Advances in Molecular Electronics: A Brief Review

Paven Thomas Mathew, Fengzhou Fang

Engineering ›› 2018, Vol. 4 ›› Issue (6) : 760-771.

PDF(2757 KB)
PDF(2757 KB)
Engineering ›› 2018, Vol. 4 ›› Issue (6) : 760-771. DOI: 10.1016/j.eng.2018.11.001
Research
Research Precision Engineering—Review

Advances in Molecular Electronics: A Brief Review

Author information +
History +

Abstract

The field of molecular electronics, also known as moletronics, deals with the assembly of molecular electronic components using molecules as the building blocks. It is an interdisciplinary field that includes physics, chemistry, materials science, and engineering. Moletronics mainly deals with the reduction of size of silicon components. Novel research has been performed in developing electrical-equivalent molecular components. Moletronics has established its influence in electronic and photonic applications, such as conducting polymers, photochromics, organic superconductors, electrochromics, and many more. Since there is a need to reduce the size of the silicon chip, attaining such technology at the molecular level is essential. Although the experimental verification and modeling of molecular devices present a daunting task, vital breakthroughs have been achieved in this field. This article combines an overview of various molecular components, such as molecular transistors, diodes, capacitors, wires, and insulators, with a discussion of the potential applications of different molecules suitable for such components. We emphasize future developments and provide a brief review of different achievements that have been made regarding graphene-based molecular devices.

Keywords

Moletronics / Molecular transistor / Molecular diode / Molecular capacitor / Molecular wire / Graphene

Cite this article

Download citation ▾
Paven Thomas Mathew, Fengzhou Fang. Advances in Molecular Electronics: A Brief Review. Engineering, 2018, 4(6): 760‒771 https://doi.org/10.1016/j.eng.2018.11.001

References

[1]
Marcus R.A.. Electron transfer reactions in chemistry: theory and experiment (nobel lecture). Rev Mod Physics. 1993; 65: 599-610.
[2]
Ratner M.. A brief history of molecular electronics. Nat Nanotechnol. 2013; 8: 378-381.
[3]
Heath J.R., Ratner M.A.. Molecular electronics. Phys Today. 2003; 43-49.
[4]
Lee T., Wang W., Reed M.A.. Mechanism of electron conduction in self-assembled alkanethiol monolayer devices. Phys Rev B. 2003; 68: 21-35.
[5]
Metzger R.M., Chen B., Höpfner U., Lakshmikantham M.V., Vuillaume D., Kawai T., . Unimolecular electrical rectification in hexadecylquinolinium tricyanoquinodimethanide. J Am Chem Soc. 1997; 119: 10455-10466.
[6]
McCreery R.L.. Molecular electronic junctions. Chem Mater. 2004; 16: 4477-4496.
[7]
Yaliraki S.N., Kemp M., Ratner M.A.. Conductance of molecular wires: influence of molecule-electrode binding. J Am Chem Soc. 1999; 121: 3428-3434.
[8]
Landauer R.. Spatial variation of currents and fields due to localized scatterers in metallic conduction. IBM J Res Dev. 1957; 1: 223-231.
[9]
Maassen J., Lundstrom M.. The Landauer approach to electron and phonon transport. ECS Trans. 2015; 69: 23-36.
[10]
Kim R., Datta S., Lundstrom M.S.. Influence of dimensionality on thermoelectric device performance. J Appl Phys. 2009; 105:
[11]
Majumdar A.. Microscale heat conduction in dielectric thin films. J Heat Transfer. 1993; 115(1): 7-16.
[12]
Scheidemantel T.J., Ambrosch-Draxl C., Thonhauser T., Badding J.V., Sofo J.O.. Transport coefficients from first-principles calculations. Phys Rev B. 2003; 68: 125210.
[13]
Roger L., Datta S.. Nonequilibrium Green's-function method applied to double-barrier resonant-tunneling diodes. Phys Rev B. 1992; 45: 6670-6685.
[14]
Koswatta S.O., Hasan S., Lundstrom M.S., Anantram M.P., Nikonov D.E.. Nonequilibrium Green’s function treatment of phonon scattering in carbon-nanotube transistors. IEEE Trans Electron Devices. 2007; 54: 2339-2351.
[15]
Whitesides G.M., Boncheva M.. Beyond molecules: self-assembly of mesoscopic and macroscopic components. Proc Natl Acad Sci. 2002; 99: 4769-4774.
[16]
Vericat C., Vela M.E., Benitez G., Carro P., Salvarezza R.C.. Self-assembled monolayers of thiols and dithiols on gold: new challenges for a well-known system. Chem Soc Rev. 2010; 39: 1805.
[17]
Kushmerick J.. Molecular transistors scrutinized. Nature. 2009; 462: 994-995.
[18]
Kumar M.J.. Molecular diodes and applications. Recent Pat Nanotechnol. 2007; 1: 51-57.
[19]
Yu H., Luo Y., Beverly K., Stoddart J.F., Tseng H.R., Heath J.R.. The molecule-electrode interface in single-molecule transistors. Angew Chem. 2003; 42: 5706-5711.
[20]
Ghosh A.W., Rakshit T., Datta S.. Gating of a molecular transistor: electrostatic and conformational. Nano Lett. 2004; 4: 565-568.
[21]
Ahn C.H., Bhattacharya A., Di Ventra M., Eckstein J.N., Frisbie C.D., Gershenson M.E., . Electrostatic modification of novel materials. Rev Mod Phys. 2006; 78: 1185-1212.
[22]
Jin C., Solomon G.C.. Controlling band alignment in molecular junctions: utilizing two-dimensional transition-metal dichalcogenides as electrodes for thermoelectric devices. J Phys Chem C. 2018; 122: 14233-14239.
[23]
Flood A.H., Stoddart J.F., Steuerman D.W., Heath J.R.. Whence molecular electronics?. Science. 2004; 306: 2055-2056.
[24]
Chen Y., Jung G.Y., Ohlberg D.A.A., Li X., Stewart D.R., Jeppesen J.O., . Nanoscale molecular-switch crossbar circuits. Nanotechnology. 2003; 14: 462-468.
[25]
Long B., Nikitin K., Fitzmaurice D.. Assembly of an electronically switchable rotaxane on the surface of a titanium dioxide nanoparticle. J Am Chem Soc. 2003; 125: 15490-15498.
[26]
Zhu K., Baggi G., Loeb S.J.. Ring-through-ring molecular shuttling in a saturated [3]rotaxane. Nat Chem. 2018; 10: 625-630.
[27]
Papadopoulos T.A., Grace I.M., Lambert C.J.. Control of electron transport through Fano resonances in molecular wires. Phys Rev B. 2006; 74: 193306.
[28]
Reed M.A., Zhou C., Muller C.J., Burgin T.P., Tour J.M.. Conductance of a molecular junction. Science. 1997; 278: 252-254.
[29]
Joachim C., Gimzewski J.K., Schlittler R.R., Chavy C.. Electronic transparence of a single C60 molecule. Phys Rev Lett. 1995; 74: 2102-2105.
[30]
Eigler D.M., Schweizer E.K.. Positioning single atoms with a scanning tunneling microscope. Nature. 1990; 344: 524-525.
[31]
Sotthewes K., Geskin V., Heimbuch R., Kumar A., Zandvliet H.J.W.. Research update: molecular electronics: the single-molecule switch and transistor. APL Mater. 2014; 2: 010701.
[32]
Joachim C., Gimzewski J.K., Schlittler R.R., Chavy C.. Electronic transparence of a single C60 molecule. Phys Rev Lett. 1995; 74(11): 2102-2105.
[33]
Xu B., Gonella G., Delacy B.G., Dai H.L.. Adsorption of anionic thiols on silver nanoparticles. J Phys Chem C. 2015; 119(10): 5454-5461.
[34]
Heinze S., Tersoff J., Martel R., Derycke V., Appenzeller J., Avouris P.. Carbon nanotubes as schottky barrier transistors. Phys Rev Lett. 2002; 89(10): 106801.
[35]
Javey A., Guo J., Wang Q., Lundstrom M., Dai H.. Ballistic carbon nanotube field-effect transistors. Nature. 2003; 424(6949): 654-657.
[36]
Ebbesen T.W., Lezec H.J., Hiura H., Bennett J.W., Ghaemi H.F., Thio T.. Electrical conductivity of individual carbon nanotubes. Nature. 1996; 382(6586): 54-56.
[37]
Durrani Z.A.K.. Coulomb blockade, single-electron transistors and circuits in silicon. Physica E. 2003; 17: 572-578.
[38]
Averin D.V., Likharev K.K.. Coulomb blockade of single-electron tunneling, and coherent oscillations in small tunnel junctions. J Low Temp Phys. 1986; 62(3–4): 345-373.
[39]
Takahashi N., Ishikuro H., Hiramoto T.. Control of Coulomb blockade oscillations in silicon single electron transistors using silicon nanocrystal floating gates. Appl Phys Lett. 2000; 76(2): 209-211.
[40]
Ali D., Ahmed H.. Coulomb blockade in a silicon tunnel junction device. Appl Phys Lett. 1994; 64(16): 2119-2120.
[41]
Sols F., Guinea F., Neto A.H.C.. Coulomb blockade in graphene nanoribbons. Phys Rev Lett. 2007; 166803: 25-27.
[42]
Liang W., Shores M.P., Bockrath M., Long J.R., Park H.. Kondo resonance in a single-molecule transistor. Nature. 2002; 417(6890): 725-728.
[43]
Mitchell A.K., Pedersen K.G.L., Hedegård P., Paaske J.. Kondo blockade due to quantum interference in single-molecule junctions. Nat Commun. 2017; 8: 15210.
[44]
Park J., Pasupathy A.N., Jonas I., Goldsmith J.I., Chang C., Yaish Y., . Coulomb blockade and the Kondo effect in single-atom transistors. Nature. 2002; 417(6890): 722-725.
[45]
Kouwenhoven L., Glazman L.. Revival of the Kondo effect. Phys World. 2001; 14(1): 33-38.
[46]
Ke S.H., Yang W., Baranger H.U.. Quantum-interference-controlled molecular electronics. Nano Lett. 2008; 8(10): 3257-3261.
[47]
Stafford C.A., Cardamone D.M., Mazumdar S.. The quantum interference effect transistor. Nanotechnology. 2007; 18(42): 424014.
[48]
Guédon C.M., Valkenier H., Markussen T., Thygesen K.S., Hummelen J.C., Van Der Molen S.J.. Observation of quantum interference in molecular charge transport. Nat Nanotechnol. 2012; 7(5): 305-309.
[49]
Chen S., Zhou W., Zhang Q., Kwok Y., Chen G., Ratner M.A.. Can molecular quantum interference effect transistors survive. J Phys Chem. 2017; 8: 5166-5170.
[50]
Aviram A., Ratner M.A.. Molecular rectifiers. Chem Phys Lett. 1974; 29(2): 277-283.
[51]
Roland P., Aviram A.. The effect of electric fields on double-well-potential molecules. Ann New York Acad Sci. 2006; 339-348.
[52]
Ng M.K., Lee D.C., Yu L.. Molecular diodes based on conjugated diblock co-oligomers. J Am Chem Soc. 2002; 124(40): 11862-11863.
[53]
Liu R., Ke S.H., Yang W., Baranger H.U.. Organometallic molecular rectification. J Chem Phys. 2006; 124(2): 1-6.
[54]
Ellenbogen J.C., Love J.C.. Architectures for molecular electronic computers: logic structures and an adder designed from molecular electronic diodes. Proc IEEE. 2000; 88(3): 386-426.
[55]
Kornilovitch P.E., Bratkovsky A.M., Stanley Williams R.. Current rectification by molecules with asymmetric tunneling barriers. Phys Rev B Condens Matter Mater Phys. 2002; 66(16): 1-11.
[56]
Nijhuis C.A., Reus W.F., Whitesides G.M.. Mechanism of rectification in tunneling junctions based on molecules with asymmetric potential drops. J Am Chem Soc. 2010; 132(51): 18386-18401.
[57]
Armstrong N., Hoft R.C., McDonagh A., Cortie M.B., Ford M.J.. Exploring the performance of molecular rectifiers: limitations and factors affecting molecular rectification. Nano Lett. 2007; 7(10): 3018-3022.
[58]
Metzger R.M.. Electrical rectification by a molecule: the advent of unimolecular electronic devices. Acc Chem Res. 1999; 32(11): 950-957.
[59]
Metzger R.M.. Quo vadis, unimolecular electronics?. Nanoscale. 2018; 10(22): 10316-10332.
[60]
Martin A.S., Sambles J.R., Ashwell G.J.. Molecular rectifier. Phys Rev Lett. 1993; 70(2): 218-221.
[61]
Lenfant S., Krzeminski C., Delerue C., Allan G., Vuillaume D.. Molecular rectifying diodes from self-assembly on silicon. Nano Lett. 2003; 3(6): 741-746.
[62]
Vilan A., Shanzer A., Cahen D.. Molecular control over Au/GaAs diodes. Nature. 2000; 404(6774): 166-168.
[63]
Brown E.R., Parker C.D., Mahoney L.J., Molvar K.M.. Oscillations up to 712 GHz in InAs/AISb diodes. Society. 1991; 58: 2291-2293.
[64]
Sun J.P., Haddad G.I., Mazumder P., Schulman J.N.. Resonant tunneling diodes: models and properties. Proc IEEE. 1998; 86(4): 641-660.
[65]
Ellenbogen J.C.. A brief overview of nanoelectronic devices.
[66]
Tsu R, inventor; Tsu R, assignee. Quantum well structures useful for semiconductor devices. United States patent US5216262A. 1993 Jun 1.
[67]
Seminario J.M., Zacarias A.G., Tour J.M.. Theoretical study of a molecular resonant tunneling diode. J Am Chem Soc. 2000; 122(13): 3015-3020.
[68]
Chen J., Reed M.A., Rawlett A.M., Tour J.M.. Large on-off ratios and negative differential resistance in a molecular electronic device. Science. 1999; 286(5444): 1550-1551.
[69]
Lake R, Alam K, Burque NA, Pandey R, inventors; The Regents of the University of California, assignee. Molecular resonant tunneling diode. United States patent US20080035913A1. 2008 Feb 14.
[70]
Campbell I., Rubin S., Zawodzinski T., Kress J., Martin R., Smith D., . Controlling Schottky energy barriers in organic electronic devices using self-assembled monolayers. Phys Rev B Condens Matter. 1996; 54(20): R14321-R14324.
[71]
Dragoman D., Dragoman M.. Terahertz oscillations in semiconducting carbon nanotube resonant-tunneling diodes. Physica E. 2004; 24: 282-289.
[72]
Pandey R.R., Bruque N., Alam K., Lake R.K.. Carbon nanotube—molecular resonant tunneling diode. Phys Status Solidi. 2006; 203(2): R5-R7.
[73]
Bayram C., Vashaei Z., Razeghi M.. AlN/GaN double-barrier resonant tunneling diodes grown by metal–organic chemical vapor deposition. Appl Phys Lett. 2010; 96(4): 2-5.
[74]
Lindsey J.S., Bocian D.F.. Molecules for charge-based information storage. Acc Chem Res. 2011; 44(8): 638-650.
[75]
Kuhr W.G., Gallo A.R., Manning R.W., Rhodine C.W.. Molecular memories based on a CMOS platform. MRS Bull. 2004; 29(11): 838-842.
[76]
Liu Z., Yasseri A.A., Lindsey J.S., Bocian D.F.. Molecular memories that survive silicon device processing and real-world operation. Science. 2003; 302(5650): 1543-1545.
[77]
Roth K.M., Dontha N., Dabke R.B., Gryko D.T., Clausen C., Lindsey J.S., . Molecular approach toward information storage based on the redox properties of porphyrins in self-assembled monolayers. J Vac Sci Technol B. 2000; 18(5): 2359-2364.
[78]
Jurow M., Schuckman A.E., Batteas J.D., Drain C.M.. Porphyrins as molecular electronic components of functional devices. Coord Chem Rev. 2010; 254(19–20): 2297-2310.
[79]
Miller J.R., Simon P.. Electrochemical capacitors for energy management. Science. 2008; 321: 651-652.
[80]
Merlet C., Rotenberg B., Madden P.A., Taberna P.L., Simon P., Gogotsi Y., . On the molecular origin of supercapacitance in nanoporous carbon electrodes. Nat Mater. 2012; 11(4): 306-310.
[81]
Sharma P., Bhatti T.S.. A review on electrochemical double-layer capacitors. Energy Convers Manage. 2010; 51(12): 2901-2912.
[82]
Largeot C., Portet C., Chmiola J., Taberna P.L., Gogotsi Y., Simon P.. Relation between the ion size and pore size for an electric double-layer capacitor. J Am Chem Soc. 2008; 130(9): 2730-2731.
[83]
Chen Z., Lee B., Sarkar S., Gowda S., Misra V.. A molecular memory device formed by HfO2 encapsulation of redox-active molecules. Appl Phys Lett. 2007; 91: 1-4.
[84]
Chen G., Bandow S., Margine E.R., Nisoli C., Kolmogorov A.N., Crespi V.H., . Chemically doped double-walled carbon nanotubes: cylindrical molecular capacitors. Phys Rev Lett. 2003; 90: 257403.
[85]
Madani M.S., Monajjemi M., Aghaei H.. The double wall boron nitride nanotube: nano-cylindrical capacitor. Orient J Chem. 2017; 33(3): 1213-1222.
[86]
Jansen L.. Molecular theory of the dielectric constant. Phys Rev. 1958; 112(2): 434-444.
[87]
Fabrizio M., Tosatti E.. Nonmagnetic molecular Jahn-Teller Mott insulators. Phys Rev B Condens Matter Mater Phys. 1997; 55(20): 13465-13472.
[88]
Mayor M., Weber H.B., Reichert J., Elbing M., Von Hänisch C., Beckmann D., . Electric current through a molecular rod-relevance of the position of the anchor groups. Angew Chem Int Ed. 2003; 42(47): 5834-5838.
[89]
Garner M.H., Li H., Chen Y., Su T.A., Shangguan Z., Paley D.W., . Comprehensive suppression of single-molecule conductance using destructive σ-interference. Nature. 2018; 558(7710): 416-419.
[90]
Meunier M., Quirke N.. Molecular modeling of electron trapping in polymer insulators. J Chem Phys. 2000; 113(1): 369-376.
[91]
Wannebroucq A., Gruntz G., Suisse J.M., Nicolas Y., Meunier-Prest R., Mateos M., . New n-type molecular semiconductor-doped insulator (MSDI) heterojunctions combining a triphenodioxazine (TPDO) and the lutetium bisphthalocyanine (LuPc2) for ammonia sensing. Sens Actuators B Chem. 2018; 255: 1694-1700.
[92]
Tao N.J.. Electron transport in molecular junctions. Nat Nanotechnol. 2006; 1(3): 173-181.
[93]
Salahuddin S., Lundstrom M., Datta S.. Transport effects on signal propagation in quantum wires. IEEE Trans Electron Dev. 2005; 52(8): 1734-1742.
[94]
Tans S.J., Devoret M.H., Dai H., Thess A., Smalley R.E., Geerligs L.J., . Individual single-wall carbon nanotubes as quantum wires. Nature. 1997; 386(6624): 474-477.
[95]
Wang X., Alexander-Webber J.A., Jia W., Reid B.P.L., Stranks S.D., Holmes M.J., . Quantum dot-like excitonic behavior in individual single walled-carbon nanotubes. Sci Rep. 2016; 6(1): 6-11.
[96]
Dresselhaus M.S., Eklund P.C.. Phonons in carbon nanotubes. Adv Phys. 2000; 47(6): 705-814.
[97]
Holmes J.D., Johnston K.P., Doty R.C., Korgel B.A.. Control orientation of thickness and solution-grown nanowires silicon. Adv Sci. 2010; 287: 1471-1473.
[98]
Cahill D.G., Ford W.K., Goodson K.E., Mahan G.D., Majumdar A., Maris H.J., . Nanoscale thermal transport. J Appl Phys. 2003; 93(2): 793-818.
[99]
Zou J., Balandin A.. Phonon heat conduction in a semiconductor nanowire. J Appl Phys. 2001; 89(5): 2932-2938.
[100]
Mingo N., Stewart D.A., Broido D.A., Srivastava D.. Phonon transmission through defects in carbon nanotubes from first principles. Phys Rev B Condens Matter Mater Phys. 2008; 77(3): 3-6.
[101]
Krittayavathananon A., Ngamchuea K., Li X., Batchelor-McAuley C., Kätelhön E., Chaisiwamongkhol K., . Improving single-carbon-nanotube-electrode contacts using molecular electronics. J Phys Chem Lett. 2017; 8(16): 3908-3911.
[102]
Noori M., Sadeghi H., Lambert C.J.. High-performance thermoelectricity in edge-over-edge zinc-porphyrin molecular wires. Nanoscale. 2017; 9(16): 5299-5304.
[103]
Algethami N., Sadeghi H., Sangtarash S., Lambert C.J.. The conductance of porphyrin-based molecular nanowires increases with length. Nano Lett. 2018; 18(7): 4482-4486.
[104]
Cnossen A., Roche C., Anderson H.L.. Scavenger templates: a systems chemistry approach to the synthesis of porphyrin-based molecular wires. Chem Commun. 2017; 53(75): 10410-10413.
[105]
Ratner M.A., Davis B., Kemp M., Mujica V., Roitberg A., Yaliraki S.. Molecular wires: charge transport, mechanisms, and control. Ann New York Acad Sci. 1998; 852: 22-37.
[106]
Wagner R.W., Lindsey J.S., Seth J., Palaniappan V., Bocian D.F.. Molecular optoelectronic gates. J Am Chem Soc. 1996; 118(16): 3996-3997.
[107]
Mirkin C.A., Ratner M.A.. Molecular electronics. Annu Rev Phys Chem. 1992; 43: 719-754.
[108]
Barbara P.F., Meyer T.J., Ratner M.A.. Contemporary issues in electron transfer research. J Phys Chem. 1996; 100(31): 13148-13168.
[109]
Sedghi G., Sawada K., Esdaile L.J., Hoffmann M., Anderson H.L., Bethell D., . Single molecule conductance of porphyrin wires with ultralow attenuation. J Am Chem Soc. 2008; 130(27): 8582-8583.
[110]
Koepf M., Trabolsi A., Elhabiri M., Wytko J.A., Paul D., Albrecht-Gary A.M., . Building blocks for self-assembled porphyrinic photonic wires. Org Lett. 2005; 7(7): 1279-1282.
[111]
Iengo E., Zangrando E., Minatel R., Alessio E.. Metallacycles of porphyrins as building blocks in the construction of higher order assemblies through axial coordination of bridging ligands: solution- and solid-state characterization of molecular sandwiches and molecular wires. J Am Chem Soc. 2002; 124(6): 1003-1013.
[112]
Ambroise A., Kirmaier C., Wagner R.W., Loewe R.S., Bocian D.F., Holten D., . Weakly coupled molecular photonic wires: synthesis and excited-state energy-transfer dynamics. J Org Chem. 2002; 67(11): 3811-3826.
[113]
Robertson N., McGowan C.A.. A comparison of potential molecular wires as components for molecular electronics. Chem Soc Rev. 2003; 32(2): 96-103.
[114]
Ozawa H., Kawao M., Tanaka H., Ogawa T.. Synthesis of dendron-protected porphyrin wires and preparation of a one-dimensional assembly of gold nanoparticles chemically linked to the pi-conjugated wires. Langmuir. 2007; 23(11): 6365-6371.
[115]
Linford M.R., Chidsey C.E.D., Fenter P., Eisenberger P.M.. Alkyl monolayers on silicon prepared from 1-alkenes and hydrogen-terminated silicon. J Am Chem Soc. 1995; 117(11): 3145-3155.
[116]
Hobza P., Selzle H.L., Schlag E.W.. Structure and properties of benzene-containing molecular clusters: nonempirical ab initio calculations and experiments. Chem Rev. 1994; 94(7): 1767-1785.
[117]
Cooper D.L., Gerratt J., Raimondi M.. The electronic structure of the benzene molecule. Nature. 1986; 323(6090): 699-701.
[118]
Kaliginedi V., Moreno-García P., Valkenier H., Hong W., García-Suárez V.M., Buiter P., . Correlations between molecular structure and single-junction conductance: a case study with oligo(phenylene-ethynylene)-type wires. J Am Chem Soc. 2012; 134(11): 5262-5275.
[119]
Stapleton J.J., Harder P., Daniel T.A., Reinard M.D., Yao Y., Price D.W., . Self-assembled oligo(phenylene-ethynylene) molecular electronic switch monolayers on gold: structures and chemical stability. Langmuir. 2003; 19(20): 8245-8255.
[120]
Grozema F.C., Candeias L.P., Swart M., Van Duijnen P.T., Wildeman J., Hadziioanou G., . Theoretical and experimental studies of the opto-electronic properties of positively charged oligo(phenylene vinylene)s: effects of chain length and alkoxy substitution. J Chem Phys. 2002; 117(24): 11366-11378.
[121]
Mishra A., Ma C., Ba P., Oligothiophenes D.. Functional oligothiophenes: molecular design for multidimensional nanoarchitectures and their applications. Chem Rev. 2009; 109(3): 1141-1276.
[122]
Linton K.E., Fox M.A., Pålsson L.O., Bryce M.R.. Oligo(p-phenyleneethynylene) (OPE) molecular wires: synthesis and length dependence of photoinduced charge transfer in OPEs with triarylamine and diaryloxadiazole end groups. Chemistry. 2014; 21(10): 3997-4007.
[123]
Thiele C., Gerhard L., Eaton T.R., Torres D.M., Mayor M., Wulfhekel W., . STM study of oligo(phenylene-ethynylene)s. New J Phys. 2015; 17(5): 2-10.
[124]
Cai L., Yao Y., Yang J., Price D.W., Tour J.M.. Chemical and potential-assisted assembly of thiolacetyl-terminated oligo(phenylene ethynylene)s on gold surfaces. Chem Mater. 2002; 14(7): 2905-2909.
[125]
Nuzzo R.G., Allara D.L.. Adsorption of bifunctional organic disulfides on gold surfaces. J Am Chem Soc. 1983; 105(13): 4481-4483.
[126]
Ulman A.. Formation and structure of self-assembled monolayers. Chem Rev. 1996; 96(4): 1533-1554.
[127]
Jenny N.M., Mayor M., Eaton T.R.. Phenyl-acetylene bond assembly: a powerful tool for the construction of nanoscale architectures. Eur J Org Chem. 2011; 2011(26): 4965-4983.
[128]
Kushmerick J.J., Pollack S.K., Yang J.C., Naciri J., Holt D.B., Ratner M.A., . Understanding charge transport in molecular electronics. Ann New York Acad Sci. 2003; 1006(1): 277-290.
[129]
Kushmerick J.G., Holt D.B., Pollack S.K., Ratner M.A., Yang J.C., Schull T.L., . Effect of bond-length alternation in molecular wires. J Am Chem Soc. 2002; 124(36): 10654-10655.
[130]
Rosenthal I.. Phthalocyanines as photodynamic sensitizers. Photochem Photobiol. 1991; 53(6): 859-870.
[131]
Spikes J.D.. Phthalocyanines as photosensitizers in biological systems and for the photodynamic therapy of tumors. Photochem Photobiol. 1986; 43(6): 691-699.
[132]
Saiki T., Mori S., Ohara K., Naito T.. Capacitor-like behavior of molecular crystal β-Dicc[Ni(dmit)2]. Chem Lett. 2014; 43(7): 1119-1121.
[133]
Rodríguez-Salcedo J., Vivas-Reyes R., Zapata-Rivera J.. Characterization of charge transfer mechanisms in the molecular capacitor β-DiCC[Ni(dmit)2] using TD–DFT methods. Comput Theor Chem. 2017; 1109: 36-41.
[134]
Braun E., Eichen Y., Sivan U., Ben-Yoseph G.. DNA-templated assembly and electrode attachment of a conducting silver wire. Nature. 1998; 391(6669): 775-778.
[135]
Zhou Y.X., Johnson A.T., Hone J., Smith W.F.. Simple fabrication of molecular circuits by shadow mask evaporation. Nano Lett. 2003; 3(10): 1371-1374.
[136]
Fuchs JN, Goerbig MO. Introduction to the physical properties of grapheme [Internet]. 2008 [cited 2018 Oct 16]. Available from: https://www.equipes.lps.u-psud.fr/m2structure/m2pdfpracticals/2-Lecture%20on%20graphene.pdf.
[137]
Dedkov Y., Voloshina E.. Graphene growth and properties on metal substrates. J Phys Condens Matter. 2015; 27: 303002.
[138]
Georgantzinos S.K., Giannopoulos G.I., Anifantis N.K.. Numerical investigation of elastic mechanical properties of graphene structures. Mater Des. 2010; 31(10): 4646-4654.
[139]
Torres T.. Graphene chemistry. Chem Soc Rev. 2017; 46(15): 4385-4386.
[140]
Liu Y., Xie B., Zhang Z., Zheng Q., Xu Z.. Mechanical properties of graphene papers. J Mech Phys Solids. 2012; 60(4): 591-605.
[141]
Wang G., Kim Y., Choe M., Kim T.W., Lee T.. A new approach for molecular electronic junctions with a multilayer graphene electrode. Adv Mater. 2011; 23(6): 755-760.
[142]
Liu J., Yin Z., Cao X., Zhao F., Lin A., Xie L., . Bulk heterojunction polymer memory devices with reduced graphene oxide as electrodes. ACS Nano. 2010; 4(7): 3987-3992.
[143]
Di C.A., Wei D., Yu G., Liu Y., Guo Y., Zhu D.. Patterned graphene as source/drain electrodes for bottom-contact organic field-effect transistors. Adv Mater. 2008; 20(17): 3289-3293.
[144]
Wang X., Zhi L., Müllen K.. Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 2008; 8(1): 323-327.
[145]
Supur M., Van Dyck C., Bergren A.J., McCreery R.L.. Bottom-up, robust graphene ribbon electronics in all-carbon molecular junctions. ACS Appl Mater Interfaces. 2018; 10(7): 6090-6095.
[146]
Jeong I., Song H.. Structural and charge transport properties of molecular tunneling junctions with single-layer graphene electrodes. J Korean Phys Soc. 2018; 72(3): 394-399.
[147]
Dou K.P., Kaun C.C., Zhang R.Q.. Selective interface transparency in graphene nanoribbon based molecular junctions. Nanoscale. 2018; 10(10): 4861-4864.
[148]
Zhong Y., Kumar B., Oh S., Trinh M.T., Wu Y., Elbert K., . Helical ribbons for molecular electronics. J Am Chem Soc. 2014; 136(22): 8122-8130.
[149]
Kimouche A., Ervasti M.M., Drost R., Halonen S., Harju A., Joensuu P.M., . Ultra-narrow metallic armchair graphene nanoribbons. Nat Commun. 2015; 6(1): 1-6.
[150]
Fang F.. Atomic and close-to-atomic scale manufacturing—a trend in manufacturing development. Front Mech Eng. 2016; 4(4): 325-327.
[151]
Sharath Kumar J., Murmu N.C., Kuila T.. Recent trends in the graphene-based sensors for the detection of hydrogen peroxide. AIMS Mater Sci. 2018; 5(3): 422-466.
[152]
Wang L., Wang L., Zhang L., Xiang D.. Advance of mechanically controllable break junction for molecular electronics. Top Curr Chem. 2017; 375(3): 1-42.
[153]
Dubois V., Raja S.N., Gehring P., Caneva S., van der Zant H.S.J., Niklaus F., . Massively parallel fabrication of crack-defined gold break junctions featuring sub-3 nm gaps for molecular devices. Nat Commun. 2018; 9(1): 3433.
[154]
Vilan A., Aswal D., Cahen D.. Large-area, ensemble molecular electronics: motivation and challenges. Chem Rev. 2017; 117(5): 4248-4286.
[155]
Mishra A., Jagtap S.. Moletronics. Int J Sci Eng Res. 2016; 7(2): 25-28.
[156]
Newton M.D., Sutin N.. Electron transfer reactions in condensed phases. Annu Rev Phys Chem. 1984; 35: 437-480.
[157]
Dutton P.L., Prince R.C., Tiede D.M.. Reaction center of photosynthetic bacteria. Photochem Photobiol. 1978; 28: 939-949.
[158]
Patil A., Saha D., Ganguly S.. A quantum biomimetic electronic nose sensor. Sci Rep. 2018; 8(1): 1-8.
[159]
Dubi Y., Di Ventra M.. Colloquium: heat flow and thermoelectricity in atomic and molecular junctions. Rev Mod Phys. 2011; 83(1): 131-155.
[160]
Cui L., Miao R., Wang K., Thompson D., Zotti L.A., Cuevas J.C., . Peltier cooling in molecular junctions. Nat Nanotechnol. 2018; 13(2): 122-127.
[161]
Wu Q., Sadeghi H., García-Suárez V.M., Ferrer J., Lambert C.J.. Thermoelectricity in vertical graphene-C60-graphene architectures. Sci Rep. 2017; 7: 1-8.
[162]
Gould P.. Moletronics closes in on silicon. Mater Today. 2005; 8(7): 56-60.
Acknowledgements

This work was supported by the Science Foundation Ireland (15/RP/B3208) and the National Natural Science Foundation of China (51320105009 and 61635008).

Compliance with ethics guidelines

Paven Thomas Mathew and Fengzhou Fang declare that they have no conflict of interest or financial conflicts to disclose.

RIGHTS & PERMISSIONS

2018 THE AUTHORS
AI Summary AI Mindmap
PDF(2757 KB)

Accesses

Citations

Detail

Sections
Recommended

/