
Enhanced Poly(ethylene terephthalate) Hydrolase Activity by Protein Engineering
Yuan Ma, Mingdong Yao, Bingzhi Li, Mingzhu Ding, Bo He, Si Chen, Xiao Zhou, Yingjin Yuan
Engineering ›› 2018, Vol. 4 ›› Issue (6) : 888-893.
Enhanced Poly(ethylene terephthalate) Hydrolase Activity by Protein Engineering
Poly(ethylene terephthalate) hydrolase (PETase) from Ideonella sakaiensis exhibits a strong ability to degrade poly(ethylene terephthalate) (PET) at room temperature, and is thus regarded as a potential tool to solve the issue of polyester plastic pollution. Therefore, we explored the interaction between PETase and the substrate (a dimer of the PET monomer ethylene terephthalate, 2PET), using a model of PETase and its substrate. In this study, we focused on six key residues around the substrate-binding groove in order to create novel high-efficiency PETase mutants through protein engineering. These PETase mutants were designed and tested. The enzymatic activities of the R61A, L88F, and I179F mutants, which were obtained with a rapid cell-free screening system, exhibited 1.4 fold, 2.1 fold, and 2.5 fold increases, respectively, in comparison with wild-type PETase. The I179F mutant showed the highest activity, with the degradation rate of a PET film reaching 22.5 mg per μmol·L−1 PETase per day. Thus, this study has created enhanced artificial PETase enzymes through the rational protein engineering of key hydrophobic sites, and has further illustrated the potential of biodegradable plastics.
Polyesterase / PET degradation / Cell-free protein synthesis / Polyester / PETase
[1] |
Fan X., Chung J.Y., Lim Y.X., Li Z., Loh X.J.. Review of adaptive programmable materials and their bioapplications. ACS Appl Mater Interfaces. 2016; 8(49): 33351-33370.
|
[2] |
Li Z., Loh X.J.. Recent advances of using polyhydroxyalkanoate-based nanovehicles as therapeutic delivery carriers. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2017; 9(3): e1429.
|
[3] |
Fan X., Tan B.H., Li Z., Loh X.J.. Control of PLA stereoisomers-based polyurethane elastomers as highly efficient shape memory materials. ACS Sustain Chem Eng. 2017; 5(1): 1217-1227.
|
[4] |
Li Z., Liu X., Chen X., Chua M.X., Wu Y.. Targeted delivery of Bcl-2 conversion gene by MPEG-PCL-PEI-FA cationic copolymer to combat therapeutic resistant cancer. Mater Sci Eng: C. 2017; 76: 66-72.
|
[5] |
Fan X., Zhang W., Hu Z., Li Z.. Facile synthesis of RGD-conjugated unimolecular micelles based on a polyester dendrimer for targeting drug delivery. J Mater Chem B Mater Biol Med. 2017; 5(5): 1062-1072.
|
[6] |
Neufeld L., Stassen F., Sheppard R., Gilman T.. The new plastics economy: rethinking the future of plastics.ecologny. Report No.: 080116
|
[7] |
Al-Sabagh A.M., Yehia F.Z., Eshaq G., Rabie A.M., ElMetwally A.E.. Greener routes for recycling of polyethylene terephthalate. Egyp Jl Petrol. 2016; 25(1): 53-64.
|
[8] |
Ruvolo-Filho A., Curti P.S.. Chemical kinetic model and thermodynamic compensation effect of alkaline hydrolysis of waste poly(ethylene terephthalate) in nonaqueous ethylene glycol solution. Ind Eng Chem Res. 2006; 45(24): 7985-7996.
|
[9] |
López-Fonseca R., Duque-Ingunza I., de Rivas B., Flores-Giraldo L., Gutiérrez-Ortiz J.I.. Kinetics of catalytic glycolysis of PET wastes with sodium carbonate. Chem Eng J. 2011; 168(1): 312-320.
|
[10] |
Giannotta G., Po R., Cardi N., Tampellini E., Occhiello E., Garbassi F.,
|
[11] |
Geyer B., Lorenz G., Kandelbauer A.. Recycling of poly(ethylene terephthalate)—a review focusing on chemical methods. Express Polym Lett. 2016; 10(7): 559-586.
|
[12] |
Sinha V., Patel M.R., Patel J.V.. PET waste management by chemical recycling: a review. J Polym Environ. 2010; 18(1): 8-25.
|
[13] |
Webb H.K., Arnott J., Crawford R.J., Ivanova E.P.. Plastic degradation and its environmental implications with special reference to poly(ethylene terephthalate). Polymers (Basel). 2012; 5(1): 1-18.
|
[14] |
Wei R., Zimmermann W.. Biocatalysis as a green route for recycling the recalcitrant plastic polyethylene terephthalate. Microb Biotechnol. 2017; 10(6): 1302-1307.
|
[15] |
Müller R.J., Schrader H., Profe J., Dresler K.. Deckwer WD. Enzymatic degradation of poly(ethylene terephthalate): rapid hydrolyse using a hydrolase from T. fusca. Macromol Rapid Commun. 2005; 26(17): 1400-1405.
|
[16] |
Silva C.M., Carneiro F., O’Neill A., Fonseca L.P., Cabral J.S., Guebitz G.,
|
[17] |
Herrero Acero E., Ribitsch D., Steinkellner G., Gruber K., Greimel K., Eiteljoerg I.,
|
[18] |
Yoshida S., Hiraga K., Takehana T., Taniguchi I., Yamaji H., Maeda Y.,
|
[19] |
Herrero Acero E., Ribitsch D., Dellacher A., Zitzenbacher S., Marold A., Steinkellner G.,
|
[20] |
Wei R., Oeser T., Schmidt J., Meier R., Barth M., Then J.,
|
[21] |
Silva C., Da S., Silva N., Matamá T., Araújo R., Martins M.,
|
[22] |
Katzen F., Chang G., Kudlicki W.. The past, present and future of cell-free protein synthesis. Trends Biotechnol. 2005; 23(3): 150-156.
|
[23] |
Lutz S.. Beyond directed evolution—semi-rational protein engineering and design. Curr Opin Biotechnol. 2010; 21(6): 734-743.
|
[24] |
Bornscheuer U.T., Pohl M.. Improved biocatalysts by directed evolution and rational protein design. Curr Opin Chem Biol. 2001; 5(2): 137-143.
|
[25] |
Murthy T.V.S., Wu W., Qiu Q.Q., Shi Z., LaBaer J., Brizuela L.. Bacterial cell-free system for high-throughput protein expression and a comparative analysis of Escherichia coli cell-free and whole cell expression systems. Protein Expr Purif. 2004; 36(2): 217-225.
|
[26] |
Sawasaki T., Ogasawara T., Morishita R., Endo Y.. A cell-free protein synthesis system for high-throughput proteomics. Proc Natl Acad Sci USA. 2002; 99(23): 14652-14657.
|
[27] |
Goshima N., Kawamura Y., Fukumoto A., Miura A., Honma R., Satoh R.,
|
[28] |
Han X., Liu W., Huang J., Ma J., Zheng Y., Ko T.,
|
[29] |
Sulaiman S., Yamato S., Kanaya E., Kim J., Koga Y., Takano K.,
|
[30] |
Jewett M.C., Swartz J.R.. Mimicking the Escherichia coli cytoplasmic environment activates long-lived and efficient cell-free protein synthesis. Biotechnol Bioeng. 2004; 86(1): 19-26.
|
[31] |
Kim D.M., Choi C.Y.. A semicontinuous prokaryotic coupled transcription/translation system using a dialysis membrane. Biotechnol Prog. 1996; 12(5): 645-649.
|
[32] |
Kwon Y., Jewett M.C.. High-throughput preparation methods of crude extract for robust cell-free protein synthesis. Sci Rep. 2015; 5: 8663.
|
[33] |
Shin J., Noireaux V.. An E. coli cell-free expression toolbox: application to synthetic gene circuits and artificial cells. ACS Synth Biol. 2012; 1(1): 29-41.
|
[34] |
Ribitsch D., Heumann S., Trotscha E., Herrero Acero E., Greimel K., Leber R.,
|
[35] |
Joo S., Cho I.J., Seo H., Son H.F., Sagong H., Shin T.J.,
|
This work was funded by National Program on Key Basic Research Project by the Ministry of Science and Technology of China (2014CB745100), the National Natural Science Foundation of China (21676190 and 21621004), and the Innovative Talents and Platform Program of Tianjin (16PTGCCX00140 and 16PTSYJC00050).
Yuan Ma, Mingdong Yao, Bingzhi Li, Mingzhu Ding, Bo He, Si Chen, Xiao Zhou, and Yingjin Yuan declare that they have no conflict of interest or financial conflicts to disclose.
/
〈 |
|
〉 |