
Ultra-Short Pulsed Laser Manufacturing and Surface Processing of Microdevices
Yongchao Yu, Shi Bai, Shutong Wang, Anming Hu
Engineering ›› 2018, Vol. 4 ›› Issue (6) : 779-786.
Ultra-Short Pulsed Laser Manufacturing and Surface Processing of Microdevices
Ultra-short laser pulses possess many advantages for materials processing. Ultrafast laser has a significantly low thermal effect on the areas surrounding the focal point; therefore, it is a promising tool for micro- and submicro-sized precision processing. In addition, the nonlinear multiphoton absorption phenomenon of focused ultra-short pulses provides a promising method for the fabrication of various structures on transparent material, such as glass and transparent polymers. A laser direct writing process was applied in the fabrication of high-performance three-dimensional (3D) structured multilayer micro-supercapacitors (MSCs) on polymer substrates exhibiting a peak specific capacitance of 42.6 mF·cm−2 at a current density of 0.1 mA·cm−2. Furthermore, a flexible smart sensor array on a polymer substrate was fabricated for multi-flavor detection. Different surface treatments such as gold plating, reduced-graphene oxide (rGO) coating, and polyaniline (PANI) coating were accomplished for different measurement units. By applying principal component analysis (PCA), this sensing system showed a promising result for flavor detection. In addition, two-dimensional (2D) periodic metal nanostructures inside 3D glass microfluidic channels were developed by all-femtosecond-laser processing for real-time surface-enhanced Raman spectroscopy (SERS). The processing mechanisms included laser ablation, laser reduction, and laser-induced surface nano-engineering. These works demonstrate the attractive potential of ultra-short pulsed laser for surface precision manufacturing.
Ultra-short pulsed laser processing / Microdevices / Supercapacitor / Electronic tongue / Surface-enhanced Raman spectroscopy
[1] |
Srinivasan R., Sutcliffe E., Braren B.. Ablation and etching of polymethylmethacrylate by very short (160 fs) ultraviolet (308 nm) laser pulses. Appl Phys Lett. 1987; 51(16): 1285-1287.
|
[2] |
Küper S., Stuke M.. Femtosecond UV excimer laser ablation. Appl Phys B. 1987; 44(4): 199-204.
|
[3] |
Yanik M.F., Cinar H., Cinar H.N., Chisholm A.D., Jin Y., Ben-Yakar A.. Functional regeneration after laser axotomy. Nature. 2004; 432(7019): 822.
|
[4] |
Momma C., Chichkov B.N., Nolte S., Von Alvensleben F., Tünnermann A., Welling H.,
|
[5] |
Bärsch N., Körber K., Ostendorf A., Tönshoff K.H.. Ablation and cutting of planar silicon devices using femtosecond laser pulses. Appl Phys A. 2003; 77(2): 237-242.
|
[6] |
Wellershoff S.S., Hohlfeld J., Güdde J., Matthias E.. The role of electron–phonon coupling in femtosecond laser damage of metals. Appl Phys A. 1999; 69(1): S99-S107.
|
[7] |
Gattass R.R., Mazur E.. Femtosecond laser micromachining in transparent materials. Nat Photonics. 2008; 2(4): 219-225.
|
[8] |
Sugioka K., Cheng Y.. Ultrafast lasers—reliable tools for advanced materials processing. Light Sci Appl. 2014; 3(4): e149.
|
[9] |
Hu A., Rybachuk M., Lu Q.B., Duley W.W.. Direct synthesis of sp-bonded carbon chains on graphite surface by femtosecond laser irradiation. Appl Phys Lett. 2007; 91(13): 131906.
|
[10] |
Zheng C., Hu A., Chen T., Oakes K.D., Liu S.. Femtosecond laser internal manufacturing of three-dimensional microstructure devices. Appl Phys A. 2015; 121(1): 163-177.
|
[11] |
Fischer J., Wegener M.. Three-dimensional optical laser lithography beyond the diffraction limit. Laser Photonics Rev. 2013; 7(1): 22-44.
|
[12] |
Zhou W., Bridges D., Li R., Bai S., Ma Y., Hou T.,
|
[13] |
Küper S., Stuke M.. Ablation of UV-transparent materials with femtosecond UV excimer laser pulses. Microelectro Eng. 1989; 9(1–4): 475-480.
|
[14] |
Lin J., Peng Z., Liu Y., Ruiz-Zepeda F., Ye R., Samuel E.L.G.,
|
[15] |
Watanabe W., Sowa S., Tamaki T., Itoh K., Nishii J.. Three-dimensional waveguides fabricated in poly(methyl methacrylate) by a femtosecond laser. Jpn J Appl Phys. 2006; 45(29): L765-L767.
|
[16] |
Yamasaki K., Juodkazis S., Watanabe M., Sun H.B., Matsuo S., Misawa H.. Recording by microexplosion and two-photon reading of three-dimensional optical memory in polymethylmethacrylate films. Appl Phys Lett. 2000; 76(8): 1000-1002.
|
[17] |
Sowa S., Watanabe W., Tamaki T., Nishii J., Itoh K.. Symmetric waveguides in poly(methyl methacrylate) fabricated by femtosecond laser pulses. Opt Express. 2006; 14(1): 291-297.
|
[18] |
Zheng C., Hu A., Li R., Bridges D., Chen T.. Fabrication of embedded microball lens in PMMA with high repetition rate femtosecond fiber laser. Opt Express. 2015; 23(13): 17584-17598.
|
[19] |
Zheng C., Hu A., Kihm K.D., Ma Q., Li R., Chen T.,
|
[20] |
Beidaghi M., Wang C.. Micro-supercapacitors based on interdigital electrodes of reduced graphene oxide and carbon nanotube composites with ultrahigh power handling performance. Adv Funct Mater. 2012; 22(21): 4501-4510.
|
[21] |
Cheng C., Wang S., Wu J., Yu Y., Li R., Eda S.,
|
[22] |
Deubel M., Von Freymann G., Wegener M., Pereira S., Busch K., Soukoulis C.M.. Direct laser writing of three-dimensional photonic-crystal templates for telecommunications. Nat Mater. 2004; 3(7): 444-447.
|
[23] |
Gittard S.D., Narayan R.J.. Laser direct writing of micro- and nano-scale medical devices. Expert Rev Med Devices. 2010; 7(3): 343-356.
|
[24] |
In J.B., Hsia B., Yoo J.H., Hyun S., Carraro C., Maboudian R.,
|
[25] |
Luo S., Hoang P.T., Liu T.. Direct laser writing for creating porous graphitic structures and their use for flexible and highly sensitive sensor and sensor arrays. Carbon. 2016; 96: 522-531.
|
[26] |
Cai J., Lv C., Watanabe A.. Cost-effective fabrication of high-performance flexible all-solid-state carbon micro-supercapacitors by blue-violet laser direct writing and further surface treatment. J Mater Chem A Mater Energy Sustain. 2016; 4(5): 1671-1679.
|
[27] |
Hou T., Zheng C., Bai S., Ma Q., Bridges D., Hu A.,
|
[28] |
Li R.Z., Peng R., Kihm K.D., Bai S., Bridges D., Tumuluri U.,
|
[29] |
Wang S., Yu Y., Li R., Feng G., Wu Z., Compagnini G.,
|
[30] |
Tran T.T., Mulchandani A.. Carbon nanotubes and graphene nano field-effect transistor-based biosensors. TrAC Trends Analyt Chem. 2016; 79: 222-232.
|
[31] |
Zhan B., Li C., Yang J., Huang W., Dong X.. Graphene field-effect transistor and its application for electronic sensing. Small. 2014; 10(20): 4042-4065.
|
[32] |
Piqué A., Chrisey D.B., Fitz-Gerald J.M., McGill R.A., Auyeung R.C.Y., Wu H.D.,
|
[33] |
Yu Y., Al Mamun K.A., Shanta A.S., Islam S.K., McFarlane N.. Vertically aligned carbon nanofibers as a cell impedance sensor. IEEE Trans NanoTechnol. 2016; 15(6): 856-861.
|
[34] |
Malzahn K., Windmiller J.R., Valdés-Ramírez G., Schöning M.J., Wang J.. Wearable electrochemical sensors for in situ analysis in marine environments. Analyst. 2011; 136(14): 2912-2917.
|
[35] |
Bakker A., Huijsing J.H.. Micropower CMOS temperature sensor with digital output. IEEE J Solid-State Circuits. 1996; 31(7): 933-937.
|
[36] |
Kuang Q., Lao C., Wang Z.L., Xie Z., Zheng L.. High-sensitivity humidity sensor based on a single SnO2 nanowire. J Am Chem Soc. 2007; 129(19): 6070-6071.
|
[37] |
Sikarwar S., Yadav B.. Opto-electronic humidity sensor: a review. Sens Actuators A Phys. 2015; 233: 54-70.
|
[38] |
Mukhopadhyay S.C.. Wearable sensors for human activity monitoring: a review. IEEE Sens J. 2015; 15(3): 1321-1330.
|
[39] |
Li L., Zhang J., Peng Z., Li Y., Gao C., Ji Y.,
|
[40] |
Persaud K., Dodd G.. Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose. Nature. 1982; 299(5881): 352-355.
|
[41] |
Otto M., Thomas J.. Model studies on multiple channel analysis of free magnesium, calcium, sodium, and potassium at physiological concentration levels with ion-selective electrodes. Anal Chem. 1985; 57(13): 2647-2651.
|
[42] |
Premanode B., Toumazou C.. A novel, low power biosensor for real time monitoring of creatinine and urea in peritoneal dialysis. Sens Actuators B. 2007; 120(2): 732-735.
|
[43] |
Lvova L., Pudi R., Galloni P., Lippolis V., Di Natale C., Lundström I.,
|
[44] |
Gutés A., Ibáñez A.B., Del Valle M., Céspedes F.. Automated SIA e-tongue employing a voltammetric biosensor array for the simultaneous determination of glucose and ascorbic acid. Electroanalysis. 2006; 18(1): 82-88.
|
[45] |
Ciosek P., Wroblewski W.. Sensor arrays for liquid sensing—electronic tongue systems. Analyst. 2007; 132(10): 963-978.
|
[46] |
Facure M.H., Mercante L.A., Mattoso L.H.C., Correa D.S.. Detection of trace levels of organophosphate pesticides using an electronic tongue based on graphene hybrid nanocomposites. Talanta. 2017; 167: 59-66.
|
[47] |
Zhao Y., Yang Q., Chang Y., Qu H., Pang W., Zhang H.,
|
[48] |
Yu Y., Joshi P.C., Wu J., Hu A.. Laser-induced carbon base smart flexible sensor array for multi flavors detection. ACS Appl Mater Interfaces. 2018; [Internet] [cited 2018 Sep 29]. Available from: https://pubs.acs.org/doi/abs/10.1021/acsami.8b12626
|
[49] |
Riul A.Jr, Dantas C.A.R., Miyazaki C.M., Oliveira O.N.Jr.. Recent advances in electronic tongues. Analyst. 2010; 135(10): 2481-2495.
|
[50] |
Bae Y., Kim N.H., Kim M., Lee K.Y., Han S.W.. Anisotropic assembly of Ag nanoprisms. J Am Chem Soc. 2008; 130(16): 5432-5433.
|
[51] |
Hu A., Duley W.. Surface enhanced Raman spectroscopic characterization of molecular structures in diamond-like carbon films. Chem Phys Lett. 2008; 450(4–6): 375-378.
|
[52] |
Hu A., Lu Q.B., Duley W.W., Rybachuk M.. Spectroscopic characterization of carbon chains in nanostructured tetrahedral carbon films synthesized by femtosecond pulsed laser deposition. J Chem Phys. 2007; 126(15): 154705.
|
[53] |
Phan-Quang G.C., Wee E.H.Z., Yang F., Lee H.K., Phang I.Y., Feng X.,
|
[54] |
Hu A., Sanderson J., Zaidi A.A., Wang C., Zhang T., Zhou Y.,
|
[55] |
Pallaoro A., Hoonejani M.R., Braun G.B., Meinhart C.D., Moskovits M.. Rapid identification by surface-enhanced Raman spectroscopy of cancer cells at low concentrations flowing in a microfluidic channel. ACS Nano. 2015; 9(4): 4328-4336.
|
[56] |
Lu G., De Keersmaecker H., Su L., Kenens B., Rocha S., Fron E.,
|
[57] |
Yin J., Wu T., Song J., Zhang Q., Liu S., Xu R.,
|
[58] |
Bai S., Lin Y.H., Zhang X.P., Zhou W.P., Chen T., Ma Y.,
|
[59] |
Blackie E.J., Le Ru E.C., Etchegoin P.G.. Single-molecule surface-enhanced Raman spectroscopy of nonresonant molecules. J Am Chem Soc. 2009; 131(40): 14466-14472.
|
[60] |
Bai S., Zhou W., Tao C., Oakes K., Hu A.. Laser-processed nanostructures of metallic substrates for surface-enhanced Raman spectroscopy. Curr Nanosci. 2014; 10(4): 486-496.
|
[61] |
Zhang X.Y., Hu A., Zhang T., Lei W., Xue X.J., Zhou Y.,
|
[62] |
Kneipp K., Kneipp H., Manoharan R., Itzkan I., Dasari R.R., Feld M.S.. Surface-enhanced Raman scattering (SERS)—a new tool for single molecule detection and identification. Bioimaging. 1998; 6(2): 104-110.
|
[63] |
Bai S., Zhou W., Lin Y., Zhao Y., Chen T., Hu A.,
|
[64] |
Lin D., Wu Z., Li S., Zhao W., Ma C., Wang J.,
|
[65] |
Yang J., Li J., Du Z., Gong Q., Teng J., Hong M.. Laser hybrid micro/nano-structuring of Si surfaces in air and its applications for SERS detection. Sci Rep. 2014; 4(1): 6657.
|
[66] |
Bai S., Serien D., Hu A., Sugioka K.. 3D microfluidic surface-enhanced raman spectroscopy (SERS) chips fabricated by all-femtosecond-laser-processing for real-time sensing of toxic substances. Adv Funct Mater. 2018; 28(23): 1706262.
|
[67] |
Yang S., Dai X., Stogin B.B., Wong T.S.. Ultrasensitive surface-enhanced Raman scattering detection in common fluids. Proc Natl Acad Sci USA. 2016; 113(2): 268-273.
|
We appreciated a technical maturation grant provided by the University of Tennessee Research Foundation and a grant from the National Natural Science Foundation of China (51575016). The Fundamental Research Funds for the Central Universities also supported this work. Wang and Bai gratefully acknowledge financial support from the China Scholarship Council.
Yongchao Yu, Shi Bai, Shutong Wang, and Anming Hu declare that they have no conflict of interest or financial conflicts to disclose.
/
〈 |
|
〉 |