
Uncertainty Quantification for Multivariate Eco-Hydrological Risk in the Xiangxi River within the Three Gorges Reservoir Area in China
Yurui Fan, Guohe Huang, Yin Zhang, Yongping Li
Engineering ›› 2018, Vol. 4 ›› Issue (5) : 617-626.
Uncertainty Quantification for Multivariate Eco-Hydrological Risk in the Xiangxi River within the Three Gorges Reservoir Area in China
This study develops a multivariate eco-hydrological risk-assessment framework based on the multivariate copula method in order to evaluate the occurrence of extreme eco-hydrological events for the Xiangxi River within the Three Gorges Reservoir (TGR) area in China. Parameter uncertainties in marginal distributions and dependence structure are quantified by a Markov chain Monte Carlo (MCMC) algorithm. Uncertainties in the joint return periods are evaluated based on the posterior distributions. The probabilistic features of bivariate and multivariate hydrological risk are also characterized. The results show that the obtained predictive intervals bracketed the observations well, especially for flood duration. The uncertainty for the joint return period in “AND” case increases with an increase in the return period for univariate flood variables. Furthermore, a low design discharge and high service time may lead to high bivariate hydrological risk with great uncertainty.
Flood risk / Copula / Multivariate flood frequency analysis / Distribution / Markov chain Monte Carlo
[1] |
Kidson R., Richards K.S.. Flood frequency analysis: assumption and alternatives. Prog Phys Geogr. 2005; 29(3): 392-410.
|
[2] |
Karmakar S., Simonovic S.P.. Bivariate flood frequency analysis. Part 2: a copula-based approach with mixed marginal distributions. J Flood Risk Manag. 2009; 2(1): 32-44.
|
[3] |
Fan Y., Huang G., Huang K., Baetz B.W.. Planning water resources allocation under multiple uncertainties through a generalized fuzzy two-stage stochastic programming method. IEEE Trans Fuzzy Syst. 2015; 23(5): 1488-1504.
|
[4] |
Fan Y., Huang W., Li Y., Huang G., Huang K.. A coupled ensemble filtering and probabilistic collocation approach for uncertainty quantification of hydrological models. J Hydrol. 2015; 530: 255-272.
|
[5] |
Li Y., Nie S., Huang Z., McBean E.A., Fan Y., Huang G.. An integrated risk analysis method for planning water resource systems to support sustainable development of an arid region. J Environ Inform. 2017; 29(1): 1-15.
|
[6] |
Chebana F., Dabo-Niang S., Ouarda T.B.M.J.. Exploratory functional flood frequency analysis and outlier detection. Water Resour Res. 2012; 48(4): W04514.
|
[7] |
Guo Y., Baetz B.W.. Probabilistic description of runoff and leachate volumes from open windrow composting sites. J Environ Inform. 2017; 30(2): 137-148.
|
[8] |
Chen B., Li P., Wu H., Husain T., Khan F.. MCFP: a Monte Carlo simulation-based fuzzy programming approach for optimization under dual uncertainties of possibility and continuous probability. J Environ Inform. 2017; 29(2): 88-97.
|
[9] |
Reddy J.M., Ganguli P.. Bivariate flood frequency analysis of upper Godavari River flows using Archimedean copulas. Water Resour Manage. 2012; 26(14): 3995-4018.
|
[10] |
Fan Y., Huang W., Huang G., Huang K., Li Y., Kong X.. Bivariate hydrologic risk analysis based on a coupled entropy-copula method for the Xiangxi River in the Three Gorges Reservoir area, China. Theor Appl Climatol. 2016; 125(1–2): 381-397.
|
[11] |
Fan Y., Huang W., Huang G., Li Y., Huang K., Li Z.. Hydrologic risk analysis in the Yangtze River Basin through coupling Gaussian mixtures into copulas. Adv Water Resour. 2016; 88: 170-185.
|
[12] |
Zhang L., Singh V.P.. Bivariate flood frequency analysis using the copula method. J Hydrol Eng. 2006; 11(2): 150-164.
|
[13] |
Sraj M., Bezak N., Brilly M.. Bivariate flood frequency analysis using the copula function: a case study of the Litija Station on the Sava River. Hydrol Processes. 2015; 29(2): 225-238.
|
[14] |
Kao S.C., Govindaraju R.S.. A copula-based joint deficit index for droughts. J Hydrol. 2010; 380(1–2): 121-134.
|
[15] |
Ma M., Song S., Ren L., Jiang S., Song J.. Multivariate drought characteristics using trivariate Gaussian and Student t copulas. Hydrol Processes. 2013; 27(8): 1175-1190.
|
[16] |
Zhang L., Singh V.P.. Bivariate rainfall frequency distributions using Archimedean copulas. J Hydrol. 2007; 332(1–2): 93-109.
|
[17] |
Vandenberghe S., Verhoest N.E.C., De Baets B.. Fitting bivariate copulas to the dependence structure between storm characteristics: a detailed analysis based on 105 year 10 min rainfall. Water Resour Res. 2010; 46(1): W01512.
|
[18] |
Lee T., Salas J.D.. Copula-based stochastic simulation of hydrological data applied to Nile River flows. Hydrol Res. 2011; 42(4): 318-330.
|
[19] |
Kong X., Huang G., Fan Y., Li Y.. Maximum entropy-Gumbel-Hougaard copula method for simulation of monthly streamflow in Xiangxi River, China. Stochastic Environ Res Risk Assess. 2015; 29(3): 833-846.
|
[20] |
Fan Y., Huang G., Baetz B.W., Li Y., Huang K.. Development of a copula-based particle filter (CopPF) approach for hydrologic data assimilation under consideration of parameter interdependence. Water Resour Res. 2017; 53(6): 4850-4875.
|
[21] |
Fan Y., Huang G., Baetz B.W., Li Y., Huang K., Chen X.,
|
[22] |
Chen F., Huang G., Fan Y., Chen J.. A copula-based fuzzy chance-constrained programming model and its application to electric power generation systems planning. Appl Energy. 2017; 187: 291-309.
|
[23] |
Huang C., Nie S., Guo L., Fan Y.. Inexact fuzzy stochastic chance constraint programming for emergency evacuation in Qinshan Nuclear Power Plant under uncertainty. J Environ Inform. 2017; 30(1): 63-78.
|
[24] |
Huang K., Dai L., Yao M., Fan Y., Kong X.. Modelling dependence between traffic noise and traffic flow through an entropy-copula method. J Environ Inform. 2017; 29(2): 134-151.
|
[25] |
Yu L., Li Y., Huang G., Fan Y., Nie S.. A copula-based flexible-stochastic programming method for planning regional energy system under multiple uncertainties: a case study of the urban agglomeration of Beijing and Tianjin. Appl Energy. 2018; 210: 60-74.
|
[26] |
Guo A., Chang J., Wang Y., Huang Q., Zhou S.. Flood risk analysis for flood control and sediment transportation in sandy regions: a case study in the Loess Plateau, China. J Hydrol. 2018; 560: 39-55.
|
[27] |
Guo A., Chang J., Wang Y., Huang Q., Guo Z., Zhou S.. Bivariate frequency analysis of flood and extreme precipitation under changing environment: case study in catchments of the Loess Plateau, China. Stochastic Environ Res Risk Assess. 2018; 32(7): 2057-2074.
|
[28] |
Merz B., Thieken A.H.. Separating natural and epistemic uncertainty in flood frequency analysis. J Hydrol. 2005; 309(1–4): 114-132.
|
[29] |
Liang Z., Chang W., Li B.. Bayesian flood frequency analysis in the light of model and parameter uncertainties. Stochastic Environ Res Risk Assess. 2012; 26(5): 721-730.
|
[30] |
Nelsen R.B.. An introduction to copulas. 2nd ed.
|
[31] |
Ganguli P., Reddy M.J.. Probabilistic assessment of flood risks using trivariate copulas. Theor Appl Climatol. 2013; 111(1–2): 341-360.
|
[32] |
Salvadori G., De Michele C., Kottegoda N.T., Rosso R.. Extremes in nature: an approach using copula. p. 292.
|
[33] |
Salvadori G., De Michele C., Durante F.. On the return period and design in a multivariate framework. Hydrol Earth Syst Sci. 2011; 15(11): 3293-3305.
|
[34] |
Han J.C., Huang G.H., Zhang H., Li Z., Li Y.P.. Bayesian uncertainty analysis in hydrological modeling associated with watershed subdivision level: a case study of SLURP model applied to the Xiangxi River watershed, China. Stochastic Environ Res Risk Assess. 2014; 28(4): 973-989.
|
[35] |
Xu H., Taylor R.G., Kingston D.G., Jiang T., Thompson J.R., Todd M.C.. Hydrological modeling of River Xiangxi using SWAT2005: a comparison of model parameterizations using station and gridded meteorological observations. Quat Int. 2010; 226(1–2): 54-59.
|
[36] |
Yue S.. The bivariate lognormal distribution to model a multivariate flood episode. Hydrol Processes. 2000; 14(14): 2575-2588.
|
[37] |
Yue S.. A bivariate gamma distribution for use in multivariate flood frequency analysis. Hydrol Processes. 2001; 15(6): 1033-1045.
|
[38] |
Adamowski K.. A Monte Carlo comparison of parametric and nonparametric estimation of flood frequencies. J Hydrol. 1989; 108: 295-308.
|
[39] |
Kite G.W.. Frequency and risk analysis in Hydrology.
|
[40] |
De Michele C., Salvadori G.. A generalized Pareto intensity-duration model of storm rainfall exploiting 2-copulas. J Geophys Res. 2003; 108(D2): 4067.
|
This work was jointly funded by the National Natural Science Foundation of China (51520105013 and 51679087) and the National Key Research and Development Plan of China (2016YFC0502800).
Yurui Fan, Guohe Huang, Yin Zhang, and Yongping Li declare that they have no conflict of interest or financial conflicts to disclose.
/
〈 |
|
〉 |