The Dynamic Functional Network Connectivity Analysis Framework

Zening Fu, Yuhui Du, Vince D. Calhoun

Engineering ›› 2019, Vol. 5 ›› Issue (2) : 190-193.

PDF(626 KB)
PDF(626 KB)
Engineering ›› 2019, Vol. 5 ›› Issue (2) : 190-193. DOI: 10.1016/j.eng.2018.10.001
Views & Comments
Views & Comments

The Dynamic Functional Network Connectivity Analysis Framework

Author information +
History +

Cite this article

Download citation ▾
Zening Fu, Yuhui Du, Vince D. Calhoun. The Dynamic Functional Network Connectivity Analysis Framework. Engineering, 2019, 5(2): 190‒193 https://doi.org/10.1016/j.eng.2018.10.001

References

[1]
Allen E.A., Damaraju E., Plis S.M., Erhardt E.B., Eichele T., Calhoun V.D.. Tracking whole-brain connectivity dynamics in the resting state. Cereb Cortex. 2014; 24(3): 663-676.
[2]
Hutchison R.M., Womelsdorf T., Allen E.A., Bandettini P.A., Calhoun V.D., Corbetta M., . Dynamic functional connectivity: promise, issues, and interpretations. NeuroImage. 2013; 80(1): 360-378.
[3]
Hutchison R.M., Womelsdorf T., Gati J.S., Everling S., Menon R.S.. Resting-state networks show dynamic functional connectivity in awake humans and anesthetized macaques. Hum Brain Mapp. 2013; 34(9): 2154-2177.
[4]
Lehmann D.. Past, present and future of topographic mapping. Brain Topogr. 1990; 3(1): 191-202.
[5]
Wackermann J., Lehmann D., Michel C., Strik W.. Adaptive segmentation of spontaneous EEG map series into spatially defined microstates. Int J Psychophysiol. 1993; 14(3): 269-283.
[6]
Lehmann D., Strik W., Henggeler B., König T., Koukkou M.. Brain electric microstates and momentary conscious mind states as building blocks of spontaneous thinking: I. visual imagery and abstract thoughts. Int J Psychophysiol. 1998; 29(1): 1-11.
[7]
Calhoun V.D., Adali T., Pearlson G.D., Pekar J.. A method for making group inferences from functional MRI data using independent component analysis. Hum Brain Mapp. 2001; 14(3): 140-151.
[8]
Calhoun V.D., Eichele T., Pearlson G.. Functional brain networks in schizophrenia: a review. Front Hum Neurosci. 2009; 3: 17.
[9]
Wu L., Eichele T., Calhoun V.D.. Reactivity of hemodynamic responses and functional connectivity to different states of alpha synchrony: a concurrent EEG-fMRI study. NeuroImage. 2010; 52(4): 1252-1260.
[10]
Yu Q., Sui J., Rachakonda S., He H., Pearlson G., Calhoun V.D.. Altered small-world brain networks in temporal lobe in patients with schizophrenia performing an auditory oddball task. Front Syst Neurosci. 2011; 5: 7.
[11]
Allen E., Damaraju E., Eichele T., Wu L., Calhoun V.. EEG signatures of dynamic functional network connectivity states. Brain Topogr. 2018; 31(1): 101-116.
[12]
Calhoun V.D., Miller R., Pearlson G., Adalı T.. The chronnectome: time-varying connectivity networks as the next frontier in fMRI data discovery. Neuron. 2014; 84(2): 262-274.
[13]
Cetin M.S., Houck J.M., Rashid B., Agacoglu O., Stephen J.M., Sui J., . Multimodal classification of schizophrenia patients with MEG and fMRI data using static and dynamic connectivity measures. Front Neurosci. 2016; 10: 466.
[14]
Du Y., Pearlson G.D., Yu Q., He H., Lin D., Sui J., . Interaction among subsystems within default mode network diminished in schizophrenia patients: a dynamic connectivity approach. Schizophr Res. 2016; 170(1): 55-65.
[15]
Hutchison R.M., Morton J.B.. Tracking the brain's functional coupling dynamics over development. J Neurosci. 2015; 35(17): 6849-6859.
[16]
Ma S., Calhoun V.D., Phlypo R., Adalı T.. Dynamic changes of spatial functional network connectivity in healthy individuals and schizophrenia patients using independent vector analysis. NeuroImage. 2014; 90: 196-206.
[17]
Yu Q., Erhardt E.B., Sui J., Du Y., He H., Hjelm D., . Assessing dynamic brain graphs of time-varying connectivity in fMRI data: application to healthy controls and patients with schizophrenia. NeuroImage. 2015; 107: 345-355.
[18]
Vidaurre D., Smith S.M., Woolrich M.W.. Brain network dynamics are hierarchically organized in time. PNAS. 2017; 114(48): 12827-12832.
[19]
Yaesoubi M., Allen E.A., Miller R.L., Calhoun V.D.. Dynamic coherence analysis of resting fMRI data to jointly capture state-based phase, frequency, and time-domain information. NeuroImage. 2015; 120: 133-142.
[20]
Yaesoubi M., Calhoun V.D.. Adaptive windowing and windowless approaches to estimate dynamic functional brain connectivity.
[21]
Robinson L.F., Wager T.D., Lindquist M.A.. Change point estimation in multi-subject fMRI studies. NeuroImage. 2010; 49(2): 1581-1592.
[22]
Sakoğlu Ü., Pearlson G.D., Kiehl K.A., Wang Y.M., Michael A.M., Calhoun V.D.. A method for evaluating dynamic functional network connectivity and task-modulation: application to schizophrenia. Magn Reson Mater Phys Biol Med. 2010; 23(5–6): 351-366.
[23]
Abrol A., Damaraju E., Miller R.L., Stephen J.M., Claus E.D., Mayer A.R., . Replicability of time-varying connectivity patterns in large resting state fMRI samples. NeuroImage. 2017; 163: 160-176.
[24]
Miller R.L., Yaesoubi M., Turner J.A., Mathalon D., Preda A., Pearlson G., . Higher dimensional meta-state analysis reveals reduced resting fMRI connectivity dynamism in schizophrenia patients. PLoS One. 2016; 11(3): e0149849.
[25]
Du Y., Fryer S.L., Fu Z., Lin D., Sui J., Chen J., . Dynamic functional connectivity impairments in early schizophrenia and clinical high-risk for psychosis. NeuroImage. 2017; 180: 632-645.
[26]
Chang C., Glover G.H.. Time-frequency dynamics of resting-state brain connectivity measured with fMRI. NeuroImage. 2010; 50(1): 81-98.
[27]
Hindriks R., Adhikari M.H., Murayama Y., Ganzetti M., Mantini D., Logothetis N.K., . Can sliding-window correlations reveal dynamic functional connectivity in resting-state fMRI?. NeuroImage. 2016; 127: 242-256.
[28]
Fu Z., Chan S.C., Di X., Biswal B., Zhang Z.. Adaptive covariance estimation of non-stationary processes and its application to infer dynamic connectivity from fMRI. IEEE Trans Biomed Circuits Syst. 2014; 8(2): 228-239.
[29]
Cribben I., Haraldsdottir R., Atlas L.Y., Wager T.D., Lindquist M.A.. Dynamic connectivity regression: determining state-related changes in brain connectivity. NeuroImage. 2012; 61(4): 907-920.
[30]
Fu Z., Tu Y., Di X., Du Y., Pearlson G., Turner J., . Characterizing dynamic amplitude of low-frequency fluctuation and its relationship with dynamic functional connectivity: an application to schizophrenia. NeuroImage. 2018; 180: 619-631.
[31]
Liu X., Duyn J.H.. Time-varying functional network information extracted from brief instances of spontaneous brain activity. PNAS. 2013; 110(11): 4392-4397.
[32]
Fukunaga M., Horovitz S.G., Van Gelderen P., De Zwart J.A., Jansma J.M., Ikonomidou V.N., . Large-amplitude, spatially correlated fluctuations in BOLD fMRI signals during extended rest and early sleep stages. Magn Reson Imaging. 2006; 24(8): 979-992.
[33]
Barnes A., Bullmore E.T., Suckling J.. Endogenous human brain dynamics recover slowly following cognitive effort. PLoS One. 2009; 4(8): e6626.
[34]
Damaraju E., Allen E.A., Belger A., Ford J., McEwen S., Mathalon D., . Dynamic functional connectivity analysis reveals transient states of dysconnectivity in schizophrenia. NeuroImage Clin. 2014; 5: 298-308.
[35]
Tagliazucchi E., Von Wegner F., Morzelewski A., Brodbeck V., Laufs H.. Dynamic BOLD functional connectivity in humans and its electrophysiological correlates. Front Hum Neurosci. 2012; 6: 339.
[36]
Chang C., Liu Z., Chen M.C., Liu X., Duyn J.H.. EEG correlates of time-varying BOLD functional connectivity. NeuroImage. 2013; 72: 227-236.
[37]
Rashid B., Arbabshirani M.R., Damaraju E., Cetin M.S., Miller R., Pearlson G.D., . Classification of schizophrenia and bipolar patients using static and dynamic resting-state fMRI brain connectivity. NeuroImage. 2016; 134: 645-657.
[38]
Calhoun V.D., Adali T.. Time-varying brain connectivity in fMRI data: whole-brain data-driven approaches for capturing and characterizing dynamic states. IEEE Signal Process Mag. 2016; 33(3): 52-66.
[39]
Liao W., Wu G., Xu Q., Ji G., Zhang Z., Zang Y., . DynamicBC: a MATLAB toolbox for dynamic brain connectome analysis. Brain Connect. 2014; 4(10): 780-790.

Acknowledgements

This work was supported by the National Institutes of Health grants (R01EB006841, R01REB020407, and P20GM103472 PI: VC), the National Natural Science Foundation of China (61703253), and the Natural Science Foundation of Shanxi Province (2016021077).

RIGHTS & PERMISSIONS

2018 THE AUTHORS
AI Summary AI Mindmap
PDF(626 KB)

Accesses

Citations

Detail

Sections
Recommended

/