Engineered Functional Surfaces by Laser Microprocessing for Biomedical Applications

Guoqing Hu, Kai Guan, Libin Lu, Jiaru Zhang, Nie Lu, Yingchun Guan

Engineering ›› 2018, Vol. 4 ›› Issue (6) : 822-830.

PDF(2440 KB)
PDF(2440 KB)
Engineering ›› 2018, Vol. 4 ›› Issue (6) : 822-830. DOI: 10.1016/j.eng.2018.09.009
Research
Research Precision Engineering—Article

Engineered Functional Surfaces by Laser Microprocessing for Biomedical Applications

Author information +
History +

Abstract

Metallic biomaterials are increasingly being used in various medical applications due to their high strength, fracture resistance, good electrical conductivity, and biocompatibility. However, their practical applications have been largely limited due to poor surface performance. Laser microprocessing is an advanced method of enhancing the surface-related properties of biomaterials. This work demonstrates the capability of laser microprocessing for biomedical metallic materials including magnesium and titanium alloys, with potential applications in cell adhesion and liquid biopsy. We investigate laser-material interaction, microstructural evolution, and surface performance, and analyze cell behavior and the surface-enhanced Raman scattering (SERS) effect. Furthermore, we explore a theoretical study on the laser microprocessing of metallic alloys that shows interesting results with potential applications. The results show that cells exhibit good adhesion behavior at the surface of the laser-treated surface, with a preferential direction based on the textured structure. A significant SERS enhancement of 6 × 103 can be obtained at the laser-textured surface during Raman measurement.

Keywords

Laser microprocessing / Functional surface / Metallic alloy / Niocompatibility / SERS

Cite this article

Download citation ▾
Guoqing Hu, Kai Guan, Libin Lu, Jiaru Zhang, Nie Lu, Yingchun Guan. Engineered Functional Surfaces by Laser Microprocessing for Biomedical Applications. Engineering, 2018, 4(6): 822‒830 https://doi.org/10.1016/j.eng.2018.09.009

References

[1]
Pan F., Gao S., Chen C., Song C., Zeng F.. Recent progress in resistive random access memories: materials, switching mechanisms, and performance. Mater Sci Eng Rep. 2014; 83: 1-59.
[2]
Xiong Y., Li H., Wang P., Liu P., Yan Y.. Improved cell adhesion of poly(amino acid) surface by cyclic phosphonate modification for bone tissue engineering. J Appl Polym Sci. 2018; 135(21): 46226.
[3]
Escobar Ivirico J.L., Bhattacharjee M., Kuyinu E., Nair L.S., Laurencin C.T.. Regenerative engineering for knee osteoarthritis treatment: biomaterials and cell-based technologies. Engineering. 2017; 3(1): 16-27.
[4]
Guan Y., Zhou W., Zheng H.. Effect of laser surface melting on corrosion behaviour of AZ91D Mg alloy in simulated-modified body fluid. J Appl Electrochem. 2009; 39(9): 1457-1464.
[5]
Korhonen E., Riikonen J., Xu W., Lehto V., Kauppinen A.. Cytotoxicity of mesoporous silicon microparticles with different surface modifications on ARPE-19 cells. Acta Ophthalmol. 2014; 92(S253): 3257.
[6]
Gupta A.K., Gupta M.. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials. 2005; 26(18): 3995-4021.
[7]
Lo Celso C.. Revealing the inner workings of human HSC adhesion. Blood. 2017; 129(8): 921-922.
[8]
Diener A., Nebe B., Lüthen F., Becker P., Beck U., Neumann H.G., . Control of focal adhesion dynamics by material surface characteristics. Biomaterials. 2005; 26(4): 383-392.
[9]
Won J.E., Yun Y.R., Jang J.H., Yang S.H., Kim J.H., Chrzanowski W., . Multifunctional and stable bone mimic proteinaceous matrix for bone tissue engineering. Biomaterials. 2015; 56: 46-57.
[10]
Lee J.Y., Shah S.S., Zimmer C.C., Liu G.Y., Revzin A.. Use of photolithography to encode cell adhesive domains into protein microarrays. Langmuir. 2008; 24(5): 2232-2239.
[11]
Javaherian S., O’Donnell K.A., McGuigan A.P.. A fast and accessible methodology for micro-patterning cells on standard culture substrates using Parafilm™ inserts. PLoS One. 2011; 6(6): e20909.
[12]
Ross A.M., Jiang Z., Bastmeyer M., Lahann J.. Physical aspects of cell culture substrates: topography, roughness, and elasticity. Small. 2012; 8(3): 336-355.
[13]
Martínez-Calderon M., Manso-Silván M., Rodríguez A., Gómez-Aranzadi M., García-Ruiz J.P., Olaizola S.M., . Surface micro- and nano-texturing of stainless steel by femtosecond laser for the control of cell migration. Sci Rep. 2016; 6: 36296.
[14]
Cunha A., Zouani O.F., Plawinski L., Botelho do Rego A.M., Almeida A., Vilar R., . Human mesenchymal stem cell behavior on femtosecond laser-textured Ti-6Al-4V surfaces. Nanomedicine. 2015; 10(5): 725-739.
[15]
Dumas V., Guignandon A., Vico L., Mauclair C., Zapata X., Linossier M.T., . Femtosecond laser nano/micro patterning of titanium influences mesenchymal stem cell adhesion and commitment. Biomed Mater. 2015; 10(5): 055002.
[16]
Manakari V., Parande G., Gupta M.. Selective laser melting of magnesium and magnesium alloy powders: a review. Metals (Basel). 2017; 7(1): 2.
[17]
Willbold E., Weizbauer A., Loos A., Seitz J.M., Angrisani N., Windhagen H., . Magnesium alloys: a stony pathway from intensive research to clinical reality. Different test methods and approval-related considerations. J Biomed Mater Res A. 2017; 105(1): 329-347.
[18]
Guan Y.C., Zhou W., Li Z.L., Zheng H.Y.. Laser-induced microstructural development and phase evolution in magnesium alloy. J Alloys Compd. 2014; 582: 491-495.
[19]
Guan Y.C., Zhou W., Li Z.L., Zheng H.Y.. Influence of overlapping tracks on microstructure evolution and corrosion behavior in laser-melt magnesium alloy. Mater Design. 2013; 52: 452-458.
[20]
Coy A.E., Viejo F., Garcia-Garcia F.J., Liu Z., Skeldon P., Thompson G.E.. Effect of excimer laser surface melting on the microstructure and corrosion performance of the die cast AZ91D magnesium alloy. Corros Sci. 2010; 52(2): 387-397.
[21]
Voelker R.. Liquid biopsy receives approval. JAMA. 2016; 316(3): 260.
[22]
De Lázaro I., Kostarelos K.. Optical diagnostics: nanosensors for liquid biopsies. Nat Biomed Eng. 2017; 1: 0063.
[23]
Diaz L.A.Jr, Bardelli A.. Liquid biopsies: genotyping circulating tumor DNA. J Clin Oncol. 2014; 32(6): 579-586.
[24]
Schrump D.S.. Circulating tumor DNA: solid data from liquid biopsies. J Thorac Cardiovasc Surg. 2017; 154(3): 1132-1133.
[25]
Xu K., Zhang C., Zhou R., Ji R., Hong M.. Hybrid micro/nano-structure formation by angular laser texturing of Si surface for surface enhanced Raman scattering. Opt Express. 2016; 24(10): 10352-10358.
[26]
Zhu Z., Yan Z., Zhan P., Wang Z.. Large-area surface-enhanced Raman scattering-active substrates fabricated by femtosecond laser ablation. Sci China Phys Mech Astron. 2013; 56(9): 1806-1809.
[27]
Parmar V., Kanaujia P.K., Bommali R.K., Vijaya Prakash G.. Efficient surface enhanced Raman scattering substrates from femtosecond laser based fabrication. Opt Mater. 2017; 72: 86-90.
[28]
Buividas R., Stoddart P.R., Juodkazis S.. Laser fabricated ripple substrates for surface-enhanced Raman scattering. Ann Phys. 2012; 524(11): L5-L10.
[29]
Rebollar E., Sanz M., Pérez S., Hernández M., Martín-Fabiani I., Rueda D.R., . Gold coatings on polymer laser induced periodic surface structures: assessment as substrates for surface-enhanced Raman scattering. Phys Chem Chem Phys. 2012; 14(45): 15699-15705.
[30]
Jang Y., Tan Z., Jurey C., Collins B., Badve A., Dong Z., . Systematic understanding of corrosion behavior of plasma electrolytic oxidation treated AZ31 magnesium alloy using a mouse model of subcutaneous implant. Mater Sci Eng C. 2014; 45: 45-55.
[31]
Ma C., Peng G., Nie L., Liu H., Guan Y.. Laser surface modification of Mg–Gd–Ca alloy for corrosion resistance and biocompatibility enhancement. Appl Surf Sci. 2018; 445: 211-216.
[32]
Xiao B., Yang Q., Yang J., Wang W., Xie G., Ma Z.. Enhanced mechanical properties of Mg–Gd–Y–Zr casting via friction stir processing. J Alloys Compd. 2011; 509(6): 2879-2884.
[33]
Zhang X., Dai J., Yang H., Liu S., He X., Wang Z.. Influence of Gd and Ca on microstructure, mechanical and corrosion properties of Mg–Gd–Zn(–Ca) alloys. Mater Technol. 2017; 32(7): 399-408.
[34]
Liu Y., Kang Z., Zhou L., Zhang J., Li Y.. Mechanical properties and biocorrosion behaviour of deformed Mg–Gd–Nd–Zn–Zr alloy by equal channel angular pressing. Corros Eng Sci Technol. 2016; 51(4): 256-262.
[35]
Xin Y., Huo K., Tao H., Tang G., Chu P.. Influence of aggressive ions on the degradation behavior of biomedical magnesium alloy in physiological environment. Acta Biomater. 2008; 4(6): 2008-2015.
[36]
Taltavull C., Shi Z., Torres B., Rams J., Atrens A.. Influence of the chloride ion concentration on the corrosion of high-purity Mg, ZE41 and AZ91 in buffered Hank’s solution. J Mater Sci Mater Med. 2014; 25(2): 329-345.
[37]
Aghion EE, Arnon A, Atar D, Segal G, inventors; Biomagnesium Systems Ltd., assignee. Biodegradable magnesium alloys and uses thereof. WIPO Patent patent WO/2007/125532. 2007 Nov 8.
[38]
Zheng Y., Gu X., Xi Y., Chai D.. In vitro degradation and cytotoxicity of Mg/Ca composites produced by powder metallurgy. Acta Biomater. 2010; 6(5): 1783-1791.
[39]
Mannion P.T., Magee J., Coyne E., O’Connor G.M., Glynn T.J.. The effect of damage accumulation behaviour on ablation thresholds and damage morphology in ultrafast laser micro-machining of common metals in air. Appl Surf Sci. 2004; 233(1–4): 275-287.
[40]
Villa J.E.L., Santos D.P., Poppi R.J.. Fabrication of gold nanoparticle-coated paper and its use as a sensitive substrate for quantitative SERS analysis. Mikrochim Acta. 2016; 183(10): 2745-2752.
[41]
Harraz F.A., Ismail A.A., Bouzid H., Al-Sayari S.A., Al-Hajry A., Al-Assiri M.S.. Surface-enhanced Raman scattering (SERS)-active substrates from silver plated-porous silicon for detection of crystal violet. Appl Surf Sci. 2015; 331: 241-247.
[42]
Domingo C., Resta V., Sanchez-Cortes S., García-Ramos J.V., Gonzalo J.. Pulsed laser deposited Au nanoparticles as substrates for surface-enhanced vibrational spectroscopy. J Phys Chem C. 2007; 111(23): 8149-8152.
[43]
Stiles P.L., Dieringer J.A., Shah N.C., Van Duyne R.P.. Surface-enhanced Raman spectroscopy. Annu Rev Anal Chem. 2008; 1(1): 601-626.
[44]
Bauch M., Toma K., Toma M., Zhang Q., Dostalek J.. Plasmon-enhanced fluorescence biosensors: a review. Plasmonics. 2014; 9(4): 781-799.
[45]
Caldarola M., Albella P., Cortés E., Rahmani M., Roschuk T., Grinblat G., . Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion. Nat Commun. 2015; 6(1): 7915.
[46]
Kelly K.L., Coronado E., Zhao L., Schatz G.C.. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B. 2003; 107(3): 668-677.
[47]
Li M., Cushing S.K., Wu N.. Plasmon-enhanced optical sensors: a review. Analyst. 2015; 140(2): 386-406.
[48]
Dong J., Zhang Z., Zheng H., Sun M.. Recent progress on plasmon-enhanced fluorescence. Nanophotonics. 2015; 4(1): 472-490.
[49]
Homola J., Piliarik M.. Surface plasmon resonance (SPR) sensors. Surface plasmon resonance based sensors. Springer, Berlin Heidelberg. 2006; 4: 45-67.

Acknowledgements

This work was supported by the National Key R&D Program of China (2018YFB1107400); the National Key Basic Research Program of China (2015CB059900); the National Natural Science Foundation of China (51705013); and the Beijing Natural Science Foundation (3162019 and J170002).
Compliance with ethics guidelines

Guoqing Hu, Kai Guan, Libin Lu, Jiaru Zhang, Nie Lu, and Yingchun Guan declare that they have no conflict of interest or financial conflicts to disclose.

RIGHTS & PERMISSIONS

2018 THE AUTHORS
AI Summary AI Mindmap
PDF(2440 KB)

Accesses

Citations

Detail

Sections
Recommended

/