
Dual-Comb Ranging
Zebin Zhu, Guanhao Wu
Dual-Comb Ranging
Absolute distance measurement is a fundamental technique in mobile and large-scale dimensional metrology. Dual-comb ranging is emerging as a powerful tool that exploits phase resolution and frequency accuracy for high-precision and fast-rate distance measurement. Using two coherent frequency combs, dual-comb ranging allows time and phase response to be measured rapidly. It breaks through the limitations related to the responsive bandwidth, ambiguity range, and dynamic measurement characteristics of conventional ranging tools. This review introduces dual-comb ranging and summarizes the key techniques for realizing this ranging tool. As optical frequency comb technology progresses, dual-comb ranging shows promise for various professional applications.
Ranging / Dual-comb interferometer / Phase noise / Timing jitter / Tight-locking / Post-correction
[[1]] |
Cuypers W., Van Gestel N., Voet A., Kruth J.P., Mingneau J., Bleys P.. Optical measurement techniques for mobile and large-scale dimensional metrology. Opt Lasers Eng. 2009; 47(3–4): 292-300.
|
[[2]] |
Schmitt R.H., Peterek M., Morse E., Knapp W., Galetto M., Härtig F.,
|
[[3]] |
Bobroff N.. Recent advances in displacement measuring interferometry. Meas Sci Technol. 1993; 4(9): 907-926.
|
[[4]] |
Abbott B.P.. Observation of gravitational waves from a binary black hole merger. Phys Rev Lett. 2016; 116: 061102.
|
[[5]] |
Newbury N.R.. Searching for applications with a fine-tooth comb. Nat Photon. 2011; 5(4): 186-188.
|
[[6]] |
Udem T., Holzwarth R., Hansch T.W.. Optical frequency metrology. Nature. 2002; 416(6877): 233-237.
|
[[7]] |
Jang Y.S., Kim S.W.. Distance measurements using mode-locked lasers: a review. Nanomanu Metrol. 2018; 1(3): 131-147.
|
[[8]] |
Lee J., Kim Y.J., Lee K., Lee S., Kim S.W.. Time-of-flight measurement with femtosecond light pulses. Nat Photon. 2010; 4(10): 716-720.
|
[[9]] |
Minoshima K., Matsumoto H.. High-accuracy measurement of 240-m distance in an optical tunnel by use of a compact femtosecond laser. Appl Opt. 2000; 39(30): 5512-5517.
|
[[10]] |
Doloca N.R., Meiners-Hagen K., Wedde M., Pollinger F., Abou-Zeid A.. Absolute distance measurement system using a femtosecond laser as a modulator. Meas Sci Technol. 2010; 21(11): 115302.
|
[[11]] |
Wu G., Takahashi M., Inaba H., Minoshima K.. Pulse-to-pulse alignment technique based on synthetic-wavelength interferometry of optical frequency combs for distance measurement. Opt Lett. 2013; 38(12): 2140-2143.
|
[[12]] |
Wang G., Jang Y.S., Hyun S., Chun B.J., Kang H.J., Yan S.,
|
[[13]] |
Jang Y.S., Wang G., Hyun S., Kang H.J., Chun B.J., Kim Y.J.,
|
[[14]] |
Joo K.N., Kim S.W.. Absolute distance measurement by dispersive interferometry using a femtosecond pulse laser. Opt Express. 2006; 14(13): 5954-5960.
|
[[15]] |
Joo K.N., Kim Y., Kim S.W.. Distance measurements by combined method based on a femtosecond pulse laser. Opt Express. 2008; 16(24): 19799-19806.
|
[[16]] |
Van den Berg S.A., Persijn S.T., Kok G.J.P., Zeitouny M.G., Bhattacharya N.. Many-wavelength interferometry with thousands of lasers for absolute distance measurement. Phys Rev Lett. 2012; 108(18): 183901.
|
[[17]] |
Coddington I., Swann W.C., Nenadovic L., Newbury N.R.. Rapid and precise absolute distance measurements at long range. Nat Photonics. 2009; 3(6): 351-356.
|
[[18]] |
Zhu Z., Xu G., Ni K., Zhou Q., Wu G.. Synthetic-wavelength-based dual-comb interferometry for fast and precise absolute distance measurement. Opt Express. 2018; 26(5): 5747-5757.
|
[[19]] |
Wu G., Zhou Q., Shen L., Ni K., Zeng X., Li Y.. Experimental optimization of the repetition rate difference in dual-comb ranging system. Appl Phys Express. 2014; 7(10): 106602.
|
[[20]] |
Li Y., Shi J., Wang Y., Ji R., Liu D., Zhou W.. Phase distortion correction in dual-comb ranging system. Meas Sci Technol. 2017; 28(7): 075201.
|
[[21]] |
Lee J., Han S., Lee K., Bae E., Kim S., Lee S.,
|
[[22]] |
Wu G., Xiong S., Ni K., Zhu Z., Zhou Q.. Parameter optimization of a dual-comb ranging system by using a numerical simulation method. Opt Express. 2015; 23(25): 32044-32053.
|
[[23]] |
Shi H., Song Y., Liang F., Xu L., Hu M., Wang C.. Effect of timing jitter on time-of-flight distance measurements using dual femtosecond lasers. Opt Express. 2015; 23(11): 14057-14069.
|
[[24]] |
Zhang H., Wei H., Wu X., Yang H., Li Y.. Absolute distance measurement by dual-comb nonlinear asynchronous optical sampling. Opt Express. 2014; 22(6): 6597-6604.
|
[[25]] |
Zhang H., Wei H., Wu X., Yang H., Li Y.. Reliable non-ambiguity range extension with dual-comb simultaneous operation in absolute distance measurements. Meas Sci Technol. 2014; 25(12): 125201.
|
[[26]] |
Zhao X., Zheng Z., Liu L., Wang Q., Chen H., Liu J.. Fast, long-scan-range pump-probe measurement based on asynchronous sampling using a dual-wavelength mode-locked fiber laser. Opt Express. 2012; 20(23): 25584-25589.
|
[[27]] |
Liu T.A., Newbury N.R., Coddington I.. Sub-micron absolute distance measurements in sub-millisecond times with dual free-running femtosecond Er fiber-lasers. Opt Express. 2011; 19(19): 18501-18509.
|
[[28]] |
Zhang H., Wu X., Wei H., Li Y.. Compact dual-comb absolute distance ranging with an electric reference. IEEE Photon J. 2015; 7: 1-8.
|
[[29]] |
Yang R., Pollinger F., Meiners-Hagen K., Krystek M., Tan J., Bosse H.. Absolute distance measurement by dual-comb interferometry with multi-channel digital lock-in phase detection. Meas Sci Technol. 2015; 26(8): 084001.
|
[[30]] |
Trocha P., Karpov M., Ganin D., Pfeiffer M.H.P., Kordts A., Wolf S.,
|
[[31]] |
Weimann C., Lauermann M., Hoeller F., Freude W., Koos C.. Silicon photonic integrated circuit for fast and precise dual-comb distance metrology. Opt Express. 2017; 25(24): 30091-30104.
|
[[32]] |
Teleanu E.L., Duran V., Torres-Company V.. Electro-optic dual-comb interferometer for high-speed vibrometry. Opt Express. 2017; 25(14): 16427-16436.
|
[[33]] |
Wu H., Zhao T., Wang Z., Zhang K., Xue B., Li J.,
|
[[34]] |
Zhao X., Qu X., Zhang F., Zhao Y., Tang G.. Absolute distance measurement by multi-heterodyne interferometry using an electro-optic triple comb. Opt Lett. 2018; 43(4): 807-810.
|
[[35]] |
Coddington I., Newbury N., Swann W.. Dual-comb spectroscopy. Optica. 2016; 3(4): 414-426.
|
[[36]] |
Ideguchi T.. Dual-comb spectroscopy. Opt Photon News. 2017; 28(1): 32-39.
|
[[37]] |
Coddington I., Swann W.C., Newbury N.R.. Coherent dual-comb spectroscopy at high signal-to-noise ratio. Phys Rev A. 2010; 82(4): 3535-3537.
|
[[38]] |
Coddington I., Swann W.C., Newbury N.R.. Time-domain spectroscopy of molecular free-induction decay in the infrared. Opt Lett. 2010; 35(9): 1395-1397.
|
[[39]] |
Cossel K.C., Waxman E.M., Giorgetta F.R., Cermak M., Coddington I.R., Hesselius D.,
|
[[40]] |
Link S.M., Maas D.J.H.C., Waldburger D., Keller U.. Dual-comb spectroscopy of water vapor with a free-running semiconductor disk laser. Science. 2017; 356(6343): 1164-1168.
|
[[41]] |
Baumann E., Giorgetta F.R., Swann W.C., Zolot A.M., Coddington I., Newbury N.R.. Spectroscopy of the methane Nu(3) band with an accurate midinfrared coherent dual-comb spectrometer. Phys Rev A. 2011; 84(6): 14717-14719.
|
[[42]] |
Coddington I., Swann W.C., Newbury N.R.. Coherent multiheterodyne spectroscopy using stabilized optical frequency combs. Phys Rev Lett. 2008; 100(1): 13902–5
|
[[43]] |
Davila-Rodriguez J., Ozawa A., Hansch T.W., Udem T.. Doppler cooling trapped ions with a UV frequency comb. Phys Rev Lett. 2016; 116(4): 043002.
|
[[44]] |
Meek S.A., Hipke A., Guelachvili G., Hänsch T.W., Picqué N.. Doppler-free fourier transform spectroscopy. Opt Lett. 2017; 43(1): 162-165.
|
[[45]] |
Hsieh Y.D., Iyonaga Y., Sakaguchi Y., Yokoyama S., Inaba H., Minoshima K.,
|
[[46]] |
Nishiyama A., Yoshida S., Nakajima Y., Sasada H., Nakagawa K., Onae A.,
|
[[47]] |
Roy J., Deschenes J.D., Potvin S., Genest J.. Continuous real-time correction and averaging for frequency comb interferometry. Opt Express. 2012; 20(20): 21932-21939.
|
[[48]] |
Ideguchi T., Poisson A., Guelachvili G., Picque N., Hansch T.W.. Adaptive real-time dual-comb spectroscopy. Nat Commun. 2014; 5(1): 3375-3382.
|
[[49]] |
Ycas G., Giorgetta F.R., Baumann E., Coddington I., Herman D., Diddams S.A.,
|
[[50]] |
Coddington I., Swann W.C., Newbury N.R.. Coherent linear optical sampling at 15 bits of resolution. Opt Lett. 2009; 34(14): 2153-2155.
|
[[51]] |
Minamikawa T., Hsieh Y.D., Shibuya K., Hase E., Kaneoka Y., Okubo S.,
|
[[52]] |
Asahara A., Nishiyama A., Yoshida S., Kondo K., Nakajima Y., Minoshima K.. Dual-comb spectroscopy for rapid characterization of complex optical properties of solids. Opt Lett. 2016; 41(21): 4971-4974.
|
[[53]] |
Boudreau S., Levasseur S., Perilla C., Roy S., Genest J.. Chemical detection with hyperspectral lidar using dual frequency combs. Opt Express. 2013; 21(6): 7411-7418.
|
[[54]] |
Shibuya K., Minamikawa T., Mizutani Y., Yamamoto H., Minoshima K., Yasui T.,
|
[[55]] |
Wang C., Deng Z., Gu C., Liu Y., Luo D., Zhu Z.,
|
[[56]] |
Hase E., Minamikawa T., Mizuno T., Miyamoto S., Ichikawa R., Hsieh Y.D.,
|
[[57]] |
Dong X., Zhou X., Kang J., Chen L., Lei Z., Zhang C.,
|
[[58]] |
Kuse N., Ozawa A., Kobayashi Y.. Static FBG strain sensor with high resolution and large dynamic range by dual-comb spectroscopy. Opt Express. 2013; 21(9): 11141-11149.
|
[[59]] |
Burghoff D., Yang Y., Hu Q.. Computational multiheterodyne spectroscopy. Sci Adv. 2016; 2(11): 1601227-1601233.
|
[[60]] |
Zhu Z., Ni K., Zhou Q., Wu G.. Digital correction method for realizing a phase-stable dual-comb interferometer. Opt Express. 2018; 26(13): 16813-16823.
|
[[61]] |
Deschenes J.D., Giaccari P., Genest J.. Optical referencing technique with CW lasers as intermediate oscillators for continuous full delay range frequency comb interferometry. Opt Express. 2010; 18(22): 23358-23370.
|
[[62]] |
Zhu Z., Xu G., Ni K., Zhou Q., Wu G.. Improving the accuracy of a dual-comb interferometer by suppressing the relative linewidth. Meas Sci Technol. 2018; 29(4): 45007–11
|
[[63]] |
Chen Z., Yan M., Hänsch T.W., Picqué N.. A phase-stable dual-comb interferometer. Nat Commun. 2018; 9: 3035.
|
[[64]] |
Zhu Z., Ni K., Zhou Q., Wu G.. A computational correction method for dual-comb interferometry.
|
[[65]] |
Zhang Z., Gu C., Sun J., Wang C., Gardiner T., Reid D.T.. Asynchronous midinfrared ultrafast optical parametric oscillator for dual-comb spectroscopy. Opt Lett. 2012; 37(2): 187-189.
|
[[66]] |
Kim J., Song Y.. Ultralow-noise mode-locked fiber lasers and frequency combs: principles, status, and applications. Adv Opt Photonics. 2016; 8(3): 465.
|
[[67]] |
Ferre-Pikal E.S., Vig J.R., Camparo J.C., Cutler L.S., Maleki L., Riley W.J.,
|
[[68]] |
Paschotta R.. Noise of mode-locked lasers (part I): numerical model. Appl Phys B. 2004; 79(2): 153-162.
|
[[69]] |
Von Bandel N., Myara M., Sellahi M., Souici T., Dardaillon R., Signoret P.. Time-dependent laser linewidth: beat-note digital acquisition and numerical analysis. Opt Express. 2016; 24(24): 27961-27978.
|
[[70]] |
Hou D., Lee C.C., Yang Z., Schibli T.R.. Timing jitter characterization of mode-locked lasers with <1 zs/√Hz resolution using a simple optical heterodyne technique. Opt Lett. 2015; 40(13): 2985-2988.
|
[[71]] |
Ideguchi T., Nakamura T., Kobayashi Y., Goda K.. Kerr-lens mode-locked bidirectional dual-comb ring laser for broadband dual-comb spectroscopy. Optica. 2016; 3(7): 748-753.
|
[[72]] |
Liao R., Song Y., Liu W., Shi H., Chai L., Hu M.. Dual-comb spectroscopy with a single free-running thulium-doped fiber laser. Opt Express. 2018; 26(8): 11046-11054.
|
[[73]] |
Millot G., Pitois S., Yan M., Hovhannisyan T., Bendahmane A., Hänsch T.W.,
|
[[74]] |
Ideguchi T., Poisson A., Guelachvili G., Haensch T.W., Picque N.. Adaptive dual-comb spectroscopy in the green region. Opt Lett. 2012; 37(23): 4847-4849.
|
[[75]] |
Hebert N.B., Genest J., Deschênes J.D., Bergeron H., Chen G.Y., Khurmi C.,
|
[[76]] |
Newbury N.R., Coddington I., Swann W.. Sensitivity of coherent dual-comb spectroscopy. Opt Express. 2010; 18(8): 7929-7945.
|
[[77]] |
Jang Y.S., Kim S.W.. Compensation of the refractive index of air in laser interferometer for distance measurement: a review. Int J Precis Eng Manuf. 2017; 18(12): 1881-1890.
|
This work was supported by the National Natural Science Foundation of China (61575105, 61611140125), Beijing Natural Science Foundation (3182011), and Shenzhen Fundamental Research Funding (JCYJ20170412171535171).
Zebin Zhu and Guanhao Wu declare that they have no conflict of interest or financial conflicts to disclose.
/
〈 |
|
〉 |