Development and Future Challenges of Bio-Syncretic Robots

Chuang Zhang, Wenxue Wang, Ning Xi, Yuechao Wang, Lianqing Liu

Engineering ›› 2018, Vol. 4 ›› Issue (4) : 452-463.

PDF(938 KB)
PDF(938 KB)
Engineering ›› 2018, Vol. 4 ›› Issue (4) : 452-463. DOI: 10.1016/j.eng.2018.07.005
Research
Research Robotics—Review

Development and Future Challenges of Bio-Syncretic Robots

Author information +
History +

Abstract

Bio-syncretic robots consisting of both living biological materials and non-living systems possess desirable attributes such as high energy efficiency, intrinsic safety, high sensitivity, and self-repairing capabilities. Compared with living biological materials or non-living traditional robots based on electromechanical systems, the combined system of a bio-syncretic robot holds many advantages. Therefore, developing bio-syncretic robots has been a topic of great interest, and significant progress has been achieved in this area over the past decade. This review systematically summarizes the development of bio-syncretic robots. First, potential trends in the development of bio-syncretic robots are discussed. Next, the current performance of bio-syncretic robots, including simple movement and controllability of velocity and direction, is reviewed. The living biological materials and non-living materials that are used in bio-syncretic robots, and the corresponding fabrication methods, are then discussed. In addition, recently developed control methods for bio-syncretic robots, including physical and chemical control methods, are described. Finally, challenges in the development of bio-syncretic robots are discussed from multiple viewpoints, including sensing and intelligence, living and non-living materials, control approaches, and information technology.

Keywords

Bio-syncretic robot / Hybrid robot / Bio-actuator / Cardiomyocyte / Muscle cells

Cite this article

Download citation ▾
Chuang Zhang, Wenxue Wang, Ning Xi, Yuechao Wang, Lianqing Liu. Development and Future Challenges of Bio-Syncretic Robots. Engineering, 2018, 4(4): 452‒463 https://doi.org/10.1016/j.eng.2018.07.005

References

[1]
Rigelsford J.. Industrial robotics: technology, programming and application. Ind Rob. 1999; 26(1):
[2]
Dogangil G., Davies B.L., Rodriguez y Baena F.. A review of medical robotics for minimally invasive soft tissue surgery. Proc Inst Mech Eng H. 2010; 224(5): 653-679.
[3]
Habib M.K.. Service robots in humanitarian landmine clearance. Science. 1954; 120(3120): 604.
[4]
Park J.S., Kim J.H., Oh Y.H.. Feature vector classification based speech emotion recognition for service robots. IEEE Trans Consum Electron. 2009; 55(3): 1590-1596.
[5]
Mbemmo E, Chen Z, Shatara S, Tan X. Modeling of biomimetic robotic fish propelled by an ionic polymer-metal composite actuator. In: Proceedings of 2008 IEEE International Conference on Robotics and Automation; 2008 May 19–23; Pasadena, CA, USA. 2008. p. 689–94.
[6]
Hirai K., Hirose M., Haikawa Y., Takenaka T.. The development of Honda humanoid robot. IEEE Int Conf Robot Autom. 1998; 2: 1321-1326.
[7]
Chan V., Asada H.H., Bashir R.. Utilization and control of bioactuators across multiple length scales. Lab Chip. 2014; 14(4): 653-670.
[8]
Ricotti L., Menciassi A.. Bio-hybrid muscle cell-based actuators. Biomed Microdevices. 2012; 14(6): 987-998.
[9]
Darnton N., Turner L., Breuer K., Berg H.C.. Moving fluid with bacterial carpets. Biophys J. 2004; 86(3): 1863-1870.
[10]
Wang W., Duan W., Ahmed S., Mallouk T.E., Sen A.. Small power: autonomous nano- and micromotors propelled by self-generated gradients. Nano Today. 2013; 8(5): 531-554.
[11]
Carlsen R.W., Sitti M.. Bio-hybrid cell-based actuators for microsystems. Small. 2014; 10(19): 3831-3851.
[12]
Carlson F.D., Wilkie D.R.. Muscle physiology.
[13]
Jin M., Lee J., Chang P.H., Choi C.. Practical nonsingular terminal sliding-mode control of robot manipulators for high-accuracy tracking control. IEEE Trans Ind Electron. 2009; 56(9): 3593-3601.
[14]
Blanchard C.Z., Waldrop G.L.. Modeling, identification, and control of a pneumatically actuated, force controllable robot. IEEE Trans Rob Autom. 1981; 45 Pt 1(5): 732-742.
[15]
Xi J., Schmidt J.J., Montemagno C.D.. Self-assembled microdevices driven by muscle. Nat Mater. 2005; 4(2): 180-184.
[16]
Feinberg A.W., Feigel A., Shevkoplyas S.S., Sheehy S., Whitesides G.M., Parker K.K.. Muscular thin films for building actuators and powering devices. Science. 2007; 317(5843): 1366-1370.
[17]
Touyama Y., Hoshino T., Iwabuchi K., Morishima K.. Micro-encapsulation of bio-actuator using insect dorsal vessel. In: Proceedings of 2009 International Symposium on Micro-NanoMechatronics and Human Science; 2009 Nov 8–11; Nagoya, Japan. New York: IEEE; 2009. p. 644-649.
[18]
Fujita H., Dau V.T., Shimizu K., Hatsuda R., Sugiyama S., Nagamori E.. Designing of a Si-MEMS device with an integrated skeletal muscle cell-based bio-actuator. Biomed Microdevices. 2011; 13(1): 123-129.
[19]
Akiyama Y., Hoshino T., Iwabuchi K., Morishima K.. Room temperature operable autonomously moving bio-microrobot powered by insect dorsal vessel tissue. PLoS One. 2012; 7(7): e38274.
[20]
Akiyama Y., Odaira K., Sakiyama K., Hoshino T., Iwabuchi K., Morishima K.. Rapidly-moving insect muscle-powered microrobot and its chemical acceleration. Biomed Microdevices. 2012; 14(6): 979-986.
[21]
Chan V., Park K., Collens M.B., Kong H., Saif T.A., Bashir R.. Development of miniaturized walking biological machines. Sci Rep. 2012; 2(1): 857.
[22]
Nawroth J.C., Lee H., Feinberg A.W., Ripplinger C.M., McCain M.L., Grosberg A., . A tissue-engineered jellyfish with biomimetic propulsion. Nat Biotechnol. 2012; 30(8): 792-797.
[23]
Kabumoto K., Hoshino T., Akiyama Y., Morishima K.. Voluntary movement controlled by the surface EMG signal for tissue-engineered skeletal muscle on a gripping tool. Tissue Eng Part A. 2013; 19(15–16): 1695-1703.
[24]
Akiyama Y., Sakuma T., Funakoshi K., Hoshino T., Iwabuchi K., Morishima K.. Atmospheric-operable bioactuator powered by insect muscle packaged with medium. Lab Chip. 2013; 13(24): 4870-4880.
[25]
Cvetkovic C., Raman R., Chan V., Williams B.J., Tolish M., Bajaj P., . Three-dimensionally printed biological machines powered by skeletal muscle. Proc Natl Acad Sci USA. 2014; 111(28): 10125-10130.
[26]
Williams B.J., Anand S.V., Rajagopalan J., Saif M.T.. A self-propelled biohybrid swimmer at low Reynolds number. Nat Commun. 2014; 5: 3081.
[27]
Holley M.T., Nagarajan N., Danielson C., Zorlutuna P., Park K.. Development and characterization of muscle-based actuators for self-stabilizing swimming biorobots. Lab Chip. 2016; 16(18): 3473-3484.
[28]
Webster V.A., Chapin K.J., Hawley E.L., Patel J.M., Akkus O., Chiel H.J.. Aplysia californica as a novel source of material for biohybrid robots and organic machines. In: editor. Biomimetic and biohybrid systems. Living machines 2016. Cham: Springer; 2016. p. 365-374.
[29]
Raman R., Cvetkovic C., Uzel S.G., Platt R.J., Sengupta P., Kamm R.D., . Optogenetic skeletal muscle-powered adaptive biological machines. Proc Natl Acad Sci USA. 2016; 113(13): 3497-3502.
[30]
Park S.J., Gazzola M., Park K.S., Park S., Di Santo V., Blevins E.L., . Phototactic guidance of a tissue-engineered soft-robotic ray. Science. 2016; 353(6295): 158-162.
[31]
Webster V.A., Young F.R., Patel J.M., Scariano G.N., Akkus O., Gurkan U.A.. 3D-printed biohybrid robots powered by neuromuscular tissue circuits from Aplysia californica. In: editor. Biomimetic and biohybrid systems. Living machines 2017. Cham: Springer; 2017. p. 475-486.
[32]
Akiyama Y., Iwabuchi K., Furukawa Y., Morishima K.. Biological contractile regulation of micropillar actuator driven by insect dorsal vessel tissue. In: Proceedings of the 2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics; 2008 Oct 19–22; Scottsdale, AZ, USA. New York: IEEE; 2008. p. 501-505.
[33]
Uesugi K., Shimizu K., Akiyama Y., Hoshino T., Iwabuchi K., Morishima K.. Contractile performance and controllability of insect muscle-powered bioactuator with different stimulation strategies for soft robotics. Soft Robot. 2016; 3(1): 13-22.
[34]
Long X., Ye J., Zhao D., Zhang S.J.. Magnetogenetics: remote non-invasive magnetic activation of neuronal activity with a magnetoreceptor. Sci Bull. 2015; 60(24): 2107-2119.
[35]
Qin S., Yin H., Yang C., Dou Y., Liu Z., Zhang P., . A magnetic protein biocompass. Nat Mater. 2016; 15(2): 217-226.
[36]
Weibel D.B., Garstecki P., Ryan D., DiLuzio W.R., Mayer M., Seto J.E., . Microoxen: microorganisms to move microscale loads. Proc Natl Acad Sci USA. 2005; 102(34): 11963-11967.
[37]
Zhang C., Xie S.X., Wang W.X., Xi N., Wang Y.C., Liu L.Q.. Bio-syncretic tweezers actuated by microorganisms: modeling and analysis. Soft Matter. 2016; 12(36): 7485-7494.
[38]
Pilarek M., Neubauer P., Marx U.. Biological cardio-micro-pumps for microbioreactors and analytical micro-systems. Sens Actuators B Chem. 2011; 156(2): 517-526.
[39]
Shimizu K., Fujita H., Nagamori E.. Evaluation systems of generated forces of skeletal muscle cell-based bio-actuators. J Biosci Bioeng. 2013; 115(2): 115-121.
[40]
Magdanz V., Medina-Sánchez M., Schwarz L., Xu H., Elgeti J., Schmidt O.G.. Spermatozoa as functional components of robotic microswimmers. Adv Mater. 2017; 29(24): 1606301.
[41]
Liu X., Wang X.. Cardiomyocytes driven piezoelectric nanofiber generator with anisotropic enhancement. In: Proceedings of the 29th International Conference on Micro Electro Mechanical Systems; 2016 Jan 24–28; Shanghai, China. New York: IEEE; 2016. p. 1189-1192.
[42]
Raman R., Grant L., Seo Y., Cvetkovic C., Gapinske M., Palasz A., . Damage, healing, and remodeling in optogenetic skeletal muscle bioactuators. Adv Healthc Mater. 2017; 6(12): 1700030.
[43]
Turner L., Zhang R., Darnton N.C., Berg H.C.. Visualization of flagella during bacterial swarming. J Bacteriol. 2010; 192(13): 3259-3267.
[44]
Miyamoto T., Kojima M., Nakajima M., Homma M., Fukuda T.. Rotation of bacteria sheet driven micro gear in open micro channel. In: Proceedings of 2012 IEEE International Conference on Robotics and Automation; 2012 May 14–18; Saint Paul, MN, USA. New York: IEEE; 2012. p. 4080-4085.
[45]
Steager E.B., Sakar M.S., Kim D.H., Kumar V., Pappas G.J., Kim M.J.. Electrokinetic and optical control of bacterial microrobots. J Micromech Microeng. 2011; 21(3): 035001.
[46]
Sokolov A., Apodaca M.M., Grzybowski B.A., Aranson I.S.. Swimming bacteria power microscopic gears. Proc Natl Acad Sci USA. 2010; 107(3): 969-974.
[47]
Stanton M.M., Park B.W., Miguel-López A., Ma X., Sitti M., Sánchez S.. Biohybrid microtube swimmers driven by single captured bacteria. Small. 2017; 13(19): 1603679.
[48]
Nerbonne J.M., Kass R.S.. Molecular physiology of cardiac repolarization. Physiol Rev. 2005; 85(4): 1205-1253.
[49]
Tanaka Y., Sato K., Shimizu T., Yamato M., Okano T., Kitamori T.. Biological cells on microchips: new technologies and applications. Biosens Bioelectron. 2007; 23(4): 449-458.
[50]
Yasuda S.I., Sugiura S., Kobayakawa N., Fujita H., Yamashita H., Katoh K., . A novel method to study contraction characteristics of a single cardiac myocyte using carbon fibers. Am J Physiol Heart Circ Physiol. 2001; 281(3): 1442-1446.
[51]
Nishimura S., Yasuda S., Katoh M., Yamada K.P., Yamashita H., Saeki Y., . Single cell mechanics of rat cardiomyocytes under isometric, unloaded, and physiologically loaded conditions. Am J Physiol Heart Circ Physiol. 2004; 287(1): 196-202.
[52]
Yin S., Zhang X., Zhan C., Wu J., Xu J., Cheung J.. Measuring single cardiac myocyte contractile force via moving a magnetic bead. Biophys J. 2005; 88(2): 1489-1495.
[53]
Addae-Mensah K.A., Wikswo J.P.. Measurement techniques for cellular biomechanics in vitro. Exp Biol Med. 2008; 233(7): 792-809.
[54]
Zhang C., Wang J., Wang W., Xi N., Wang Y., Liu L.. Modeling and analysis of bio-syncretic micro-swimmers for cardiomyocyte-based actuation. Bioinspir Biomim. 2016; 11(5): 056006.
[55]
Zimmermann W.H., Melnychenko I., Eschenhagen T.. Engineered heart tissue for regeneration of diseased hearts. Biomaterials. 2004; 25(9): 1639-1647.
[56]
Baar K., Birla R., Boluyt M.O., Borschel G.H., Arruda E.M., Dennis R.G.. Self-organization of rat cardiac cells into contractile 3D cardiac tissue. FASEB J. 2005; 19(2): 275-277.
[57]
Radisic M., Park H., Martens T.P., Salazar-Lazaro J.E., Geng W., Wang Y., . Pre-treatment of synthetic elastomeric scaffolds by cardiac fibroblasts improves engineered heart tissue. J Biomed Mater Res A. 2008; 86A(3): 713-724.
[58]
Tandon N., Cannizzaro C., Chao P.H., Maidhof R., Marsano A., Au H.T., . Electrical stimulation systems for cardiac tissue engineering. Nat Protoc. 2009; 4(2): 155-173.
[59]
Shin S.R., Jung S.M., Zalabany M., Kim K., Zorlutuna P., Kim S.B., . Carbon-nanotube-embedded hydrogel sheets for engineering cardiac constructs and bioactuators. ACS Nano. 2013; 7(3): 2369-2380.
[60]
Eschenhagen T., Fink C., Remmers U., Scholz H., Wattchow J., Weil J., . Three-dimensional reconstitution of embryonic cardiomyocytes in a collagen matrix: a new heart muscle model system. FASEB J. 1997; 11(8): 683-694.
[61]
Zimmermann W.H., Fink C., Kralisch D., Remmers U., Weil J., Eschenhagen T.. Three-dimensional engineered heart tissue from neonatal rat cardiac myocytes. Biotechnol Bioeng. 2000; 68(1): 106-114.
[62]
Tobita K., Liu L.J., Janczewski A.M., Tinney J.P., Nonemaker J.M., Augustine S., . Engineered early embryonic cardiac tissue retains proliferative and contractile properties of developing embryonic myocardium. Am J Physiol Heart Circ Physiol. 2006; 291(4): H1829-H1837.
[63]
Nagamine K., Kawashima T., Sekine S., Ido Y., Kanzaki M., Nishizawa M.. Spatiotemporally controlled contraction of micropatterned skeletal muscle cells on a hydrogel sheet. Lab Chip. 2011; 11(3): 513-517.
[64]
Ahadian S., Ostrovidov S., Hosseini V., Kaji H., Ramalingam M., Bae H., . Electrical stimulation as a biomimicry tool for regulating muscle cell behavior. Organogenesis. 2013; 9(2): 87-92.
[65]
Chan V., Neal D.M., Uzel S.G., Kim H., Bashir R., Asada H.H.. Fabrication and characterization of optogenetic, multi-strip cardiac muscles. Lab Chip. 2015; 15(10): 2258-2268.
[66]
Asano T., Ishizuka T., Morishima K., Yawo H.. Optogenetic induction of contractile ability in immature C2C12 myotubes. Sci Rep. 2015; 5(1): 8317.
[67]
Bruegmann T., van Bremen T., Vogt C.C., Send T., Fleischmann B.K., Sasse P.. Optogenetic control of contractile function in skeletal muscle. Nat Commun. 2015; 6(1): 7153.
[68]
Alford P.W., Feinberg A.W., Sheehy S.P., Parker K.K.. Biohybrid thin films for measuring contractility in engineered cardiovascular muscle. Biomaterials. 2010; 31(13): 3613-3621.
[69]
Grosberg A., Alford P.W., McCain M.L., Parker K.K.. Ensembles of engineered cardiac tissues for physiological and pharmacological study: heart on a chip. Lab Chip. 2011; 11(24): 4165-4173.
[70]
Benam K.H., Dauth S., Hassell B., Herland A., Jain A., Jang K.J., . Engineered in vitro disease models. Annu Rev Pathol. 2015; 10(1): 195-262.
[71]
Tanaka Y., Sato K., Shimizu T., Yamato M., Okano T., Manabe I., . Demonstration of a bio-microactuator powered by vascular smooth muscle cells coupled to polymer micropillars. Lab Chip. 2008; 8(1): 58-61.
[72]
Shoji K., Akiyama Y., Suzuki M., Hoshino T., Nakamura N., Ohno H., . Insect biofuel cells using trehalose included in insect hemolymph leading to an insect-mountable biofuel cell. Biomed Microdevices. 2012; 14(6): 1063-1068.
[73]
Lind J.U., Busbee T.A., Valentine A.D., Pasqualini F.S., Yuan H., Yadid M., . Instrumented cardiac microphysiological devices via multimaterial three-dimensional printing. Nat Mater. 2017; 16(3): 303-308.
[74]
Rajagopalan J., Saif M.T.A.. Fabrication of freestanding 1D PDMS microstructures using capillary micromolding. J Microelectromech Syst. 2013; 22(5): 992-994.
[75]
In: editor. Muscle: fundamental biology and mechanisms of disease. Cambridge: Academic Press; 2012.
[76]
Gutmann E., Guttmann L.. Effect of electrotherapy on denervated muscles in rabbits. Br Med Bull. 1943; 239(7): 169-170.
[77]
Vandenburgh H., Shansky J., Benesch-Lee F., Skelly K., Spinazzola J.M., Saponjian Y., . Automated drug screening with contractile muscle tissue engineered from dystrophic myoblasts. FASEB J. 2009; 23(10): 3325-3334.
[78]
Martin N.R., Passey S.L., Player D.J., Mudera V., Baar K., Greensmith L., . Neuromuscular junction formation in tissue-engineered skeletal muscle augments contractile function and improves cytoskeletal organization. Tissue Eng Part A. 2015; 21(19–20): 2595-2604.
[79]
Donnelly K., Khodabukus A., Philp A., Deldicque L., Dennis R.G., Baar K.. A novel bioreactor for stimulating skeletal muscle in vitro. Tissue Eng Part C Methods. 2010; 16(4): 711-718.
[80]
Ahadian S., Ramón-Azcón J., Ostrovidov S., Camci-Unal G., Hosseini V., Kaji H., . Interdigitated array of Pt electrodes for electrical stimulation and engineering of aligned muscle tissue. Lab Chip. 2012; 12(18): 3491-3503.
[81]
Khodabukus A., Baar K.. Defined electrical stimulation emphasizing excitability for the development and testing of engineered skeletal muscle. Tissue Eng Part C Methods. 2012; 18(5): 349-357.
[82]
Hosseini V., Ahadian S., Ostrovidov S., Camci-Unal G., Chen S., Kaji H., . Engineered contractile skeletal muscle tissue on a microgrooved methacrylated gelatin substrate. Tissue Eng Part A. 2012; 18(23–24): 2453-2465.
[83]
Baar K., Esser K.. Phosphorylation of p70S6k correlates with increased skeletal muscle mass following resistance exercise. Am J Physiol. 1999; 276(1): C120-C127.
[84]
Khodabukus A., Baar K.. Regulating fibrinolysis to engineer skeletal muscle from the C2C12 cell line. Tissue Eng Part C Methods. 2009; 15(3): 501-511.
[85]
Nagamine K., Kawashima T., Ishibashi T., Kaji H., Kanzaki M., Nishizawa M.. Micropatterning contractile C2C12 myotubes embedded in a fibrin gel. Biotechnol Bioeng. 2010; 105(6): 1161-1167.
[86]
Sakar M.S., Neal D., Boudou T., Borochin M.A., Li Y., Weiss R., . Formation and optogenetic control of engineered 3D skeletal muscle bioactuators. Lab Chip. 2012; 12(23): 4976-4985.
[87]
Asano T., Ishizua T., Yawo H.. Optically controlled contraction of photosensitive skeletal muscle cells. Biotechnol Bioeng. 2012; 109(1): 199-204.
[88]
Romanazzo S., Forte G., Morishima K., Taniguchi A.. IL-12 involvement in myogenic differentiation of C2C12 in vitro. Biomater Sci. 2015; 3(3): 469-479.
[89]
Yuge L., Kataoka K.. Differentiation of myoblasts is accelerated in culture in a magnetic field. Vitro Cell Dev Biol Anim. 2000; 36(6): 383-386.
[90]
Yamamoto Y., Ito A., Kawabe Y., Fujita H., Nagamori E., Kamihira M.. Magnetic force-based tissue engineering of skeletal muscle. J Biotechnol. 2010; 150(Suppl): 441.
[91]
Fujita H., Shimizu K., Yamamoto Y., Ito A., Kamihira M., Nagamori E.. Fabrication of scaffold-free contractile skeletal muscle tissue using magnetite-incorporated myogenic C2C12 cells. J Tissue Eng Regen Med. 2010; 4(6): 437-443.
[92]
Callis T.E., Deng Z., Chen J.F., Wang D.Z.. Muscling through the microRNA world. Exp Biol Med. 2008; 233(2): 131-138.
[93]
Duffy R.M., Feinberg A.W.. Engineered skeletal muscle tissue for soft robotics: fabrication strategies, current applications, and future challenges. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2014; 6(2): 178-195.
[94]
Akiyama Y., Iwabuchi K., Furukawa Y., Morishima K.. Culture of insect cells contracting spontaneously; research moving toward an environmentally robust hybrid robotic system. J Biotechnol. 2008; 133(2): 261-266.
[95]
Akiyama Y, Iwabuchi K, Furukawa Y, Morishima K. Fabrication and evaluation of temperature-tolerant bioactuator driven by insect heart cells. In: Proceedings of the Twelfth International Conference on Miniaturized Systems for Chemistry and Life Sciences; 2008 Oct 12–16; San Diego, CA, USA; 2008. p. 1669–71.
[96]
Baryshyan A.L., Woods W., Trimmer B.A., Kaplan D.L.. Isolation and maintenance-free culture of contractile myotubes from Manduca sexta embryos. PLoS One. 2012; 7(2): e31598.
[97]
Akiyama Y., Iwabuchi K., Furukawa Y., Morishima K.. Electrical stimulation of cultured lepidopteran dorsal vessel tissue: an experiment for development of bioactuators. In Vitro Cell Dev Biol Anim. 2010; 46(5): 411-415.
[98]
Shimizu K., Takayuki H., Akiyama Y., Iwabuchi K., Akiyama Y., Yamato M., . Multi-scale reconstruction and performance of insect muscle powered bioactuator from tissue to cell sheet. In: Proceedings of the 3rd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics; 2010 Sep 26–29; Tokyo, Japan. New York: IEEE; 2010. p. 425-430.
[99]
Baryshyan A.L., Domigan L.J., Hunt B., Trimmer B.A., Kaplan D.L.. Self-assembled insect muscle bioactuators with long term function under a range of environmental conditions. RSC Adv. 2014; 4(75): 39962-39968.
[100]
Akiyama Y., Iwabuchi K., Furukawa Y., Morishima K.. Long-term and room temperature operable bioactuator powered by insect dorsal vessel tissue. Lab Chip. 2009; 9(1): 140-144.
[101]
Ejaz A., Lange A.B.. Peptidergic control of the heart of the stick insect, Baculum extradentatum. Peptides. 2008; 29(2): 214-225.
[102]
Martel S.. Bacterial microsystems and microrobots. Biomed Microdevices. 2012; 14(6): 1033-1045.
[103]
Kristjánsson J.K., Hreggvidsson G.O.. Ecology and habitats of extremophiles. World J Microbiol Biotechnol. 1995; 11(1): 17-25.
[104]
Borghol N., Mora L., Jouenne T., Jaffezic-Renault N., Sakly N., Duncan A.C., . Monitoring of E. coli immobilization on modified gold electrode: a new bacteria-based glucose sensor. Biotechnol. Bioprocess Eng. 2010; 15(2): 220-228.
[105]
Brayner R., Couté A., Livage J., Perrette C., Sicard C.. Micro-algal biosensors. Anal Bioanal Chem. 2011; 401(2): 581-597.
[106]
Rantala A., Utriainen M., Kaushik N., Virta M., Välimaa A.L., Karp M.. Luminescent bacteria-based sensing method for methylmercury specific determination. Anal Bioanal Chem. 2011; 400(4): 1041-1049.
[107]
Su M., Ma L., Li T., Liu D., Wang Z.. A microarray-based resonance light scattering assay for detecting thrombin generation in human plasma by gold nanoparticle probes. Anal Methods. 2013; 5(21): 5895-5898.
[108]
Souiri M., Gammoudi I., Ouada H.B., Mora L., Jouenne T., Jaffrezic-Renault N., . Escherichia coli-functionalized magnetic nanobeads as an ultrasensitive biosensor for heavy metals. Procedia Chem. 2009; 1(1): 1027-1030.
[109]
Park D., Park S.J., Cho S., Lee Y., Lee Y.K., Min J.J., . Motility analysis of bacteria-based microrobot (bacteriobot) using chemical gradient microchamber. Biotechnol Bioeng. 2014; 111(1): 134-143.
[110]
Steager E., Kim C.B., Patel J., Bith S., Naik C., Reber L., . Control of microfabricated structures powered by flagellated bacteria using phototaxis. Appl Phys Lett. 2007; 90(26): 263901-263903.
[111]
Sitti M.. Miniature devices: voyage of the microrobots. Nature. 2009; 458(7242): 1121-1122.
[112]
Trivedi R.R., Maeda R., Abbott N.L., Spagnolie S.E., Weibel D.B.. Bacterial transport of colloids in liquid crystalline environments. Soft Matter. 2015; 11(43): 8404-8408.
[113]
Zhang Z., Li Z., Yu W., Li K., Xie Z.. Development of a biomedical micro/nano robot for drug delivery. J Nanosci Nanotechnol. 2015; 15(4): 3126-3129.
[114]
Park S.J., Park S.H., Cho S., Kim D.M., Lee Y., Ko S.Y., . New paradigm for tumor theranostic methodology using bacteria-based microrobot. Sci Rep. 2013; 3(1): 3394.
[115]
Cho S., Park S.J., Ko S.Y., Park J.O., Park S.. Development of bacteria-based microrobot using biocompatible poly(ethylene glycol). Biomed Microdevices. 2012; 14(6): 1019-1025.
[116]
Carlsen R.W., Edwards M.R., Zhuang J., Pacoret C., Sitti M.. Magnetic steering control of multi-cellular bio-hybrid microswimmers. Lab Chip. 2014; 14(19): 3850-3859.
[117]
Kim M.J., Lee J.H., Shin Y.C., Jin L., Hong S.W., Han D.W., . Stimulated myogenic differentiation of C2C12 murine myoblasts by using graphene oxide. J Korean Phys Soc. 2015; 67(11): 1910-1914.
[118]
Bajaj P., Reddy B.Jr, Millet L., Wei C., Zorlutuna P., Bao G., . Patterning the differentiation of C2C12 skeletal myoblasts. Integr Biol. 2011; 3(9): 897-909.
[119]
Takayama Y., Wagatsuma A., Hoshino T., Mabuchi K.. Simple micropatterning method for enhancing fusion efficiency and responsiveness to electrical stimulation of C2C12 myotubes. Biotechnol Prog. 2015; 31(1): 220-225.
[120]
Anand S.V., Saif T.A.. Emergent dynamics of cardiomyocyte clusters on deformable polymeric substrates. Extrem Mech Lett. 2016; 8: 1-5.
[121]
Kim D.H., Park J., Suh K.Y., Kim P., Choi S.K., Ryu S., . Fabrication of patterned micromuscles with high activity for powering biohybrid microdevices. Sens Actuators B Chem. 2006; 117(2): 391-400.
[122]
Sato M., Ito A., Kawabe Y., Nagamori E., Kamihira M.. Enhanced contractile force generation by artificial skeletal muscle tissues using IGF-I gene-engineered myoblast cells. J Biosci Bioeng. 2011; 112(3): 273-278.
[123]
Yoon J., Eyster T.W., Misra A.C., Lahann J.. Cardiomyocyte-driven actuation in biohybrid microcylinders. Adv Mater. 2015; 27(30): 4509-4515.
[124]
Bhana B., Iyer R.K., Chen W.L., Zhao R., Sider K.L., Likhitpanichkul M., . Influence of substrate stiffness on the phenotype of heart cells. Biotechnol Bioeng. 2010; 105(6): 1148-1160.
[125]
Kim S., Qiu F., Kim S., Ghanbari A., Moon C., Zhang L., . Fabrication and characterization of magnetic microrobots for three-dimensional cell culture and targeted transportation. Adv Mater. 2013; 25(41): 5863-5868.
[126]
Huang Y.C., Dennis R.G., Larkin L., Baar K.. Rapid formation of functional muscle in vitro using fibrin gels. J Appl Physiol. 2005; 98(2): 706-713.
[127]
Lee Y.B., Polio S., Lee W., Dai G., Menon L., Carroll R.S., . Bio-printing of collagen and VEGF-releasing fibrin gel scaffolds for neural stem cell culture. Exp Neurol. 2010; 223(2): 645-652.
[128]
Webster VA, Hawley EL, Akkus O, Chiel HJ, Quinn RD. Skeletal muscle powered living machines utilizing electrocompacted and aligned collagen scaffolds [abstract]. In: Proceedings of the 10th World Biomaterials Congress; 2016 May 17–22; Montreal, QC, Canada; 2016.
[129]
Armani D., Liu C., Aluru N.. Re-configurable fluid circuits by PDMS elastomer micromachining. In: Proceedings of the Twelfth IEEE International Conference on Micro Electro Mechanical Systems; 1999 Jan 17–21; Orlando, FL, USA. New York: IEEE; 1999. p. 222-227.
[130]
Fuard D., Tzvetkova-Chevolleau T., Decossas S., Tracqui P., Schiavone P.. Optimization of polydimethylsiloxane (PDMS) substrates for studying cellular adhesion and motility. Microelectron Eng. 2008; 85(5–6): 1289-1293.
[131]
Chan V., Jeong J.H., Bajaj P., Collens M., Saif T., Kong H., . Multi-material bio-fabrication of hydrogel cantilevers and actuators with stereolithography. Lab Chip. 2012; 12(1): 88-98.
[132]
Stanton M.M., Trichet-Paredes C., Sánchez S.. Applications of three-dimensional (3D) printing for microswimmers and bio-hybrid robotics. Lab Chip. 2015; 15(7): 1634-1637.
[133]
Chan V., Collens M.B., Jeong J.H., Park K., Kong H., Bashir R.. Directed cell growth and alignment on protein-patterned 3D hydrogels with stereolithography. Virtual Phys Prototyp. 2012; 7(3): 219-228.
[134]
Sasaki J., Asoh T.A., Matsumoto T., Egusa H., Sohmura T., Alsberg E., . Fabrication of three-dimensional cell constructs using temperature-responsive hydrogel. Tissue Eng Part A. 2010; 16(8): 2497-2504.
[135]
Fedorovich N.E., Kuipers E., Gawlitta D., Dhert W.J.A., Alblas J.. Scaffold porosity and oxygenation of printed hydrogel constructs affect functionality of embedded osteogenic progenitors. Tissue Eng Part A. 2011; 17(19–20): 2473-2486.
[136]
Lu L., Mende M., Yang X., Körber H.F., Schnittler H.J., Weinert S., . Design and validation of a bioreactor for simulating the cardiac niche: a system incorporating cyclic stretch, electrical stimulation, and constant perfusion. Tissue Eng Part A. 2013; 19(3–4): 403-414.
[137]
Lisy O., Redfield M.M., Jovanovic S., Jougasaki M., Jovanovic A., Leskinen H., . Mechanical unloading versus neurohumoral stimulation on myocardial structure and endocrine function in vivo. Circulation. 2000; 102(3): 338-343.
[138]
Shimizu M., Miyasaka K., Miyamoto K., Asano T., Yoshinobu T., Yawo H., . Muscle tissue actuator driven with light-gated ion channels channelrhodopsin. Procedia CIRP. 2013; 5: 169-174.
[139]
Salmons S., Sréter F.A.. Significance of impulse activity in the transformation of skeletal muscle type. Nature. 1976; 263(5572): 30-34.
[140]
Yadid M., Sela G., Amiad Pavlov D., Landesberg A.. Adaptive control of cardiac contraction to changes in loading: from theory of sarcomere dynamics to whole-heart function. Pflugers Arch. 2011; 462(1): 49-60.
[141]
Suhr J., Koratkar N., Keblinski P., Ajayan P.. Viscoelasticity in carbon nanotube composites. Nat Mater. 2005; 4(2): 134-137.
[142]
Radisic M., Park H., Shing H., Consi T., Schoen F.J., Langer R., . Functional assembly of engineered myocardium by electrical stimulation of cardiac myocytes cultured on scaffolds. Proc Natl Acad Sci USA. 2004; 101(52): 18129-18134.
[143]
Asano T., Ishizuka T., Yawo H., Morishima K.. Optically controllable muscle for cell-based microdevice. In: Proceedings of 2014 International Symposium on Micro-NanoMechatronics and Human Science; 2014 Nov 10–12; Nagoya, Japan. New York: IEEE; 2014. p. 1-3.
[144]
Frigault M.M., Lacoste J., Swift J.L., Brown C.M.. Live-cell microscopy—tips and tools. J Cell Sci. 2009; 122(6): 753-767.
[145]
Sinha R.P., Häder D.P.. UV-induced DNA damage and repair: a review. Photochem Photobiol Sci. 2002; 1(4): 225-236.
[146]
Barolet D.. Light-emitting diodes (LEDs) in dermatology. Semin Cutan Med Surg. 2008; 27(4): 227-238.
[147]
Moreira M.C., Prado R., Campos A.. Application of high brightness LEDs in the human tissue and its therapeutic response. In: editor. Applied biomedical engineering. Rijeka: InTech; 2011. p. 3-20.
[148]
Horiguchi H., Imagawa K., Hoshino T., Akiyama Y., Morishima K.. Fabrication and evaluation of reconstructed cardiac tissue and its application to bio-actuated microdevices. IEEE Trans Nanobiosci. 2009; 8(4): 349-355.
[149]
Chen Y., Kosmas P., Martel S.. A feasibility study for microwave breast cancer detection using contrast-agent-loaded bacterial microbots. Int J Antennas Propag. 2013; 2: 1-11.
[150]
Martel S., Tremblay C.C., Ngakeng S., Langlois G.. Controlled manipulation and actuation of micro-objects with magnetotactic bacteria. Appl Phys Lett. 2006; 89(23): 233904.
[151]
Ma Q., Chen C., Wei S., Chen C., Wu L.F., Song T.. Construction and operation of a microrobot based on magnetotactic bacteria in a microfluidic chip. Biomicrofluidics. 2012; 6(2): 024107.
[152]
Martel S., Mohammadi M., Felfoul O., Lu Z., Pouponneau P.. Flagellated magnetotactic bacteria as controlled MRI-trackable propulsion and steering systems for medical nanorobots operating in the human microvasculature. Int J Robot Res. 2009; 28(4): 571-582.
[153]
Zhang C., Wang W., Xi N., Wang Y., Liu L.. A bio-syncretic micro-swimmer assisted by magnetism. In: Proceedings of 2015 International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale; 2015 Oct 5–9; Changchun, China. New York: IEEE; 2015. p. 16-21.
[154]
Dreyfus R., Baudry J., Roper M.L., Fermigier M., Stone H.A., Bibette J.. Microscopic artificial swimmers. Nature. 2005; 437(7060): 862-865.
[155]
Kim D.H., Cheang U.K., Kohidai L., Byun D., Kim M.J.. Artificial magnetotactic motion control of Tetrahymena pyriformis using ferromagnetic nanoparticles: a tool for fabrication of microbiorobots. Appl Phys Lett. 2010; 97(17): 173702.
Acknowledgements

This work was supported by the National Natural Science Foundation of China (61673372, 61522312, 91748212, and 61433017), the Key Research Program of Frontier Sciences, CAS (QYZDB-SSW-JSC008), and the CAS/SAFEA International Partnership Program for Creative Research Teams.

Compliance with ethics guidelines

Chuang Zhang, Wenxue Wang, Ning Xi, Yuechao Wang, and Lianqing Liu declare that they have no conflict of interest or financial conflicts to disclose.

RIGHTS & PERMISSIONS

2018 THE AUTHORS
AI Summary AI Mindmap
PDF(938 KB)

Accesses

Citations

Detail

Sections
Recommended

/