
Development and Future Challenges of Bio-Syncretic Robots
Chuang Zhang, Wenxue Wang, Ning Xi, Yuechao Wang, Lianqing Liu
Engineering ›› 2018, Vol. 4 ›› Issue (4) : 452-463.
Development and Future Challenges of Bio-Syncretic Robots
Bio-syncretic robots consisting of both living biological materials and non-living systems possess desirable attributes such as high energy efficiency, intrinsic safety, high sensitivity, and self-repairing capabilities. Compared with living biological materials or non-living traditional robots based on electromechanical systems, the combined system of a bio-syncretic robot holds many advantages. Therefore, developing bio-syncretic robots has been a topic of great interest, and significant progress has been achieved in this area over the past decade. This review systematically summarizes the development of bio-syncretic robots. First, potential trends in the development of bio-syncretic robots are discussed. Next, the current performance of bio-syncretic robots, including simple movement and controllability of velocity and direction, is reviewed. The living biological materials and non-living materials that are used in bio-syncretic robots, and the corresponding fabrication methods, are then discussed. In addition, recently developed control methods for bio-syncretic robots, including physical and chemical control methods, are described. Finally, challenges in the development of bio-syncretic robots are discussed from multiple viewpoints, including sensing and intelligence, living and non-living materials, control approaches, and information technology.
Bio-syncretic robot / Hybrid robot / Bio-actuator / Cardiomyocyte / Muscle cells
[1] |
Rigelsford J.. Industrial robotics: technology, programming and application. Ind Rob. 1999; 26(1):
|
[2] |
Dogangil G., Davies B.L., Rodriguez y Baena F.. A review of medical robotics for minimally invasive soft tissue surgery. Proc Inst Mech Eng H. 2010; 224(5): 653-679.
|
[3] |
Habib M.K.. Service robots in humanitarian landmine clearance. Science. 1954; 120(3120): 604.
|
[4] |
Park J.S., Kim J.H., Oh Y.H.. Feature vector classification based speech emotion recognition for service robots. IEEE Trans Consum Electron. 2009; 55(3): 1590-1596.
|
[5] |
Mbemmo E, Chen Z, Shatara S, Tan X. Modeling of biomimetic robotic fish propelled by an ionic polymer-metal composite actuator. In: Proceedings of 2008 IEEE International Conference on Robotics and Automation; 2008 May 19–23; Pasadena, CA, USA. 2008. p. 689–94.
|
[6] |
Hirai K., Hirose M., Haikawa Y., Takenaka T.. The development of Honda humanoid robot. IEEE Int Conf Robot Autom. 1998; 2: 1321-1326.
|
[7] |
Chan V., Asada H.H., Bashir R.. Utilization and control of bioactuators across multiple length scales. Lab Chip. 2014; 14(4): 653-670.
|
[8] |
Ricotti L., Menciassi A.. Bio-hybrid muscle cell-based actuators. Biomed Microdevices. 2012; 14(6): 987-998.
|
[9] |
Darnton N., Turner L., Breuer K., Berg H.C.. Moving fluid with bacterial carpets. Biophys J. 2004; 86(3): 1863-1870.
|
[10] |
Wang W., Duan W., Ahmed S., Mallouk T.E., Sen A.. Small power: autonomous nano- and micromotors propelled by self-generated gradients. Nano Today. 2013; 8(5): 531-554.
|
[11] |
Carlsen R.W., Sitti M.. Bio-hybrid cell-based actuators for microsystems. Small. 2014; 10(19): 3831-3851.
|
[12] |
Carlson F.D., Wilkie D.R.. Muscle physiology.
|
[13] |
Jin M., Lee J., Chang P.H., Choi C.. Practical nonsingular terminal sliding-mode control of robot manipulators for high-accuracy tracking control. IEEE Trans Ind Electron. 2009; 56(9): 3593-3601.
|
[14] |
Blanchard C.Z., Waldrop G.L.. Modeling, identification, and control of a pneumatically actuated, force controllable robot. IEEE Trans Rob Autom. 1981; 45 Pt 1(5): 732-742.
|
[15] |
Xi J., Schmidt J.J., Montemagno C.D.. Self-assembled microdevices driven by muscle. Nat Mater. 2005; 4(2): 180-184.
|
[16] |
Feinberg A.W., Feigel A., Shevkoplyas S.S., Sheehy S., Whitesides G.M., Parker K.K.. Muscular thin films for building actuators and powering devices. Science. 2007; 317(5843): 1366-1370.
|
[17] |
Touyama Y., Hoshino T., Iwabuchi K., Morishima K.. Micro-encapsulation of bio-actuator using insect dorsal vessel. In: Proceedings of 2009 International Symposium on Micro-NanoMechatronics and Human Science; 2009 Nov 8–11; Nagoya, Japan. New York: IEEE; 2009. p. 644-649.
|
[18] |
Fujita H., Dau V.T., Shimizu K., Hatsuda R., Sugiyama S., Nagamori E.. Designing of a Si-MEMS device with an integrated skeletal muscle cell-based bio-actuator. Biomed Microdevices. 2011; 13(1): 123-129.
|
[19] |
Akiyama Y., Hoshino T., Iwabuchi K., Morishima K.. Room temperature operable autonomously moving bio-microrobot powered by insect dorsal vessel tissue. PLoS One. 2012; 7(7): e38274.
|
[20] |
Akiyama Y., Odaira K., Sakiyama K., Hoshino T., Iwabuchi K., Morishima K.. Rapidly-moving insect muscle-powered microrobot and its chemical acceleration. Biomed Microdevices. 2012; 14(6): 979-986.
|
[21] |
Chan V., Park K., Collens M.B., Kong H., Saif T.A., Bashir R.. Development of miniaturized walking biological machines. Sci Rep. 2012; 2(1): 857.
|
[22] |
Nawroth J.C., Lee H., Feinberg A.W., Ripplinger C.M., McCain M.L., Grosberg A.,
|
[23] |
Kabumoto K., Hoshino T., Akiyama Y., Morishima K.. Voluntary movement controlled by the surface EMG signal for tissue-engineered skeletal muscle on a gripping tool. Tissue Eng Part A. 2013; 19(15–16): 1695-1703.
|
[24] |
Akiyama Y., Sakuma T., Funakoshi K., Hoshino T., Iwabuchi K., Morishima K.. Atmospheric-operable bioactuator powered by insect muscle packaged with medium. Lab Chip. 2013; 13(24): 4870-4880.
|
[25] |
Cvetkovic C., Raman R., Chan V., Williams B.J., Tolish M., Bajaj P.,
|
[26] |
Williams B.J., Anand S.V., Rajagopalan J., Saif M.T.. A self-propelled biohybrid swimmer at low Reynolds number. Nat Commun. 2014; 5: 3081.
|
[27] |
Holley M.T., Nagarajan N., Danielson C., Zorlutuna P., Park K.. Development and characterization of muscle-based actuators for self-stabilizing swimming biorobots. Lab Chip. 2016; 16(18): 3473-3484.
|
[28] |
Webster V.A., Chapin K.J., Hawley E.L., Patel J.M., Akkus O., Chiel H.J.. Aplysia californica as a novel source of material for biohybrid robots and organic machines. In:
|
[29] |
Raman R., Cvetkovic C., Uzel S.G., Platt R.J., Sengupta P., Kamm R.D.,
|
[30] |
Park S.J., Gazzola M., Park K.S., Park S., Di Santo V., Blevins E.L.,
|
[31] |
Webster V.A., Young F.R., Patel J.M., Scariano G.N., Akkus O., Gurkan U.A.. 3D-printed biohybrid robots powered by neuromuscular tissue circuits from Aplysia californica. In:
|
[32] |
Akiyama Y., Iwabuchi K., Furukawa Y., Morishima K.. Biological contractile regulation of micropillar actuator driven by insect dorsal vessel tissue. In: Proceedings of the 2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics; 2008 Oct 19–22; Scottsdale, AZ, USA. New York: IEEE; 2008. p. 501-505.
|
[33] |
Uesugi K., Shimizu K., Akiyama Y., Hoshino T., Iwabuchi K., Morishima K.. Contractile performance and controllability of insect muscle-powered bioactuator with different stimulation strategies for soft robotics. Soft Robot. 2016; 3(1): 13-22.
|
[34] |
Long X., Ye J., Zhao D., Zhang S.J.. Magnetogenetics: remote non-invasive magnetic activation of neuronal activity with a magnetoreceptor. Sci Bull. 2015; 60(24): 2107-2119.
|
[35] |
Qin S., Yin H., Yang C., Dou Y., Liu Z., Zhang P.,
|
[36] |
Weibel D.B., Garstecki P., Ryan D., DiLuzio W.R., Mayer M., Seto J.E.,
|
[37] |
Zhang C., Xie S.X., Wang W.X., Xi N., Wang Y.C., Liu L.Q.. Bio-syncretic tweezers actuated by microorganisms: modeling and analysis. Soft Matter. 2016; 12(36): 7485-7494.
|
[38] |
Pilarek M., Neubauer P., Marx U.. Biological cardio-micro-pumps for microbioreactors and analytical micro-systems. Sens Actuators B Chem. 2011; 156(2): 517-526.
|
[39] |
Shimizu K., Fujita H., Nagamori E.. Evaluation systems of generated forces of skeletal muscle cell-based bio-actuators. J Biosci Bioeng. 2013; 115(2): 115-121.
|
[40] |
Magdanz V., Medina-Sánchez M., Schwarz L., Xu H., Elgeti J., Schmidt O.G.. Spermatozoa as functional components of robotic microswimmers. Adv Mater. 2017; 29(24): 1606301.
|
[41] |
Liu X., Wang X.. Cardiomyocytes driven piezoelectric nanofiber generator with anisotropic enhancement. In: Proceedings of the 29th International Conference on Micro Electro Mechanical Systems; 2016 Jan 24–28; Shanghai, China. New York: IEEE; 2016. p. 1189-1192.
|
[42] |
Raman R., Grant L., Seo Y., Cvetkovic C., Gapinske M., Palasz A.,
|
[43] |
Turner L., Zhang R., Darnton N.C., Berg H.C.. Visualization of flagella during bacterial swarming. J Bacteriol. 2010; 192(13): 3259-3267.
|
[44] |
Miyamoto T., Kojima M., Nakajima M., Homma M., Fukuda T.. Rotation of bacteria sheet driven micro gear in open micro channel. In: Proceedings of 2012 IEEE International Conference on Robotics and Automation; 2012 May 14–18; Saint Paul, MN, USA. New York: IEEE; 2012. p. 4080-4085.
|
[45] |
Steager E.B., Sakar M.S., Kim D.H., Kumar V., Pappas G.J., Kim M.J.. Electrokinetic and optical control of bacterial microrobots. J Micromech Microeng. 2011; 21(3): 035001.
|
[46] |
Sokolov A., Apodaca M.M., Grzybowski B.A., Aranson I.S.. Swimming bacteria power microscopic gears. Proc Natl Acad Sci USA. 2010; 107(3): 969-974.
|
[47] |
Stanton M.M., Park B.W., Miguel-López A., Ma X., Sitti M., Sánchez S.. Biohybrid microtube swimmers driven by single captured bacteria. Small. 2017; 13(19): 1603679.
|
[48] |
Nerbonne J.M., Kass R.S.. Molecular physiology of cardiac repolarization. Physiol Rev. 2005; 85(4): 1205-1253.
|
[49] |
Tanaka Y., Sato K., Shimizu T., Yamato M., Okano T., Kitamori T.. Biological cells on microchips: new technologies and applications. Biosens Bioelectron. 2007; 23(4): 449-458.
|
[50] |
Yasuda S.I., Sugiura S., Kobayakawa N., Fujita H., Yamashita H., Katoh K.,
|
[51] |
Nishimura S., Yasuda S., Katoh M., Yamada K.P., Yamashita H., Saeki Y.,
|
[52] |
Yin S., Zhang X., Zhan C., Wu J., Xu J., Cheung J.. Measuring single cardiac myocyte contractile force via moving a magnetic bead. Biophys J. 2005; 88(2): 1489-1495.
|
[53] |
Addae-Mensah K.A., Wikswo J.P.. Measurement techniques for cellular biomechanics in vitro. Exp Biol Med. 2008; 233(7): 792-809.
|
[54] |
Zhang C., Wang J., Wang W., Xi N., Wang Y., Liu L.. Modeling and analysis of bio-syncretic micro-swimmers for cardiomyocyte-based actuation. Bioinspir Biomim. 2016; 11(5): 056006.
|
[55] |
Zimmermann W.H., Melnychenko I., Eschenhagen T.. Engineered heart tissue for regeneration of diseased hearts. Biomaterials. 2004; 25(9): 1639-1647.
|
[56] |
Baar K., Birla R., Boluyt M.O., Borschel G.H., Arruda E.M., Dennis R.G.. Self-organization of rat cardiac cells into contractile 3D cardiac tissue. FASEB J. 2005; 19(2): 275-277.
|
[57] |
Radisic M., Park H., Martens T.P., Salazar-Lazaro J.E., Geng W., Wang Y.,
|
[58] |
Tandon N., Cannizzaro C., Chao P.H., Maidhof R., Marsano A., Au H.T.,
|
[59] |
Shin S.R., Jung S.M., Zalabany M., Kim K., Zorlutuna P., Kim S.B.,
|
[60] |
Eschenhagen T., Fink C., Remmers U., Scholz H., Wattchow J., Weil J.,
|
[61] |
Zimmermann W.H., Fink C., Kralisch D., Remmers U., Weil J., Eschenhagen T.. Three-dimensional engineered heart tissue from neonatal rat cardiac myocytes. Biotechnol Bioeng. 2000; 68(1): 106-114.
|
[62] |
Tobita K., Liu L.J., Janczewski A.M., Tinney J.P., Nonemaker J.M., Augustine S.,
|
[63] |
Nagamine K., Kawashima T., Sekine S., Ido Y., Kanzaki M., Nishizawa M.. Spatiotemporally controlled contraction of micropatterned skeletal muscle cells on a hydrogel sheet. Lab Chip. 2011; 11(3): 513-517.
|
[64] |
Ahadian S., Ostrovidov S., Hosseini V., Kaji H., Ramalingam M., Bae H.,
|
[65] |
Chan V., Neal D.M., Uzel S.G., Kim H., Bashir R., Asada H.H.. Fabrication and characterization of optogenetic, multi-strip cardiac muscles. Lab Chip. 2015; 15(10): 2258-2268.
|
[66] |
Asano T., Ishizuka T., Morishima K., Yawo H.. Optogenetic induction of contractile ability in immature C2C12 myotubes. Sci Rep. 2015; 5(1): 8317.
|
[67] |
Bruegmann T., van Bremen T., Vogt C.C., Send T., Fleischmann B.K., Sasse P.. Optogenetic control of contractile function in skeletal muscle. Nat Commun. 2015; 6(1): 7153.
|
[68] |
Alford P.W., Feinberg A.W., Sheehy S.P., Parker K.K.. Biohybrid thin films for measuring contractility in engineered cardiovascular muscle. Biomaterials. 2010; 31(13): 3613-3621.
|
[69] |
Grosberg A., Alford P.W., McCain M.L., Parker K.K.. Ensembles of engineered cardiac tissues for physiological and pharmacological study: heart on a chip. Lab Chip. 2011; 11(24): 4165-4173.
|
[70] |
Benam K.H., Dauth S., Hassell B., Herland A., Jain A., Jang K.J.,
|
[71] |
Tanaka Y., Sato K., Shimizu T., Yamato M., Okano T., Manabe I.,
|
[72] |
Shoji K., Akiyama Y., Suzuki M., Hoshino T., Nakamura N., Ohno H.,
|
[73] |
Lind J.U., Busbee T.A., Valentine A.D., Pasqualini F.S., Yuan H., Yadid M.,
|
[74] |
Rajagopalan J., Saif M.T.A.. Fabrication of freestanding 1D PDMS microstructures using capillary micromolding. J Microelectromech Syst. 2013; 22(5): 992-994.
|
[75] |
In:
|
[76] |
Gutmann E., Guttmann L.. Effect of electrotherapy on denervated muscles in rabbits. Br Med Bull. 1943; 239(7): 169-170.
|
[77] |
Vandenburgh H., Shansky J., Benesch-Lee F., Skelly K., Spinazzola J.M., Saponjian Y.,
|
[78] |
Martin N.R., Passey S.L., Player D.J., Mudera V., Baar K., Greensmith L.,
|
[79] |
Donnelly K., Khodabukus A., Philp A., Deldicque L., Dennis R.G., Baar K.. A novel bioreactor for stimulating skeletal muscle in vitro. Tissue Eng Part C Methods. 2010; 16(4): 711-718.
|
[80] |
Ahadian S., Ramón-Azcón J., Ostrovidov S., Camci-Unal G., Hosseini V., Kaji H.,
|
[81] |
Khodabukus A., Baar K.. Defined electrical stimulation emphasizing excitability for the development and testing of engineered skeletal muscle. Tissue Eng Part C Methods. 2012; 18(5): 349-357.
|
[82] |
Hosseini V., Ahadian S., Ostrovidov S., Camci-Unal G., Chen S., Kaji H.,
|
[83] |
Baar K., Esser K.. Phosphorylation of p70S6k correlates with increased skeletal muscle mass following resistance exercise. Am J Physiol. 1999; 276(1): C120-C127.
|
[84] |
Khodabukus A., Baar K.. Regulating fibrinolysis to engineer skeletal muscle from the C2C12 cell line. Tissue Eng Part C Methods. 2009; 15(3): 501-511.
|
[85] |
Nagamine K., Kawashima T., Ishibashi T., Kaji H., Kanzaki M., Nishizawa M.. Micropatterning contractile C2C12 myotubes embedded in a fibrin gel. Biotechnol Bioeng. 2010; 105(6): 1161-1167.
|
[86] |
Sakar M.S., Neal D., Boudou T., Borochin M.A., Li Y., Weiss R.,
|
[87] |
Asano T., Ishizua T., Yawo H.. Optically controlled contraction of photosensitive skeletal muscle cells. Biotechnol Bioeng. 2012; 109(1): 199-204.
|
[88] |
Romanazzo S., Forte G., Morishima K., Taniguchi A.. IL-12 involvement in myogenic differentiation of C2C12 in vitro. Biomater Sci. 2015; 3(3): 469-479.
|
[89] |
Yuge L., Kataoka K.. Differentiation of myoblasts is accelerated in culture in a magnetic field. Vitro Cell Dev Biol Anim. 2000; 36(6): 383-386.
|
[90] |
Yamamoto Y., Ito A., Kawabe Y., Fujita H., Nagamori E., Kamihira M.. Magnetic force-based tissue engineering of skeletal muscle. J Biotechnol. 2010; 150(Suppl): 441.
|
[91] |
Fujita H., Shimizu K., Yamamoto Y., Ito A., Kamihira M., Nagamori E.. Fabrication of scaffold-free contractile skeletal muscle tissue using magnetite-incorporated myogenic C2C12 cells. J Tissue Eng Regen Med. 2010; 4(6): 437-443.
|
[92] |
Callis T.E., Deng Z., Chen J.F., Wang D.Z.. Muscling through the microRNA world. Exp Biol Med. 2008; 233(2): 131-138.
|
[93] |
Duffy R.M., Feinberg A.W.. Engineered skeletal muscle tissue for soft robotics: fabrication strategies, current applications, and future challenges. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2014; 6(2): 178-195.
|
[94] |
Akiyama Y., Iwabuchi K., Furukawa Y., Morishima K.. Culture of insect cells contracting spontaneously; research moving toward an environmentally robust hybrid robotic system. J Biotechnol. 2008; 133(2): 261-266.
|
[95] |
Akiyama Y, Iwabuchi K, Furukawa Y, Morishima K. Fabrication and evaluation of temperature-tolerant bioactuator driven by insect heart cells. In: Proceedings of the Twelfth International Conference on Miniaturized Systems for Chemistry and Life Sciences; 2008 Oct 12–16; San Diego, CA, USA; 2008. p. 1669–71.
|
[96] |
Baryshyan A.L., Woods W., Trimmer B.A., Kaplan D.L.. Isolation and maintenance-free culture of contractile myotubes from Manduca sexta embryos. PLoS One. 2012; 7(2): e31598.
|
[97] |
Akiyama Y., Iwabuchi K., Furukawa Y., Morishima K.. Electrical stimulation of cultured lepidopteran dorsal vessel tissue: an experiment for development of bioactuators. In Vitro Cell Dev Biol Anim. 2010; 46(5): 411-415.
|
[98] |
Shimizu K., Takayuki H., Akiyama Y., Iwabuchi K., Akiyama Y., Yamato M.,
|
[99] |
Baryshyan A.L., Domigan L.J., Hunt B., Trimmer B.A., Kaplan D.L.. Self-assembled insect muscle bioactuators with long term function under a range of environmental conditions. RSC Adv. 2014; 4(75): 39962-39968.
|
[100] |
Akiyama Y., Iwabuchi K., Furukawa Y., Morishima K.. Long-term and room temperature operable bioactuator powered by insect dorsal vessel tissue. Lab Chip. 2009; 9(1): 140-144.
|
[101] |
Ejaz A., Lange A.B.. Peptidergic control of the heart of the stick insect, Baculum extradentatum. Peptides. 2008; 29(2): 214-225.
|
[102] |
Martel S.. Bacterial microsystems and microrobots. Biomed Microdevices. 2012; 14(6): 1033-1045.
|
[103] |
Kristjánsson J.K., Hreggvidsson G.O.. Ecology and habitats of extremophiles. World J Microbiol Biotechnol. 1995; 11(1): 17-25.
|
[104] |
Borghol N., Mora L., Jouenne T., Jaffezic-Renault N., Sakly N., Duncan A.C.,
|
[105] |
Brayner R., Couté A., Livage J., Perrette C., Sicard C.. Micro-algal biosensors. Anal Bioanal Chem. 2011; 401(2): 581-597.
|
[106] |
Rantala A., Utriainen M., Kaushik N., Virta M., Välimaa A.L., Karp M.. Luminescent bacteria-based sensing method for methylmercury specific determination. Anal Bioanal Chem. 2011; 400(4): 1041-1049.
|
[107] |
Su M., Ma L., Li T., Liu D., Wang Z.. A microarray-based resonance light scattering assay for detecting thrombin generation in human plasma by gold nanoparticle probes. Anal Methods. 2013; 5(21): 5895-5898.
|
[108] |
Souiri M., Gammoudi I., Ouada H.B., Mora L., Jouenne T., Jaffrezic-Renault N.,
|
[109] |
Park D., Park S.J., Cho S., Lee Y., Lee Y.K., Min J.J.,
|
[110] |
Steager E., Kim C.B., Patel J., Bith S., Naik C., Reber L.,
|
[111] |
Sitti M.. Miniature devices: voyage of the microrobots. Nature. 2009; 458(7242): 1121-1122.
|
[112] |
Trivedi R.R., Maeda R., Abbott N.L., Spagnolie S.E., Weibel D.B.. Bacterial transport of colloids in liquid crystalline environments. Soft Matter. 2015; 11(43): 8404-8408.
|
[113] |
Zhang Z., Li Z., Yu W., Li K., Xie Z.. Development of a biomedical micro/nano robot for drug delivery. J Nanosci Nanotechnol. 2015; 15(4): 3126-3129.
|
[114] |
Park S.J., Park S.H., Cho S., Kim D.M., Lee Y., Ko S.Y.,
|
[115] |
Cho S., Park S.J., Ko S.Y., Park J.O., Park S.. Development of bacteria-based microrobot using biocompatible poly(ethylene glycol). Biomed Microdevices. 2012; 14(6): 1019-1025.
|
[116] |
Carlsen R.W., Edwards M.R., Zhuang J., Pacoret C., Sitti M.. Magnetic steering control of multi-cellular bio-hybrid microswimmers. Lab Chip. 2014; 14(19): 3850-3859.
|
[117] |
Kim M.J., Lee J.H., Shin Y.C., Jin L., Hong S.W., Han D.W.,
|
[118] |
Bajaj P., Reddy B.Jr, Millet L., Wei C., Zorlutuna P., Bao G.,
|
[119] |
Takayama Y., Wagatsuma A., Hoshino T., Mabuchi K.. Simple micropatterning method for enhancing fusion efficiency and responsiveness to electrical stimulation of C2C12 myotubes. Biotechnol Prog. 2015; 31(1): 220-225.
|
[120] |
Anand S.V., Saif T.A.. Emergent dynamics of cardiomyocyte clusters on deformable polymeric substrates. Extrem Mech Lett. 2016; 8: 1-5.
|
[121] |
Kim D.H., Park J., Suh K.Y., Kim P., Choi S.K., Ryu S.,
|
[122] |
Sato M., Ito A., Kawabe Y., Nagamori E., Kamihira M.. Enhanced contractile force generation by artificial skeletal muscle tissues using IGF-I gene-engineered myoblast cells. J Biosci Bioeng. 2011; 112(3): 273-278.
|
[123] |
Yoon J., Eyster T.W., Misra A.C., Lahann J.. Cardiomyocyte-driven actuation in biohybrid microcylinders. Adv Mater. 2015; 27(30): 4509-4515.
|
[124] |
Bhana B., Iyer R.K., Chen W.L., Zhao R., Sider K.L., Likhitpanichkul M.,
|
[125] |
Kim S., Qiu F., Kim S., Ghanbari A., Moon C., Zhang L.,
|
[126] |
Huang Y.C., Dennis R.G., Larkin L., Baar K.. Rapid formation of functional muscle in vitro using fibrin gels. J Appl Physiol. 2005; 98(2): 706-713.
|
[127] |
Lee Y.B., Polio S., Lee W., Dai G., Menon L., Carroll R.S.,
|
[128] |
Webster VA, Hawley EL, Akkus O, Chiel HJ, Quinn RD. Skeletal muscle powered living machines utilizing electrocompacted and aligned collagen scaffolds [abstract]. In: Proceedings of the 10th World Biomaterials Congress; 2016 May 17–22; Montreal, QC, Canada; 2016.
|
[129] |
Armani D., Liu C., Aluru N.. Re-configurable fluid circuits by PDMS elastomer micromachining. In: Proceedings of the Twelfth IEEE International Conference on Micro Electro Mechanical Systems; 1999 Jan 17–21; Orlando, FL, USA. New York: IEEE; 1999. p. 222-227.
|
[130] |
Fuard D., Tzvetkova-Chevolleau T., Decossas S., Tracqui P., Schiavone P.. Optimization of polydimethylsiloxane (PDMS) substrates for studying cellular adhesion and motility. Microelectron Eng. 2008; 85(5–6): 1289-1293.
|
[131] |
Chan V., Jeong J.H., Bajaj P., Collens M., Saif T., Kong H.,
|
[132] |
Stanton M.M., Trichet-Paredes C., Sánchez S.. Applications of three-dimensional (3D) printing for microswimmers and bio-hybrid robotics. Lab Chip. 2015; 15(7): 1634-1637.
|
[133] |
Chan V., Collens M.B., Jeong J.H., Park K., Kong H., Bashir R.. Directed cell growth and alignment on protein-patterned 3D hydrogels with stereolithography. Virtual Phys Prototyp. 2012; 7(3): 219-228.
|
[134] |
Sasaki J., Asoh T.A., Matsumoto T., Egusa H., Sohmura T., Alsberg E.,
|
[135] |
Fedorovich N.E., Kuipers E., Gawlitta D., Dhert W.J.A., Alblas J.. Scaffold porosity and oxygenation of printed hydrogel constructs affect functionality of embedded osteogenic progenitors. Tissue Eng Part A. 2011; 17(19–20): 2473-2486.
|
[136] |
Lu L., Mende M., Yang X., Körber H.F., Schnittler H.J., Weinert S.,
|
[137] |
Lisy O., Redfield M.M., Jovanovic S., Jougasaki M., Jovanovic A., Leskinen H.,
|
[138] |
Shimizu M., Miyasaka K., Miyamoto K., Asano T., Yoshinobu T., Yawo H.,
|
[139] |
Salmons S., Sréter F.A.. Significance of impulse activity in the transformation of skeletal muscle type. Nature. 1976; 263(5572): 30-34.
|
[140] |
Yadid M., Sela G., Amiad Pavlov D., Landesberg A.. Adaptive control of cardiac contraction to changes in loading: from theory of sarcomere dynamics to whole-heart function. Pflugers Arch. 2011; 462(1): 49-60.
|
[141] |
Suhr J., Koratkar N., Keblinski P., Ajayan P.. Viscoelasticity in carbon nanotube composites. Nat Mater. 2005; 4(2): 134-137.
|
[142] |
Radisic M., Park H., Shing H., Consi T., Schoen F.J., Langer R.,
|
[143] |
Asano T., Ishizuka T., Yawo H., Morishima K.. Optically controllable muscle for cell-based microdevice. In: Proceedings of 2014 International Symposium on Micro-NanoMechatronics and Human Science; 2014 Nov 10–12; Nagoya, Japan. New York: IEEE; 2014. p. 1-3.
|
[144] |
Frigault M.M., Lacoste J., Swift J.L., Brown C.M.. Live-cell microscopy—tips and tools. J Cell Sci. 2009; 122(6): 753-767.
|
[145] |
Sinha R.P., Häder D.P.. UV-induced DNA damage and repair: a review. Photochem Photobiol Sci. 2002; 1(4): 225-236.
|
[146] |
Barolet D.. Light-emitting diodes (LEDs) in dermatology. Semin Cutan Med Surg. 2008; 27(4): 227-238.
|
[147] |
Moreira M.C., Prado R., Campos A.. Application of high brightness LEDs in the human tissue and its therapeutic response. In:
|
[148] |
Horiguchi H., Imagawa K., Hoshino T., Akiyama Y., Morishima K.. Fabrication and evaluation of reconstructed cardiac tissue and its application to bio-actuated microdevices. IEEE Trans Nanobiosci. 2009; 8(4): 349-355.
|
[149] |
Chen Y., Kosmas P., Martel S.. A feasibility study for microwave breast cancer detection using contrast-agent-loaded bacterial microbots. Int J Antennas Propag. 2013; 2: 1-11.
|
[150] |
Martel S., Tremblay C.C., Ngakeng S., Langlois G.. Controlled manipulation and actuation of micro-objects with magnetotactic bacteria. Appl Phys Lett. 2006; 89(23): 233904.
|
[151] |
Ma Q., Chen C., Wei S., Chen C., Wu L.F., Song T.. Construction and operation of a microrobot based on magnetotactic bacteria in a microfluidic chip. Biomicrofluidics. 2012; 6(2): 024107.
|
[152] |
Martel S., Mohammadi M., Felfoul O., Lu Z., Pouponneau P.. Flagellated magnetotactic bacteria as controlled MRI-trackable propulsion and steering systems for medical nanorobots operating in the human microvasculature. Int J Robot Res. 2009; 28(4): 571-582.
|
[153] |
Zhang C., Wang W., Xi N., Wang Y., Liu L.. A bio-syncretic micro-swimmer assisted by magnetism. In: Proceedings of 2015 International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale; 2015 Oct 5–9; Changchun, China. New York: IEEE; 2015. p. 16-21.
|
[154] |
Dreyfus R., Baudry J., Roper M.L., Fermigier M., Stone H.A., Bibette J.. Microscopic artificial swimmers. Nature. 2005; 437(7060): 862-865.
|
[155] |
Kim D.H., Cheang U.K., Kohidai L., Byun D., Kim M.J.. Artificial magnetotactic motion control of Tetrahymena pyriformis using ferromagnetic nanoparticles: a tool for fabrication of microbiorobots. Appl Phys Lett. 2010; 97(17): 173702.
|
This work was supported by the National Natural Science Foundation of China (61673372, 61522312, 91748212, and 61433017), the Key Research Program of Frontier Sciences, CAS (QYZDB-SSW-JSC008), and the CAS/SAFEA International Partnership Program for Creative Research Teams.
Chuang Zhang, Wenxue Wang, Ning Xi, Yuechao Wang, and Lianqing Liu declare that they have no conflict of interest or financial conflicts to disclose.
/
〈 |
|
〉 |