 10(11): 4225-4231.
[23]
Thommes M., Köhn R., Fröba M.. Sorption and pore condensation behavior of pure fluids in mesoporous MCM-48 silica, MCM-41 silica, SBA-15 silica and controlled-pore glass at temperatures above and below the bulk triple point. Appl Surf Sci. 2002; 196(1–4): 239-249.
[24]
Lastoskie C., Gubbins K.E., Quirke N.. Pore size distribution analysis of microporous carbons: a density functional theory approach. J Phys Chem. 1993; 97(18): 4786-4796.
[25]
Olivier J.P., Conklin W.B., Szombathely M.V.. Determination of pore size distribution from density functional theory: a comparison of nitrogen and argon results. Stud Surf Sci Catal. 1994; 87: 81-89.
[26]
Neimark A.V.. The method of indeterminate Lagrange multipliers in nonlocal density functional theory. Langmuir. 1995; 11(10): 4183-4184.
[27]
Moellmer J., Celer E.B., Luebke R., Cairns A.J., Staudt R., Eddaoudi M., . Insights on adsorption characterization of metal-organic frameworks: a benchmark study on the novel soc-MOF. Microporous Mesoporous Mater. 2010; 129(3): 345-353.
[28]
Bandosz T.J., Briggs M.J., Gubbins K.E., Hattori Y., Iiyama T., Kaneko K., . Molecular models of porous carbons. In: editor. Chemistry & physics of carbon. New York: Marcel Dekker; 2003. p. 41-228.
[29]
Thomson K.T., Gubbins K.E.. Modeling structural morphology of microporous carbons by reverse monte carlo. Langmuir. 2000; 16(13): 5761-5773.
[30]
Nguyen T.X., Cohaut N., Bae J.S., Bhatia S.K.. New method for atomistic modeling of the microstructure of activated carbons using hybrid reverse Monte Carlo simulation. Langmuir. 2008; 24(15): 7912-7922.
[31]
Soares Maia D.A., de Oliveria J.C.A., Toso J.P., Sapag K., López R.H., Azevedo D.C.S., . Characterization of the PSD of activated carbons from peach stones for separation of combustion gas mixtures. Adsorption. 2011; 17(5): 853-861.
[32]
Jagiello J., Olivier J.P.. A simple two-dimensional NLDFT model of gas adsorption in finite carbon pores. Application to pore structure analysis. J Phys Chem C. 2009; 113(45): 19382-19385.
[33]
Neimark A.V., Lin Y., Ravikovitch P.I., Thommes M.. Quenched solid density functional theory and pore size analysis of micro-mesoporous carbons. Carbon. 2009; 47(7): 1617-1628.
[34]
Gor G.Y., Thommes M., Cychosz K.A., Neimark A.V.. Quenched solid density functional theory method for characterization of mesoporous carbons by nitrogen adsorption. Carbon. 2012; 50(4): 1583-1590.
[35]
Hu X., Radosz M., Cychosz K.A., Thommes M.. CO2-filling capacity and selectivity of carbon nanopores: synthesis, texture, and pore-size distribution from quenched-solid density functional theory (QSDFT). Environ Sci Technol. 2011; 45(16): 7068-7074.
[36]
Cairns A.J., Eckert J., Wojtas L., Thommes M., Wallacher D., Georgiev P.A., . Gaining insights on the H2-sorbent interactions: robust soc-MOF platform as a case study. Chem Mater. 2016; 28(20): 7353-7361.
[37]
Wu H., Thibault C.G., Wang H., Cychosz K.A., Thommes M., Li J.. Effect of temperature on hydrogen and carbon dioxide adsorption hysteresis in an ultramicroporous MOF. Microporous Mesoporous Mater. 2016; 219: 186-189.
[38]
Paraknowitsch J.P., Thomas A.. Doping carbons beyond nitrogen: an overview of advanced heteroatom doped carbons with boron, sulphur, and phosphorus for energy applications. Energy Environ Sci. 2013; 6(10): 2839-2855.
[39]
Sevilla M., Valle-Vigón P., Fuertes A.B.. N-doped polypyrrole-based porous carbons for CO2 capture. Adv Funct Mater. 2011; 21(14): 2781-2787.
[40]
Ashourirad B., Arab P., Islamoglu T., Cychosz K.A., Thommes M., El-Kaderi H.M.. A cost-effective synthesis of heteroatom-doped porous carbons as efficient CO2 sorbents. J Mater Chem A Mater Energy Sustain. 2016; 4(38): 14693-14702.

RIGHTS & PERMISSIONS

2018 THE AUTHORS
AI Summary AI Mindmap
PDF(1940 KB)

Accesses

Citations

Detail

Sections
Recommended

/