The Potential Role of Powdery Mildew-Resistance Gene Pm40 in Chinese Wheat-Breeding Programs in the Post-Pm21 Era

Shengwen Tang, Yuting Hu, Shengfu Zhong, Peigao Luo

PDF(607 KB)
PDF(607 KB)
Engineering ›› 2018, Vol. 4 ›› Issue (4) : 500-506. DOI: 10.1016/j.eng.2018.06.004
Research
Research Crop Genetics and Breeding—Perspective

The Potential Role of Powdery Mildew-Resistance Gene Pm40 in Chinese Wheat-Breeding Programs in the Post-Pm21 Era

Author information +
History +

Abstract

Powdery mildew, which is caused by Blumeria graminis f. sp. tritici (Bgt), is an important leaf disease that affects wheat yield. Powdery mildew-resistance (Pm) gene Pm21 was first transferred into wheat in the 1980s, by translocating the Heuchera villosa chromosome arm 6VS to the wheat chromosome arm 6AL (6VS·6AL). Recently, new Bgt isolates that are virulent to Pm21 have been identified in some wheat fields, indicating that wheat breeders should be aware of the risk of deploying Pm21, although pathological details regarding these virulent isolates still remain to be discovered. Pm40 was identified and mapped on the wheat chromosome arm 7BS from several wheat lines developed from the progenies of a wild cross between wheat and Thinopyrum intermedium. Pm40 offers a broad spectrum of resistance to Bgt, which suggests that it is likely to provide potentially durable resistance. Cytological methods did not detect any large alien chromosomal segment in the wheat lines carrying Pm40. Lines with Pm40 and promising agronomical traits have been released by several wheat-breeding programs in the past several years. Therefore, we believe that Pm40 will play a role in powdery mildew-resistance wheat breeding after Pm21 resistance is overcome by Bgt isolates. In addition, both Pm21 and Pm40 were derived from alien species, suggesting that the resistance genes derived from alien species are potentially more durable or effective than those identified from wheat.

Keywords

Wheat / Powdery mildew / Pm21 / Pm40 / Alien species / Native resistance

Cite this article

Download citation ▾
Shengwen Tang, Yuting Hu, Shengfu Zhong, Peigao Luo. The Potential Role of Powdery Mildew-Resistance Gene Pm40 in Chinese Wheat-Breeding Programs in the Post-Pm21 Era. Engineering, 2018, 4(4): 500‒506 https://doi.org/10.1016/j.eng.2018.06.004

References

[[1]]
Zhao Z., Sun H., Song W., Lu M., Huang J., Wu L., . Genetic analysis and detection of the gene MlLX99 on chromosome 2BL conferring resistance to powdery mildew in the wheat cultivar Liangxing 99. Theor Appl Genet. 2013; 126(12): 3081-3089.
[[2]]
Luo P.G., Hu X.Y., Chang Z.J., Zhang M., Zhang H.Q., Ren Z.L.. A new stripe rust resistance gene transferred from Thinopyrum intermedium to hexaploid wheat (Triticum aestivum). Phytoprotection. 2009; 90(2): 57-63.
[[3]]
Ma P., Xu H., Han G., Luo Q., Xu Y., Zhang X., . Characterization of a segregation distortion locus with powdery mildew resistance in a wheat–Thinopyrum intermedium introgression line WE99. Plant Dis. 2016; 100(8): 1541-1547.
[[4]]
Zhong S., Ma L., Fatima S.A., Yang J., Chen W., Liu T., . Collinearity analysis and high-density genetic mapping of the wheat powdery mildew resistance gene Pm40 in PI672538. PLoS One. 2016; 11(10): e0164815.
[[5]]
Shen X.K., Ma L.X., Zhong S.F., Liu N., Zhang M., Chen W.Q., . Identification and genetic mapping of the putative Thinopyrum intermedium-derived dominant powdery mildew resistance gene PmL962 on wheat chromosome arm 2BS. Theor Appl Genet. 2015; 128(3): 517-528.
[[6]]
Wiersma A.T., Pulman J.A., Brown L.K., Cowger C., Olson E.L.. Identification of Pm58 from Aegilops tauschii. Theor Appl Genet. 2017; 130(6): 1123-1133.
[[7]]
Hsam S.L.K., Huang X.Q., Ernst F., Hartl L., Zeller F.J.. Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em Thell.). 5. Alleles at the Pm1 locus. Theor Appl Genet. 1998; 96(8): 1129-1134.
[[8]]
Singrün Ch, Hsam S.L.K., Hartl L., Zeller F.J., Mohler V.. Powdery mildew resistance gene Pm22 in cultivar Virest is a member of the complex Pm1 locus in common wheat (Triticum aestivum L. em Thell.). Theor Appl Genet. 2003; 106(8): 1420-1424.
[[9]]
Hao Y., Liu A., Wang Y., Feng D., Gao J., Li X., . Pm23: a new allele of Pm4 located on chromosome 2AL in wheat. Theor Appl Genet. 2008; 117(8): 1205-1212.
[[10]]
Hsam S.L.K., Zeller F.J.. Evidence of allelism between genes Pm8 and Pm17 and chromosomal location of powdery mildew and leaf rust resistance genes in the common wheat cultivar “Amigo”. Plant Breed. 1997; 116(2): 119-122.
[[11]]
Xie W., Ben-David R., Zeng B., Dinoor A., Xie C., Sun Q., . Suppressed recombination rate in 6VS/6AL translocation region carrying the Pm21 locus introgressed from Haynaldia villosa into hexaploid wheat. Mol Breed. 2012; 29(2): 399-412.
[[12]]
Gao H., Zhu F., Jiang Y., Wu J., Yan W., Zhang Q., . Genetic analysis and molecular mapping of a new powdery mildew resistant gene Pm46 in common wheat. Theor Appl Genet. 2012; 125(5): 967-973.
[[13]]
Briggle L.W., Sears E.R.. Linkage of resistance to Erysiphe graminis f. sp. tritici (Pm3) and hairy glume (Hg) on chromosome 1A of wheat. Crop Sci. 1966; 6(6): 559-561.
[[14]]
Briggle L.W.. Three loci in wheat involving resistance to Erysiphe graminis f. sp. tritici. Crop Sci. 1966; 6(5): 461-465.
[[15]]
Zeller F.J., Lutz J., Stephan U.. Chromosome location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L.) 1. Mlk and other alleles at the Pm3 locus. Euphytica. 1993; 68(3): 223-239.
[[16]]
Zeller F.J., Hsam S.L.K.. Progress in breeding for resistance to powdery mildew in common wheat (Triticum aestivum L.). In: editor. Proceedings of the 9th International Wheat Genetics Symposium; 1998 Aug 2–7; Saskatoon, SK, Canada. Saskatoon: University of Saskatchewan; 1998. p. 178-180.
[[17]]
Yahiaoui N., Kaur N., Keller B.. Independent evolution of functional Pm3 resistance genes in wild tetraploid wheat and domesticated bread wheat. Plant J. 2009; 57(5): 846-856.
[[18]]
Bhullar N.K., Street K., Mackay M., Yahiaoui N., Keller B.. Unlocking wheat genetic resources for the molecular identification of previously undescribed functional alleles at the Pm3 resistance locus. Proc Natl Acad Sci USA. 2009; 106(23): 9519-9524.
[[19]]
Heun M., Friebe B.. Introgression of powdery mildew resistance from rye into wheat. Phytopathology. 1990; 80: 242-245.
[[20]]
Shi A.N., Leath S., Murphy J.P.. A major gene for powdery mildew resistance transferred to common wheat from wild einkorn wheat. Phytopathology. 1998; 88(2): 144-147.
[[21]]
Mohler V., Bauer C., Schweizer G., Kempf H., Hartl L.. Pm50: a new powdery mildew resistance gene in common wheat derived from cultivated emmer. J Appl Genet. 2013; 54(3): 259-263.
[[22]]
Ma Z.Q., Sorrells M.E., Tanksley S.D.. RFLP markers linked to powdery mildew resistance genes Pm1, Pm2, Pm3, and Pm4 in wheat. Genome. 1994; 37(5): 871-875.
[[23]]
McIntosh R.A., Bennett F.G.. Cytogenetical studies in wheat. IX. Monosomic analyses, telocentric mapping and linkage relationships of genes Sr21, Pm4 and Mle. Aust. J Biol Sci. 1979; 32(1): 115-126.
[[24]]
Yi Y., Liu H., Huang X., An L., Wang F., Wang X.. Development of molecular markers linked to the wheat powdery mildew resistance gene Pm4b and marker validation for molecular breeding. Plant Breed. 2008; 127(2): 116-120.
[[25]]
Schmolke M., Mohler V., Hartl L., Zeller F.J., Hsam S.L.K.. A new powdery mildew resistance allele at the Pm4 wheat locus transferred from einkorn (Triticum monococcum). Mol Breed. 2012; 29(2): 449-456.
[[26]]
Alam M.A., Xue F., Wang C., Ji W.. Powdery mildew resistance genes in wheat: identification and genetic analysis. J Mol Biol Res. 2011; 1(1): 1-20.
[[27]]
Reader S.M., Miller T.E.. The introduction into bread wheat of a major gene for resistance to powdery mildew from wild emmer wheat. Euphytica. 1991; 53(1): 57-60.
[[28]]
Zhang R., Sun B., Chen J., Cao A., Xing L., Feng Y., . Pm55, a developmental-stage and tissue-specific powdery mildew resistance gene introgressed from Dasypyrum villosum into common wheat. Theor Appl Genet. 2016; 129(10): 1975-1984.
[[29]]
Xie C., Sun Q., Ni Z., Yang T., Nevo E., Fahima T.. Identification of resistance gene analogue markers closely linked to wheat powdery mildew resistance gene Pm31. Plant Breed. 2004; 123(2): 198-200.
[[30]]
Chen P., Qi L., Zhou B., Zhang S., Liu D.. Development and molecular cytogenetic analysis of wheat–Haynaldia villosa 6VS/6AL translocation lines specifying resistance to powdery mildew. Theor Appl Genet. 1995; 91(6–7): 1125-1128.
[[31]]
Sears E.R., Briggle L.W.. Mapping the gene Pm1 for resistance to Erysiphe graminis f. sp. tritici on chromosome 7A of wheat. Crop Sci. 1969; 9(1): 96-97.
[[32]]
Neu C., Stein N., Keller B.. Genetic mapping of the Lr20-Pm1 resistance locus reveals suppressed recombination on chromosome arm 7AL in hexaploid wheat. Genome. 2002; 45(4): 737-744.
[[33]]
Hartl L., Mohler V., Zeller F.J.. Hsam SLK, Schweizer G. Identification of AFLP markers closely linked to the powdery mildew resistance genes Pm1c and Pm4a in common wheat (Triticum aestivum L.). Genome. 1999; 42(2): 322-329.
[[34]]
Schneider D.M., Heun M., Fischbeck G.. Inheritance of the powdery mildew resistance gene Pm9 in relation to Pm1 and Pm2 of wheat. Plant Breed. 1991; 107(2): 161-164.
[[35]]
Perugini L.D., Murphy J.P., Marshall D., Brown-Guedira G.. Pm37, a new broadly effective powdery mildew resistance gene from Triticum timopheevii. Theor Appl Genet. 2008; 116(3): 417-425.
[[36]]
Peusha H., Enno T., Priilinn O.. Chromosomal location of powdery mildew resistance genes and cytogenetic analysis of meiosis in common wheat cultivar Meri. Hereditas. 2000; 132(1): 29-34.
[[37]]
Lillemo M., Asalf B., Singh R.P., Huerta-Espino J., Chen X.M., He Z.H., . The adult plant rust resistance loci Lr34/Yr18 and Lr46/Yr29 are important determinants of partial resistance to powdery mildew in bread wheat line Saar. Theor Appl Genet. 2008; 116(8): 1155-1166.
[[38]]
Hsam S.L.K., Lapochkina I.F., Zeller F.J.. Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em Thell.). 8. Gene Pm32 in a wheat-Aegilops speltoides translocation line. Euphytica. 2003; 133(3): 367-370.
[[39]]
Jørgensen J.H., Jensen C.J.. Gene Pm6 for resistance to powdery mildew in wheat. Euphytica. 1973; 22(2): 423.
[[40]]
Qin B., Cao A., Wang H., Chen T., You F., Liu Y., . Collinearity-based marker mining for the fine mapping of Pm6, a powdery mildew resistance gene in wheat. Theor Appl Genet. 2011; 123(2): 207-218.
[[41]]
Rong J.K., Millet E., Manisterski J., Feldman M.. A new powdery mildew resistance gene: introgression from wild emmer into common wheat and RFLP-based mapping. Euphytica. 2000; 115(2): 121-126.
[[42]]
Zhu Z., Zhou R., Kong X., Dong Y., Jia J.. Microsatellite markers linked to 2 powdery mildew resistance genes introgressed from Triticum carthlicum accession PS5 into common wheat. Genome. 2005; 48(4): 585-590.
[[43]]
Hua W., Liu Z., Zhu J., Xie C., Yang T., Zhou Y., . Identification and genetic mapping of pm42, a new recessive wheat powdery mildew resistance gene derived from wild emmer (Triticum turgidum var. dicoccoides). Theor Appl Genet. 2009; 119(2): 223-230.
[[44]]
Piarulli L., Gadaleta A., Mangini G., Signorile M.A., Pasquini M., Blanco A., . Molecular identification of a new powdery mildew resistance gene on chromosome 2BS from Triticum turgidum ssp. dicoccum. Plant Sci. 2012; 196: 101-106.
[[45]]
Zhan H., Li G., Zhang X., Li X., Guo H., Gong W., . Chromosomal location and comparative genomics analysis of powdery mildew resistance gene Pm51 in a putative wheat–Thinopyrum ponticum introgression line. PLoS One. 2014; 9(11): e113455.
[[46]]
Liu W., Koo D.H., Xia Q., Li C., Bai F., Song Y., . Homoeologous recombination-based transfer and molecular cytogenetic mapping of powdery mildew-resistant gene Pm57 from Aegilops searsii into wheat. Theor Appl Genet. 2017; 130(4): 841-848.
[[47]]
Ceoloni C., Signore G.D., Ercoli L., Donini P.. Locating the alien chromatin segment in common wheat–Aegilops longissima mildew resistant transfers. Hereditas. 1992; 116(3): 239-245.
[[48]]
Li G., Fang T., Zhang H., Xie C., Li H., Yang T., . Molecular identification of a new powdery mildew resistance gene Pm41 on chromosome 3BL derived from wild emmer (Triticum turgidum var. dicoccoides). Theor Appl Genet. 2009; 119(3): 531-539.
[[49]]
Friebe B., Heun M., Tuleen N., Zeller F.J., Gill B.S.. Cytogenetically monitored transfer of powdery mildew resistance from rye into wheat. Crop Sci. 1994; 34(3): 621-625.
[[50]]
Hsam S.L., Mohler V., Zeller F.J.. The genetics of resistance to powdery mildew in cultivated oats (Avena sativa L.): current status of major genes. J Appl Genet. 2014; 55(2): 155-162.
[[51]]
Liu Z., Sun Q., Ni Z., Nevo E., Yang T.. Molecular characterization of a novel powdery mildew resistance gene Pm30 in wheat originating from wild emmer. Euphytica. 2002; 123(1): 21-29.
[[52]]
Blanco A., Gadaleta A., Cenci A., Carluccio A.V., Abdelbacki A.M., Simeone R.. Molecular mapping of the novel powdery mildew resistance gene Pm36 introgressed from Triticum turgidum var. dicoccoides in durum wheat. Theor Appl Genet. 2008; 117: 135.
[[53]]
Petersen S., Lyerly J.H., Worthington M.L., Parks W.R., Cowger C., Marshall D.S., . Mapping of powdery mildew resistance gene Pm53 introgressed from Aegilops speltoides into soft red winter wheat. Theor Appl Genet. 2015; 128(2): 303-312.
[[54]]
Tosa Y., Tokunaga H., Ogura H.. Identification of a gene for resistance to wheat grass powdery mildew fungus in the common wheat cultivar Chinese Spring. Genome. 1988; 30(4): 612-614.
[[55]]
Tosa Y., Sakai K.. The genetics of resistance of hexaploid wheat to the wheatgrass powdery mildew fungus. Genome. 1990; 33(2): 225-230.
[[56]]
Hao Y., Parks R., Cowger C., Chen Z., Wang Y., Bland D., . Molecular characterization of a new powdery mildew resistance gene Pm54 in soft red winter wheat. Theor Appl Genet. 2015; 128(3): 465-476.
[[57]]
Jia J., Devos K.M., Chao S., Miller T.E., Reader S.M., Gale M.D.. RFLP-based maps of the homoeologous group-6 chromosomes of wheat and their application in the tagging of Pm12, a powdery mildew resistance gene transferred from Aegilops speltoides to wheat. Theor Appl Genet. 1996; 92(5): 559-565.
[[58]]
Järve K., Peusha H.O., Tsymbalova J., Tamm S., Devos K.M., Enno T.M.. Chromosomal location of a Triticum timopheevii-derived powdery mildew resistance gene transferred to common wheat. Genome. 2000; 43(2): 377-381.
[[59]]
Hsam S.L.K., Huang X., Zeller F.J.. Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em Thell.). 6. Alleles at the Pm5 locus. Theor Appl Genet. 2001; 102(1): 127-133.
[[60]]
Nematollahi G., Mohler V., Wenzel G., Zeller F.J., Hsam S.L.K.. Microsatellite mapping of powdery mildew resistance allele Pm5d from common wheat line IGV1-455. Euphytica. 2008; 159(3): 307-313.
[[61]]
Huang X., Wang L., Xu M., Röder M.S.. Microsatellite mapping of the powdery mildew resistance gene Pm5e in common wheat (Triticum aestivum L.). Theor Appl Genet. 2003; 106(5): 858-865.
[[62]]
Xiao M., Song F., Jiao J., Wang X., Xu H., Li H.. Identification of the gene Pm47 on chromosome 7BS conferring resistance to powdery mildew in the Chinese wheat landrace Hongyanglazi. Theor Appl Genet. 2013; 126(5): 1397-1403.
[[63]]
Law C.N., Wolfe M.S.. Location of genetic factors for mildew resistance and ear emergence time on chromosome 7B of wheat. Can J Genet Cytol. 1966; 8(3): 462-470.
[[64]]
Luo P., Luo H., Chang Z., Zhang H., Zhang M., Ren Z.. Characterization and chromosomal location of Pm40 in common wheat: a new gene for resistance to powdery mildew derived from Elytrigia intermedium. Theor Appl Genet. 2009; 118(6): 1059-1064.
[[65]]
Tosa Y., Tsujimoto H., Ogura H.. A gene involved in the resistance of wheat to wheatgrass powdery mildew fungus. Genome. 1987; 29(6): 850-852.
[[66]]
Huang X.Q., Hsam S.L.K., Zeller F.J., Wenzel G., Mohler V.. Molecular mapping of the wheat powdery mildew resistance gene Pm24 and marker validation for molecular breeding. Theor Appl Genet. 2000; 101(3): 407-414.
[[67]]
Huang X.Q., Röder M.S.. High-density genetic and physical bin mapping of wheat chromosome 1D reveals that the powdery mildew resistance gene Pm24 is located in a highly recombinogenic region. Genetica. 2011; 139(9): 1179-1187.
[[68]]
Xue F., Wang C., Li C., Duan X., Zhou Y., Zhao N., . Molecular mapping of a powdery mildew resistance gene in common wheat landrace Baihulu and its allelism with Pm24. Theor Appl Genet. 2012; 125(7): 1425-1432.
[[69]]
He R., Chang Z., Yang Z., Yuan Z., Zhan H., Zhang X., . Inheritance and mapping of powdery mildew resistance gene Pm43 introgressed from Thinopyrum intermedium into wheat. Theor Appl Genet. 2009; 118(6): 1173-1180.
[[70]]
Ma P., Xu H., Xu Y., Li L., Qie Y., Luo Q., . Molecular mapping of a new powdery mildew resistance gene Pm2b in Chinese breeding line KM2939. Theor Appl Genet. 2015; 128(4): 613-622.
[[71]]
Xu H., Yi Y., Ma P., Qie Y., Fu X., Xu Y., . Molecular tagging of a new broad-spectrum powdery mildew resistance allele Pm2c in Chinese wheat landrace Niaomai. Theor Appl Genet. 2015; 128(10): 2077-2084.
[[72]]
Lutz J., Hsam S.L.K., Limperti E., Zeller F.J., . Chromosomal location of powdery mildew resistance genes in Triticum aestivum L. (common wheat). 2. Genes Pm2 and Pm19 from Aegilops squarrosa L. Heredity. 1995; 74: 152-156.
[[73]]
Qiu Y., Sun X., Zhou R., Kong X., Zhang S., Jia J.. Identification of microsatellite markers linked to powdery mildew resistance gene Pm2 in wheat. Cereal Res Commun. 2006; 34(4): 1267-1273.
[[74]]
Miranda L.M., Murphy J.P., Marshall D., Leath S.. Pm34: a new powdery mildew resistance gene transferred from Aegilops tauschii coss. to common wheat (Triticum aestivum L.). Theor Appl Genet. 2006; 113(8): 1497-1504.
[[75]]
Miranda L.M., Murphy J.P., Marshall D., Cowger C., Leath S.. Chromosomal location of Pm35, a novel Aegilops tauschii derived powdery mildew resistance gene introgressed into common wheat (Triticum aestivum L.). Theor Appl Genet. 2007; 114(8): 1451-1456.
[[76]]
Ma H., Kong Z., Fu B., Li N., Zhang L., Jia H., . Identification and mapping of a new powdery mildew resistance gene on chromosome 6D of common wheat. Theor Appl Genet. 2011; 123: 1099.
[[77]]
Spielmeyer W., McIntosh R.A., Kolmer J., Lagudah E.S.. Powdery mildew resistance and Lr34/Yr18 genes for durable resistance to leaf and stripe rust cosegregate at a locus on the short arm of chromosome 7D of wheat. Theor Appl Genet. 2005; 111(4): 731-735.
[[78]]
Zeller F.J., Kong L., Hartl L., Mohler V.. Hsam SLK. Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em Thell.). 7. Gene Pm29 in line Pova. Euphytica. 2002; 123(2): 187-194.
[[79]]
Tester M., Langridge P.. Breeding technologies to increase crop production in a changing world. Science. 2010; 327(5967): 818-822.
[[80]]
Briggle L.W.. Transfer of resistance to Erysiphe graminis f. sp. tritici from Khapli emmer and Yuma durum to hexaploid wheat. Crop Sci. 1966; 6(5): 459-461.
[[81]]
Zou S.Z., Wang H., Li Y.W., Kong Z.S., Tang D.Z.. The NB-LRR gene Pm60 confers powdery mildew resistance in wheat. New Phytol. 2018; 218(1): 298-309.
[[82]]
Jia J., CMiller T.E., Reader S.M., Gale M.D.. RFLP tagging of a gene Pm12 for powdery mildew resistance in wheat (Triticum aestivum L.). Sci China B Chem Life Sci Earth Sci. 1994; 37(5): 531-537.
[[83]]
Hao M., Liu M., Luo J., Fan C., Yi Y., Zhang L., . Introgression of powdery mildew resistance gene Pm56 on rye chromosome arm 6RS into wheat. Front Plant Sci.. 2018;
[[84]]
Zeller F.J.. 1B/1R wheat-rye chromosome substitutions and translocations. In: editor. Proceedings of the 4th International Wheat Genetics Symposium; 1973 Aug 6–11; Columbia, MO, USA. Columbia: University of Missouri; 1973. p. 209-221.
[[85]]
Luo P., Hu X., Ren Z., Zhang H., Shu K., Yang Z.. Allelic analysis of stripe rust resistance genes on wheat chromosome 2BS. Genome. 2008; 51(11): 922-927.
[[86]]
Hurni S., Brunner S., Stirnweis D., Herren G., Peditto D., McIntosh R.A., . The powdery mildew resistance gene Pm8 derived from rye is suppressed by its wheat ortholog Pm3. Plant J. 2014; 79(6): 904-913.
[[87]]
Luo P., Zhang H., Shu K., Wu X., Zhang H., Ren Z.. The physiological genetic effects of 1BL/1RS translocated chromosome in “stay green” wheat cultivar CN17. Can J Plant Sci. 2009; 89(1): 1-10.
[[88]]
Mohler V., Hsam S.L.K., Zeller F.J., Wenzel G.. An STS marker distinguishing the rye-derived powdery mildew resistance alleles at the Pm8/Pm17 locus of common wheat. Plant Breed. 2001; 120(5): 448-450.
[[89]]
Zeller F.J., Hsam S.L.K.. Chromosomal location of a gene suppressing powdery mildew resistance genes Pm8 and Pm17 in common wheat (Triticum aestivum L. em. Thell.). Theor Appl Genet. 1996; 93(1–2): 38-40.
[[90]]
Ren T., Tang Z., Fu S., Yan B., Tan F., Ren Z., . Molecular cytogenetic characterization of novel wheat-rye T1RS. 1BL translocation lines with high resistance to diseases and great agronomic traits. Front Plant Sci. 2017; 8: 799.
[[91]]
Villareal R.L., Rajaram S., Mujeeb-Kazi A., Toro E.. The effect of chromosome 1B/1R translocation on the yield potential of certain spring wheats (Triticum aestivum L.). Plant Breed. 1991; 106(1): 77-81.
[[92]]
Zimmermann G., Wenisch K., Strass F.. Further results of attempts to combine mildew resistance genes in winter wheat. Vorträge Pflanzenzüchtung. 1984; 6: 85-102.
[[93]]
Lutz J., Limpert E., Bartoš P., Zeller F.J.. Identification of powdery mildew resistance genes in common wheat (Triticum aestivum L.). Plant Breed. 1992; 108(1): 33-39.
[[94]]
El-Shamy M.M., Emara H.M., Mohamed M.E.. Virulence analysis of wheat powdery mildew (Blumeria graminis f. sp. tritici) and effective genes in middle Delta, Egypt. Plant Dis. 2016; 100(9): 1927-1930.
[[95]]
Hurni S., Brunner S., Buchmann G., Herren G., Jordan T., Krukowski P., . Rye Pm8 and wheat Pm3 are orthologous genes and show evolutionary conservation of resistance function against powdery mildew. Plant J. 2013; 76(6): 957-969.
[[96]]
Chen P., Liu D.. Cytogenetic studies of hybrid progenies between Triticum aestivum and Haynaldia villosa. J Nanjing Agric Coll. 1982; 5(4): 1-16. Chinese
[[97]]
Pei G., Chen P., Liu D.. A cytogenetic analysis of some powdery mildew resistant strains of the hybrid progeny between wheat and Haynaldia villosa. J Nanjing Agric Coll. 1986; 9(1): 1-9. Chinese
[[98]]
Li G., Chen P., Zhang S., Wang X., He Z., Zhang Y., . Effects of the 6VS·6AL translocation on agronomic traits and dough properties of wheat. Euphytica. 2007; 155(3): 305-313.
[[99]]
Bie T., Zhao R., Zhu S., Chen S., Cen B., Zhang B., . Development and characterization of marker MBH1 simultaneously tagging genes Pm21 and PmV conferring resistance to powdery mildew in wheat. Mol Breed. 2015; 35: 189.
[[100]]
Song W., Xie C., Du J., Xie H., Liu Q., Ni Z., . A “one-marker-for-two-genes” approach for efficient molecular discrimination of Pm12 and Pm21 conferring resistance to powdery mildew in wheat. Mol Breed. 2009; 23(3): 357-363.
[[101]]
Cao A., Xing L., Wang X., Yang X., Wang W., Sun Y., . Serine/threonine kinase gene Stpk-V, a key member of powdery mildew resistance gene Pm21, confers powdery mildew resistance in wheat. Proc Natl Acad Sci USA. 2011; 108(19): 7727-7732.
[[102]]
Liu N., Liu Z., Gong G., Zhang M., Wang X., Zhou Y., . Virulence structure of Blumeria graminis f. sp. tritici and its genetic diversity by ISSR and SRAP profiling analyses. PLoS One. 2015; 10(6): e0130881.
[[103]]
Shi Y., Wang B., Li Q., Wu X., Wang F., Liu H., . Analysis of the virulent genes of Erysiphe graminis f. sp. tritici and the resistance genes of wheat commercial cultivars in Shaanxi Province. J Triticeae Crops. 2009; 29(4): 706-711. Chinese
[[104]]
Yang L., Xiang L., Zeng F., Wang H., Shi W., Yu D.. Virulence gene structure analysis of Blumeria graminis f. sp. tritici in Hubei. Plant Protection. 2009; 35(5): 76-79.
[[105]]
Zeng F., Yang L., Gong S., Shi W., Zhang X., Wang H., . Virulence and diversity of Blumeria graminis f. sp. tritici populations in China. J Integr Agric. 2014; 13(11): 2424-2437.
[[106]]
Czembor H.J., Domeradzka O., Czembor J.H., Mańkowski D.R.. Virulence structure of the powdery mildew (Blumeria graminis) population occurring on triticale (× Triticosecale) in Poland. J Phytopathol. 2014; 162(7–8): 499-512.
[[107]]
Ma Q., Luo P., Ren Z., Jiang H., Yang Z.. Genetic analysis and chromosomal location of two new genes for resistance to powdery mildew in wheat Triticum aestivum L. Acta Agronomica Sinica. 2007; 33(1): 1-8. Chinese
[[108]]
Young N.D., Tanksley S.D.. RFLP analysis of the size of chromosomal segments retained around the Tm-2 locus of tomato during backcross breeding. Theor Appl Genet. 1989; 77(3): 353-359.
[[109]]
Ma L., Zhong S., Liu N., Chen W., Liu T., Li X., . Expression profile and physiological and biochemical characterization of hexaploid wheat inoculated with Blumeria graminis f. sp. tritici. Physiol MolPlant Pathol. 2015; 90: 39-48.
[[110]]
Li X., Xiang Z., Chen W., Huang Q., Liu T., Li Q., . Reevaluation of two quantitative trait loci for type II resistance to Fusarium head blight in wheat germplasm PI 672538. Phytopathology. 2017; 107(1): 92-99.
[[111]]
Liu Z.H., Xu M., Xiang Z., Li X., Chen W., Luo P.. Registration of the novel wheat lines L658, L693, L696, and L699, which are resistance to Fusarium head blight, stripe rust, and powdery mildew. J Plant Regist. 2015; 9(1): 121-124.
[[112]]
Huang Q., Li X., Chen W., Xiang Z., Zhong S., Chang Z., . Genetic mapping of a putative Thinopyrum intermedium-derived stripe rust resistance gene on wheat chromosome 1B. Theor Appl Genet. 2014; 127(4): 843-853.
[[113]]
Macer RCF. The formal and monosomic genetic analysis of stripe rust (Puccinia striiformis) resistance in wheat. In: Proceedings of the 2nd International Wheat Genetics Symposium; 1963 Aug 18–24; Lund, Sweden; 1963. p. 127–42.
[[114]]
Macer R.C.F.. Plant pathology in a changing world. Trans Br Mycol Soc. 1975; 65(3): IN1,351–67
[[115]]
Gerechter-Amitai Z.K., Silfhout C.V., Grama A., Kleitman F.. Yr15-a new gene for resistance to Puccinia striiformis in Triticum dicoccoides sel. G-25. Euphytica. 1989; 43(1–2): 187-190.
[[116]]
Yildirim A., Jones S.S., Murray T.D., Line R.F.. Evaluation of Dasypyrum villosum populations for resistance to cereal eyespot and stripe rust pathogens. Plant Dis. 2000; 84(1): 40-44.
[[117]]
Dangl J.L., Jones J.D.G.. Plant pathogens and integrated defence responses to infection. Nature. 2001; 411(6839): 826-833.
Acknowledgements

We are grateful to Dr. Hongjie Li of the Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, China, for providing many useful suggestions and for revising this manuscript. We are also grateful for financial support from the National Natural Science Foundation of China (31571661) and the Applied Basic Research Foundation of the Science and Technology Department of Sichuan Province of China (2017JY0012).

Compliance with ethics guidelines

Shengwen Tang, Yuting Hu, Shengfu Zhong, and Peigao Luo declare that they have no conflict of interest or financial conflicts to disclose.

RIGHTS & PERMISSIONS

2018 THE AUTHORS
AI Summary AI Mindmap
PDF(607 KB)

Accesses

Citations

Detail

Sections
Recommended

/