Artemisinin, the Magic Drug Discovered from Traditional Chinese Medicine

Jigang Wang, Chengchao Xu, Yin Kwan Wong, Yujie Li, Fulong Liao, Tingliang Jiang, Youyou Tu

Engineering ›› 2019, Vol. 5 ›› Issue (1) : 32-39.

PDF(1019 KB)
PDF(1019 KB)
Engineering ›› 2019, Vol. 5 ›› Issue (1) : 32-39. DOI: 10.1016/j.eng.2018.11.011
Research
Research Traditional Chinese Medicine—Review

Artemisinin, the Magic Drug Discovered from Traditional Chinese Medicine

Author information +
History +

Abstract

Artemisinin and its derivatives represent the most important and influential class of drugs in the fight against malaria. Since the discovery of artemisinin in the early 1970s, the global community has made great strides in characterizing and understanding this remarkable phytochemical and its unique chemical and pharmacological properties. Today, even as artemisinin continues to serve as the foundation for antimalarial therapy, numerous challenges have surfaced in the continued application and development of this family of drugs. These challenges include the emergence of delayed treatment responses to artemisinins in malaria and efforts to apply artemisinins for non-malarial indications. Here, we provide an overview of the story of artemisinin in terms of its past, present, and future. In particular, we comment on the current understanding of the mechanism of action (MOA) of artemisinins, and emphasize the importance of relating mechanistic studies to therapeutic outcomes, both in malarial and non-malarial contexts.

Keywords

Artemisinin / Mechanism of action / Malaria / Anti-cancer

Cite this article

Download citation ▾
Jigang Wang, Chengchao Xu, Yin Kwan Wong, Yujie Li, Fulong Liao, Tingliang Jiang, Youyou Tu. Artemisinin, the Magic Drug Discovered from Traditional Chinese Medicine. Engineering, 2019, 5(1): 32‒39 https://doi.org/10.1016/j.eng.2018.11.011

References

[1]
Tu Y.. Artemisinin—a gift from traditional Chinese medicine to the world (Nobel lecture). Angew Chem Int Ed. 2016; 55(35): 10210-10226.
[2]
Cox F.E.. History of the discovery of the malaria parasites and their vectors. Parasit Vectors. 2010; 3(1): 5.
[3]
Krishna S., Bustamante L., Haynes R.K., Staines H.M.. Artemisinins: their growing importance in medicine. Trends Pharmacol Sci. 2008; 29(10): 520-527.
[4]
World Health Organization. World malaria report 2017.
[5]
Ding X.C., Beck H.P., Raso G.. Plasmodium sensitivity to artemisinins: magic bullets hit elusive targets. Trends Parasitol. 2011; 27(2): 73-81.
[6]
Efferth T., Romero M.R., Bilia A.R., Osman A.G., Sohly M.E., . Expanding the therapeutic spectrum of artemisinin: activity against infectious diseases beyond malaria and novel pharmaceutical developments. World J Tradit Chin Med. 2016; 2(2): 1-23.
[7]
D’Alessandro U., Buttiëns H.. History and importance of antimalarial drug resistance. Trop Med Int Health. 2001; 6(11): 845-848.
[8]
Tu Y.. The discovery of artemisinin (Qinghaosu) and gifts from Chinese medicine. Nat Med. 2011; 17(10): 1217-1220.
[9]
Liao F.. Discovery of artemisinin (Qinghaosu). Molecules. 2009; 14(12): 5362-5366.
[10]
Collaboration Research Group for Qinghaosu. A new sesquiterpene lactone—Qinghaosu. Chin Sci Bull 1997;3:142. Chinese.
[11]
Wang M.Y.. Publication process involving the discovery of artemisinin (Qinghaosu) before 1985. Asian Pac J Trop Biomed. 2016; 6(6): 461-467.
[12]
China Cooperative Research Group on Qinghaosu and Its Derivatives as Antimalarials. Chemical studies on Qinghaosu (artemisinine). J Tradit Chin Med 1982;2(1):3–8. Chinese.
[13]
Klayman D.L.. Qinghaosu (artemisinin): an antimalarial drug from China. Science. 1985; 228(4703): 1049-1055.
[14]
Jiang J.B., Li G.Q., Guo X.B., Kong Y.C., Arnold K.. Antimalarial activity of mefloquine and Qinghaosu. Lancet. 1982; 2(8293): 285-288.
[15]
Looareesuwan S., Viravan C., Vanijanonta S., Wilairatana P., Suntharasamai P., Charoenlarp P., . Randomised trial of artesunate and mefloquine alone and in sequence for acute uncomplicated falciparum malaria. Lancet. 1992; 339(8797): 821-824.
[16]
Nosten F., Luxemburger C., ter Kuile F.O., Woodrow C., Eh J.P., Chongsuphajaisiddhi T., . Treatment of multidrug-resistant Plasmodium falciparum malaria with 3-day artesunate-mefloquine combination. J Infect Dis. 1994; 170(4): 971-977.
[17]
Tran T.H., Day N.P., Nguyen H.P., Nguyen T.H., Tran T.H., Pham P.L., . A controlled trial of artemether or quinine in Vietnamese adults with severe falciparum malaria. N Engl J Med. 1996; 335(2): 76-83.
[18]
Looareesuwan S., Wilairatana P., Viravan C., Vanijanonta S., Pitisuttithum P., Kyle D.E.. Open randomized trial of oral artemether alone and a sequential combination with mefloquine for acute uncomplicated falciparum malaria. Am J Trop Med Hyg. 1997; 56(6): 613-617.
[19]
Adjuik M., Babiker A., Garner P., Olliaro P., Taylor W., White N., . International Artemisinin Study Group. Artesunate combinations for treatment of malaria: meta-analysis. Lancet. 2004; 363(9402): 9-17.
[20]
Von Seidlein L., Jaffar S., Pinder M., Haywood M., Snounou G., Gemperli B., . Treatment of African children with uncomplicated falciparum malaria with a new antimalarial drug, CGP 56697. J Infect Dis. 1997; 176(4): 1113-1116.
[21]
Von Seidlein L., Bojang K., Jones P., Jaffar S., Pinder M., Obaro S., . A randomized controlled trial of artemether/benflumetol, a new antimalarial and pyrimethamine/sulfadoxine in the treatment of uncomplicated falciparum malaria in African children. Am J Trop Med Hyg. 1998; 58(5): 638-644.
[22]
Doherty J.F., Sadiq A.D., Bayo L., Alloueche A., Olliaro P., Milligan P., . A randomized safety and tolerability trial of artesunate plus sulfadoxine—pyrimethamine versus sulfadoxine-pyrimethamine alone for the treatment of uncomplicated malaria in Gambian children. Trans R Soc Trop Med Hyg. 1999; 93(5): 543-546.
[23]
Dondorp A.M., Fanello C.I., Hendriksen I.C., Gomes E., Seni A., Chhaganlal K.D., . AQUAMAT Group. Artesunate versus quinine in the treatment of severe falciparum malaria in African children (AQUAMAT): an open-label, randomised trial. Lancet. 2010; 376(9753): 1647-1657.
[24]
WWARN Artemisinin based Combination Therapy (ACT) Africa Baseline Study Group. Clinical determinants of early parasitological response to ACTs in African patients with uncomplicated falciparum malaria: a literature review and meta-analysis of individual patient data. BMC Med. 2015; 13: 212.
[25]
Efferth T., Kaina B.. Toxicity of the antimalarial artemisinin and its derivatives. Crit Rev Toxicol. 2010; 40(5): 405-421.
[26]
World Health Organization. Guidelines for the treatment of malaria.
[27]
Luo X.D., Shen C.C.. The chemistry, pharmacology, and clinical applications of Qinghaosu (artemisinin) and its derivatives. Med Res Rev. 1987; 7(1): 29-52.
[28]
White N.J.. Clinical pharmacokinetics and pharmacodynamics of artemisinin and derivatives. Trans R Soc Trop Med Hyg. 1994; 88(Suppl 1): S41-S43.
[29]
De Vries P.J., Dien T.K.. Clinical pharmacology and therapeutic potential of artemisinin and its derivatives in the treatment of malaria. Drugs. 1996; 52(6): 818-836.
[30]
German P.I., Aweeka F.T.. Clinical pharmacology of artemisinin-based combination therapies. Clin Pharmacokinet. 2008; 47(2): 91-102.
[31]
Robert A., Dechy-Cabaret O., Cazelles J., Meunier B.. From mechanistic studies on artemisinin derivatives to new modular antimalarial drugs. Acc Chem Res. 2002; 35(3): 167-174.
[32]
Li J., Zhou B.. Biological actions of artemisinin: insights from medicinal chemistry studies. Molecules. 2010; 15(8): 1378-1397.
[33]
Van Agtmael M.A., Eggelte T.A., van Boxtel C.J.. Artemisinin drugs in the treatment of malaria: from medicinal herb to registered medication. Trends Pharmacol Sci. 1999; 20(5): 199-205.
[34]
Meshnick S.R., Taylor T.E., Kamchonwongpaisan S.. Artemisinin and the antimalarial endoperoxides: from herbal remedy to targeted chemotherapy. Microbiol Rev. 1996; 60(2): 301-315.
[35]
Posner G.H., O’Neill P.M.. Knowledge of the proposed chemical mechanism of action and cytochrome p450 metabolism of antimalarial trioxanes like artemisinin allows rational design of new antimalarial peroxides. Acc Chem Res. 2004; 37(6): 397-404.
[36]
O’Neill P.M., Barton V.E., Ward S.A.. The molecular mechanism of action of artemisinin—the debate continues. Molecules. 2010; 15(3): 1705-1721.
[37]
Lew V.L., Tiffert T., Ginsburg H.. Excess hemoglobin digestion and the osmotic stability of Plasmodium falciparum-infected red blood cells. Blood. 2003; 101(10): 4189-4194.
[38]
Klonis N., Crespo-Ortiz M.P., Bottova I., Abu-Bakar N., Kenny S., Rosenthal P.J., . Artemisinin activity against Plasmodium falciparum requires hemoglobin uptake and digestion. Proc Natl Acad Sci USA. 2011; 108(28): 11405-11410.
[39]
Xie S.C., Dogovski C., Hanssen E., Chiu F., Yang T., Crespo M.P., . Haemoglobin degradation underpins the sensitivity of early ring stage Plasmodium falciparum to artemisinins. J Cell Sci. 2016; 129(2): 406-416.
[40]
Zhang F., Gosser D.K.Jr, Meshnick S.R.. Hemin-catalyzed decomposition of artemisinin (Qinghaosu). Biochem Pharmacol. 1992; 43(8): 1805-1809.
[41]
Posner G.H., Oh C.H., Wang D., Gerena L., Milhous W.K., Meshnick S.R., . Mechanism-based design, synthesis, and in vitro antimalarial testing of new 4-methylated trioxanes structurally related to artemisinin: the importance of a carbon-centered radical for antimalarial activity. J Med Chem. 1994; 37(9): 1256-1258.
[42]
Wu W.M., Wu Y., Wu Y.L., Yao Z.J., Zhou C.M., Li Y., . Unified mechanistic framework for the Fe(II)-induced cleavage of Qinghaosu and derivatives/analogues. The first spin-trapping evidence for the previously postulated secondary C-4 radical. J Am Chem Soc. 1998; 120(14): 3316-3325.
[43]
Stocks P.A., Bray P.G., Barton V.E., Al-Helal M., Jones M., Araujo N.C., . Evidence for a common non-heme chelatable-iron-dependent activation mechanism for semisynthetic and synthetic endoperoxide antimalarial drugs. Angew Chem Int Ed. 2007; 46(33): 6278-6283.
[44]
Haynes R.K., Chan W.C., Lung C.M., Uhlemann A.C., Eckstein U., Taramelli D., . The Fe2+-mediated decomposition, PfATP6 binding, and antimalarial activities of artemisone and other artemisinins: the unlikelihood of C-centered radicals as bioactive intermediates. ChemMedChem. 2007; 2(10): 1480-1497.
[45]
Meunier B., Robert A.. Heme as trigger and target for trioxane-containing antimalarial drugs. Acc Chem Res. 2010; 43(11): 1444-1451.
[46]
Haynes R.K., Cheu K.W., N’Da D., Coghi P., Monti D.. Considerations on the mechanism of action of artemisinin antimalarials: part 1—the ‘carbon radical’ and ‘heme’ hypotheses. Infect Disord Drug Targets. 2013; 13(4): 217-277.
[47]
Wang J., Zhang C.J., Chia W.N., Loh C.C., Li Z., Lee Y.M., . Haem-activated promiscuous targeting of artemisinin in Plasmodium falciparum. Nat Commun. 2015; 6: 10111.
[48]
Zhou Y., Li W., Xiao Y.. Profiling of multiple targets of artemisinin activated by hemin in cancer cell proteome. ACS Chem Biol. 2016; 11(4): 882-888.
[49]
Zhang S., Gerhard G.S.. Heme activates artemisinin more efficiently than hemin, inorganic iron, or hemoglobin. Bioorg Med Chem. 2008; 16(16): 7853-7861.
[50]
Li W., Zhou Y., Tang G., Xiao Y.. Characterization of the artemisinin binding site for translationally controlled tumor protein (TCTP) by bioorthogonal click chemistry. Bioconjug Chem. 2016; 27(12): 2828-2833.
[51]
Li W., Mo W., Shen D., Sun L., Wang J., Lu S., . Yeast model uncovers dual roles of mitochondria in action of artemisinin. PLoS Genet. 2005; 1(3): e36.
[52]
Wang J., Huang L., Li J., Fan Q., Long Y., Li Y., . Artemisinin directly targets malarial mitochondria through its specific mitochondrial activation. PLoS One. 2010; 5(3): e9582.
[53]
Sun C., Li J., Cao Y., Long G., Zhou B.. Two distinct and competitive pathways confer the cellcidal actions of artemisinins. Microb Cell. 2015; 2(1): 14-25.
[54]
Fitch C.D., Chevli R., Kanjananggulpan P., Dutta P., Chevli K., Chou A.C.. Intracellular ferriprotoporphyrin IX is a lytic agent. Blood. 1983; 62(6): 1165-1168.
[55]
Egan T.J.. Recent advances in understanding the mechanism of hemozoin (malaria pigment) formation. J Inorg Biochem. 2008; 102(5–6): 1288-1299.
[56]
Cazelles J., Robert A., Meunier B.. Alkylation of heme by artemisinin, an antimalarial drug. Acad Sci Chem. 2001; 4(2): 85-89.
[57]
Robert A., Benoit-Vical F., Claparols C., Meunier B.. The antimalarial drug artemisinin alkylates heme in infected mice. Proc Natl Acad Sci USA. 2005; 102(38): 13676-13680.
[58]
Loup C., Lelièvre J., Benoit-Vical F., Meunier B.. Trioxaquines and heme-artemisinin adducts inhibit the in vitro formation of hemozoin better than chloroquine. Antimicrob Agents Chemother. 2007; 51(10): 3768-3770.
[59]
Yang Y.Z., Little B.. Meshnick SR. Alkylation of proteins by artemisinin. Effects of heme, pH, and drug structure. Biochem Pharmacol. 1994; 48(3): 569-573.
[60]
Meshnick S.R.. Artemisinin: mechanisms of action, resistance and toxicity. Int J Parasitol. 2002; 32(13): 1655-1660.
[61]
Bhisutthibhan J., Pan X.Q., Hossler P.A., Walker D.J., Yowell C.A., Carlton J., . The Plasmodium falciparum translationally controlled tumor protein homolog and its reaction with the antimalarial drug artemisinin. J Biol Chem. 1998; 273(26): 16192-16198.
[62]
Eckstein-Ludwig U., Webb R.J., Van Goethem I.D., East J.M., Lee A.G., Kimura M., . Artemisinins target the SERCA of Plasmodium falciparum. Nature. 2003; 424(9651): 957-961.
[63]
Uhlemann A.C., Cameron A., Eckstein-Ludwig U., Fischbarg J., Iserovich P., Zuniga F.A., . A single amino acid residue can determine the sensitivity of SERCAs to artemisinins. Nat Struct Mol Biol. 2005; 12(7): 628-629.
[64]
Krishna S., Pulcini S., Fatih F., Staines H.. Artemisinins and the biological basis for the PfATP6/SERCA hypothesis. Trends Parasitol. 2010; 26(11): 517-523.
[65]
Arnou B., Montigny C., Morth J.P., Nissen P., Jaxel C., Møller J.V., . The Plasmodium falciparum Ca2+-ATPase PfATP6: insensitive to artemisinin, but a potential drug target. Biochem Soc Trans. 2011; 39(3): 823-831.
[66]
Cui L., Wang Z., Jiang H., Parker D., Wang H., Su X.Z., . Lack of association of the S769N mutation in Plasmodium falciparum SERCA (PfATP6) with resistance to artemisinins. Antimicrob Agents Chemother. 2012; 56(5): 2546-2552.
[67]
Krishna S., Pulcini S., Moore C.M., Teo B.H., Staines H.M.. Pumped up: reflections on PfATP6 as the target for artemisinins. Trends Pharmacol Sci. 2014; 35(1): 4-11.
[68]
Ismail H.M., Barton V., Phanchana M., Charoensutthivarakul S., Wong M.H., Hemingway J., . Artemisinin activity-based probes identify multiple molecular targets within the asexual stage of the malaria parasites Plasmodium falciparum 3D7. Proc Natl Acad Sci USA. 2016; 113(8): 2080-2085.
[69]
Ashley E.A., Dhorda M., Fairhurst R.M., Amaratunga C., Lim P., Suon S., . Tracking Resistance to Artemisinin Collaboration (TRAC). Spread of artemisinin resistance in Plasmodium falciparum malaria. N Eng J Med. 2014; 371(5): 411-423.
[70]
Dondorp A.M., Yeung S., White L., Nguon C., Day N.P., Socheat D., . Artemisinin resistance: current status and scenarios for containment. Nat Rev Microbiol. 2010; 8(4): 272-280.
[71]
Paloque L., Ramadani A.P., Mercereau-Puijalon O., Augereau J.M., Benoit-Vical F.. Plasmodium falciparum: multifaceted resistance to artemisinins. Malar J. 2016; 15: 149.
[72]
Tilley L., Straimer J., Gnädig N.F., Ralph S.A., Fidock D.A.. Artemisinin action and resistance in Plasmodium falciparum. Trends Parasitol. 2016; 32(9): 682-696.
[73]
Wang J., Xu C., Lun Z.R., Meshnick S.R.. Unpacking ‘artemisinin resistance’. Trends Pharmacol Sci. 2017; 38(6): 506-511.
[74]
Gil J.P., Krishna S.. pfmdr1 (Plasmodium falciparum multidrug drug resistance gene 1): a pivotal factor in malaria resistance to artemisinin combination therapies. Expert Rev Anti Infect Ther. 2017; 15(6): 527-543.
[75]
Hanscheid T., Hardisty D.W.. How “resistant” is artemisinin resistant malaria?—The risks of ambiguity using the term “resistant” malaria. Travel Med Infect Dis. 2018; 24: 23-24.
[76]
Meshnick S.. Perspective: artemisinin-resistant malaria and the wolf. Am J Trop Med Hyg. 2012; 87(5): 783-784.
[77]
World Health Organization. Artemisinin and artemisinin-based combination therapy resistance. Report. Apr
[78]
Ho W.E., Peh H.Y., Chan T.K., Wong W.S.. Artemisinins: pharmacological actions beyond anti-malarial. Pharmacol Ther. 2014; 142(1): 126-139.
[79]
Firestone G.L., Sundar S.N.. Anticancer activities of artemisinin and its bioactive derivatives. Expert Rev Mol Med. 2009; 11: e32.
[80]
Crespo-Ortiz M.P., Wei M.Q.. Antitumor activity of artemisinin and its derivatives: from a well-known antimalarial agent to a potential anticancer drug. J Biomed Biotechnol. 2012; 2012: 247597.
[81]
Lai H.C., Singh N.P., Sasaki T.. Development of artemisinin compounds for cancer treatment. Invest New Drugs. 2013; 31(1): 230-246.
[82]
Efferth T.. Artemisinin—second career as anticancer drug?. World J Tradit Chin Med. 2015; 1(4): 2-25.
[83]
Woerdenbag H.J., Moskal T.A., Pras N., Malingré T.M., el-Feraly F.S., Kampinga H.H., . Cytotoxicity of artemisinin-related endoperoxides to Ehrlich ascites tumor cells. J Nat Prod. 1993; 56(6): 849-856.
[84]
Lai H., Singh N.P.. Selective cancer cell cytotoxicity from exposure to dihydroartemisinin and holotransferrin. Cancer Lett. 1995; 91(1): 41-46.
[85]
Efferth T., Dunstan H., Sauerbrey A., Miyachi H., Chitambar C.R.. The anti-malarial artesunate is also active against cancer. Int J Oncol. 2001; 18(4): 767-773.
[86]
Efferth T., Sauerbrey A., Olbrich A., Gebhart E., Rauch P., Weber H.O., . Molecular modes of action of artesunate in tumor cell lines. Mol Pharmacol. 2003; 64(2): 382-394.
[87]
Zhang Z.Y., Yu S.Q., Miao L.Y., Huang X.Y., Zhang X.P., Zhu Y.P., . Artesunate combined with vinorelbine plus cisplatin in treatment of advanced non-small cell lung cancer: a randomized controlled trial. J Chin Integr Med. 2008; 6(2): 134-138.
[88]
Jansen F.H., Adoubi I., JC K.C., DE Cnodder T., Jansen N., Tschulakow A., . First study of oral Artenimol-R in advanced cervical cancer: clinical benefit, tolerability and tumor markers. Anticancer Res. 2011; 31(12): 4417-4422.
[89]
Krishna S., Ganapathi S., Ster I.C., Saeed M.E., Cowan M., Finlayson C., . A randomised, double blind, placebo-controlled pilot study of oral artesunate therapy for colorectal cancer. EBioMedicine. 2014; 2(1): 82-90.
[90]
Efferth T., Rücker G., Falkenberg M., Manns D., Olbrich A., Fabry U., . Detection of apoptosis in KG-1a leukemic cells treated with investigational drugs. Arzneimittelforschung. 1996; 46(2): 196-200.
[91]
Willoughby J.A.Sr, Sundar S.N., Cheung M., Tin A.S., Modiano J., Firestone G.L.. Artemisinin blocks prostate cancer growth and cell cycle progression by disrupting Sp1 interactions with the cyclin-dependent kinase-4 (CDK4) promoter and inhibiting CDK4 gene expression. J Biol Chem. 2009; 284(4): 2203-2213.
[92]
Steinbrück L., Pereira G., Efferth T.. Effects of artesunate on cytokinesis and G2/M cell cycle progression of tumour cells and budding yeast. Cancer Genomics Proteomics. 2010; 7(6): 337-346.
[93]
Hamacher-Brady A., Stein H.A., Turschner S., Toegel I., Mora R., Jennewein N., . Artesunate activates mitochondrial apoptosis in breast cancer cells via iron-catalyzed lysosomal reactive oxygen species production. J Biol Chem. 2011; 286(8): 6587-6601.
[94]
Anfosso L., Efferth T., Albini A., Pfeffer U.. Microarray expression profiles of angiogenesis-related genes predict tumor cell response to artemisinins. Pharmacogenomics J. 2006; 6(4): 269-278.
[95]
Button R.W., Lin F., Ercolano E., Vincent J.H., Hu B., Hanemann C.O., . Artesunate induces necrotic cell death in schwannoma cells. Cell Death Dis. 2014; 5: e1466.
[96]
Buommino E., Baroni A., Canozo N., Petrazzuolo M., Nicoletti R., Vozza A., . Artemisinin reduces human melanoma cell migration by down-regulating αVβ3 integrin and reducing metalloproteinase 2 production. Invest New Drugs. 2009; 27(5): 412-418.
[97]
Chen T., Li M., Zhang R., Wang H.. Dihydroartemisinin induces apoptosis and sensitizes human ovarian cancer cells to carboplatin therapy. J Cell Mol Med. 2009; 13(7): 1358-1370.
[98]
Li P.C., Lam E., Roos W.P., Zdzienicka M.Z., Kaina B., Efferth T.. Artesunate derived from traditional Chinese medicine induces DNA damage and repair. Cancer Res. 2008; 68(11): 4347-4351.
[99]
Hou J., Wang D., Zhang R., Wang H.. Experimental therapy of hepatoma with artemisinin and its derivatives: in vitro and in vivo activity, chemosensitization, and mechanisms of action. Clin Cancer Res. 2008; 14(17): 5519-5530.
[100]
Berdelle N., Nikolova T., Quiros S., Efferth T., Kaina B.. Artesunate induces oxidative DNA damage, sustained DNA double-strand breaks, and the ATM/ATR damage response in cancer cells. Mol Cancer Ther. 2011; 10(12): 2224-2233.
[101]
Huang C., Ba Q., Yue Q., Li J., Li J., Chu R., . Artemisinin rewires the protein interaction network in cancer cells: network analysis, pathway identification, and target prediction. Mol Biosyst. 2013; 9(12): 3091-3100.
[102]
Li X., Ba Q., Liu Y., Yue Q., Chen P., Li J., . Dihydroartemisinin selectively inhibits PDGFR α-positive ovarian cancer growth and metastasis through inducing degradation of PDGFR α protein. Cell Discov. 2017; 3: 17042.
[103]
Efferth T., Benakis A., Romero M.R., Tomicic M., Rauh R., Steinbach D., . Enhancement of cytotoxicity of artemisinins toward cancer cells by ferrous iron. Free Radic Biol Med. 2004; 37(7): 998-1009.
[104]
Ba Q., Zhou N., Duan J., Chen T., Hao M., Yang X., . Dihydroartemisinin exerts its anticancer activity through depleting cellular iron via transferrin receptor-1. PLoS One. 2012; 7(8): e42703.
[105]
Zhang S., Gerhard G.S.. Heme mediates cytotoxicity from artemisinin and serves as a general anti-proliferation target. PLoS One. 2009; 4(10): e7472.
[106]
Stockwin L.H., Han B., Yu S.X., Hollingshead M.G., ElSohly M.A., Gul W., . Artemisinin dimer anticancer activity correlates with heme-catalyzed reactive oxygen species generation and endoplasmic reticulum stress induction. Int J Cancer. 2009; 125(6): 1266-1275.
[107]
Zhang S., Chen H., Gerhard G.S.. Heme synthesis increases artemisinin-induced radical formation and cytotoxicity that can be suppressed by superoxide scavengers. Chem Biol Interact. 2010; 186(1): 30-35.
[108]
Mercer A.E., Copple I.M., Maggs J.L., O’Neill P.M., Park B.K.. The role of heme and the mitochondrion in the chemical and molecular mechanisms of mammalian cell death induced by the artemisinin antimalarials. J Biol Chem. 2011; 286(2): 987-996.
[109]
Hooda J., Cadinu D., Alam M.M., Shah A., Cao T.M., Sullivan L.A., . Enhanced heme function and mitochondrial respiration promote the progression of lung cancer cells. PLoS One. 2013; 8(5): e63402.
[110]
Hooda J., Shah A., Zhang L.. Heme, an essential nutrient from dietary proteins, critically impacts diverse physiological and pathological processes. Nutrients. 2014; 6(3): 1080-1102.
[111]
Hooda J., Alam M., Zhang L.. Measurement of heme synthesis levels in mammalian cells. J Vis Exp. 2015; 101: e51579.
[112]
Zhang X., Ba Q., Gu Z., Guo D., Zhou Y., Xu Y., . Fluorescent coumarin-artemisinin conjugates as mitochondria-targeting theranostic probes for enhanced anticancer activities. Chemistry. 2015; 21(48): 17415-17421.
[113]
Zhang C.J., Wang J., Zhang J., Lee Y.M., Feng G., Lim T.K., . Mechanism-guided design and synthesis of a mitochondria-targeting artemisinin analogue with enhanced anticancer activity. Angew Chem Int Ed. 2016; 55(44): 13770-13774.
[114]
Wang J., Zhang J., Shi Y., Xu C., Zhang C., Wong Y.K., . Mechanistic investigation of the specific anticancer property of artemisinin and its combination with aminolevulinic acid for enhanced anticolorectal cancer activity. ACS Cent Sci. 2017; 3(7): 743-750.
[115]
Wong Y.K., Xu C., Kalesh K.A., He Y., Lin Q., Wong W.S.F., . Artemisinin as an anticancer drug: recent advances in target profiling and mechanisms of action. Med Res Rev. 2017; 37(6): 1492-1517.
[116]
Dixon S.J., Lemberg K.M., Lamprecht M.R., Skouta R., Zaitsev E.M., Gleason C.E., . Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012; 149(5): 1060-1072.
[117]
Eling N., Reuter L., Hazin J., Hamacher-Brady A., Brady N.R.. Identification of artesunate as a specific activator of ferroptosis in pancreatic cancer cells. Oncoscience. 2015; 2(5): 517-532.
[118]
Ooko E., Saeed M.E., Kadioglu O., Sarvi S., Colak M., Elmasaoudi K., . Artemisinin derivatives induce iron-dependent cell death (ferroptosis) in tumor cells. Phytomedicine. 2015; 22(11): 1045-1054.
[119]
Yang N.D., Tan S.H., Ng S., Shi Y., Zhou J., Tan K.S., . Artesunate induces cell death in human cancer cells via enhancing lysosomal function and lysosomal degradation of ferritin. J Biol Chem. 2014; 289(48): 33425-33441.
[120]
Efferth T.. From ancient herb to modern drug: Artemisia annua and artemisinin for cancer therapy. Semin Cancer Biol. 2017; 46: 65-83.
[121]
Abba M.L., Patil N., Leupold J.H., Saeed M.E.M., Efferth T., Allgayer H.. Prevention of carcinogenesis and metastasis by artemisinin-type drugs. Cancer Lett. 2018; 429: 11-18.
[122]
Noori S., Hassan Z.M.. Dihydroartemisinin shift the immune response towards Th1, inhibit the tumor growth in vitro and in vivo. Cell Immunol. 2011; 271(1): 67-72.
[123]
Farsam V., Hassan Z.M., Zavaran-Hosseini A., Noori S., Mahdavi M., Ranjbar M.. Antitumor and immunomodulatory properties of artemether and its ability to reduce CD4+CD25+FoxP3+ T reg cells in vivo. Int Immunopharmacol. 2011; 11(11): 1802-1808.
[124]
Zhang L.X., Liu Z.N., Ye J., Sha M., Qian H., Bu X.H., . Artesunate exerts an anti-immunosuppressive effect on cervical cancer by inhibiting PGE2 production and Foxp3 expression. Cell Biol Int. 2014; 38(5): 639-646.
[125]
Cui C., Feng H., Shi X., Wang Y., Feng Z., Liu J., . Artesunate down-regulates immunosuppression from colorectal cancer Colon26 and RKO cells in vitro by decreasing transforming growth factor β1 and interleukin-10. Int Immunopharmacol. 2015; 27(1): 110-121.
[126]
Reiter C., Fröhlich T., Gruber L., Hutterer C., Marschall M., Voigtländer C., . Highly potent artemisinin-derived dimers and trimers: synthesis and evaluation of their antimalarial, antileukemia and antiviral activities. Bioorg Med Chem. 2015; 23(17): 5452-5458.
[127]
Fröhlich T., Çapcı Karagöz A., Reiter C., Tsogoeva S.B.. Artemisinin-derived dimers: potent antimalarial and anticancer agents. J Med Chem. 2016; 59(16): 7360-7388.
[128]
Fröhlich T., Ndreshkjana B., Muenzner J.K., Reiter C., Hofmeister E., Mederer S., . Synthesis of novel hybrids of thymoquinone and artemisinin with high activity and selectivity against colon cancer. ChemMedChem. 2017; 12(3): 226-234.
[129]
Efferth T.. Cancer combination therapies with artemisinin-type drugs. Biochem Pharmacol. 2017; 139: 56-70.
[130]
Fröhlich T., Hahn F., Belmudes L., Leidenberger M., Friedrich O., Kappes B., . Synthesis of artemisinin-derived dimers, trimers and dendrimers: investigation of their antimalarial and antiviral activities including putative mechanisms of action. Chemistry. 2018; 24(32): 8103-8113.
[131]
Horwedel C., Tsogoeva S.B., Wei S., Efferth T.. Cytotoxicity of artesunic acid homo- and heterodimer molecules toward sensitive and multidrug-resistant CCRF-CEM leukemia cells. J Med Chem. 2010; 53(13): 4842-4848.
[132]
Reiter C., Herrmann A., Çapci A., Efferth T., Tsogoeva S.B.. New artesunic acid homodimers: potent reversal agents of multidrug resistance in leukemia cells. Bioorg Med Chem. 2012; 20(18): 5637-5641.
[133]
Reiter C., Capcı Karagöz A., Fröhlich T., Klein V., Zeino M., Viertel K., . Synthesis and study of cytotoxic activity of 1,2,4-trioxane- and egonol-derived hybrid molecules against Plasmodium falciparum and multidrug-resistant human leukemia cells. Eur J Med Chem. 2014; 75: 403-412.
[134]
Reiter C., Fröhlich T., Zeino M., Marschall M., Bahsi H., Leidenberger M., . New efficient artemisinin derived agents against human leukemia cells, human cytomegalovirus and Plasmodium falciparum: 2nd generation 1,2,4-trioxane-ferrocene hybrids. Eur J Med Chem. 2015; 97: 164-172.
[135]
Leto I., Coronnello M., Righeschi C., Bergonzi M.C., Mini E., Bilia A.R.. Enhanced efficacy of artemisinin loaded in transferrin-conjugated liposomes versus stealth liposomes against HCT-8 colon cancer cells. ChemMedChem. 2016; 11(16): 1745-1751.
[136]
Bunnag D., Viravan C., Looareesuwan S., Karbwang J., Harinasuta T.. Clinical trial of artesunate and artemether on multidrug resistant falciparum malaria in Thailand. A preliminary report. Southeast Asian J Trop Med Public Health. 1991; 22(3): 380-385.
[137]
Efferth T., Romero M.R., Wolf D.G., Stamminger T., Marin J.J., Marschall M.. The antiviral activities of artemisinin and artesunate. Clin Infect Dis. 2008; 47(6): 804-811.
[138]
Keiser J., Utzinger J.. Artemisinins and synthetic trioxolanes in the treatment of helminth infections. Curr Opin Infect Dis. 2007; 20(6): 605-612.
[139]
Saeed M.E.M., Krishna S., Greten H.J., Kremsner P.G., Efferth T.. Antischistosomal activity of artemisinin derivatives in vivo and in patients. Pharmacol Res. 2016; 110: 216-226.
[140]
Lam N.S., Long X., Su X.Z., Lu F.. Artemisinin and its derivatives in treating helminthic infections beyond schistosomiasis. Pharmacol Res. 2018; 133: 77-100.
[141]
Efferth T.. Beyond malaria: the inhibition of viruses by artemisinin-type compounds. Biotechnol Adv. 2018; 36(6): 1730-1737.
[142]
Li J., Casteels T., Frogne T., Ingvorsen C., Honoré C., Courtney M., . Artemisinins target GABAA receptor signaling and impair α cell identity. Cell. 2017; 168(1–2): 86-100.e15.
[143]
Van der Meulen T., Lee S., Noordeloos E., Donaldson C.J., Adams M.W., Noguchi G.M., . Artemether does not turn α cells into β cells. Cell Metab. 2018; 27(1): 218 25.e4
[144]
Ho W.E., Cheng C., Peh H.Y., Xu F., Tannenbaum S.R., Ong C.N., . Anti-malarial drug artesunate ameliorates oxidative lung damage in experimental allergic asthma. Free Radic Biol Med. 2012; 53(3): 498-507.
[145]
Isacchi B., Arrigucci S., la Marca G., Bergonzi M.C., Vannucchi M.G., Novelli A., . Conventional and long-circulating liposomes of artemisinin: preparation, characterization, and pharmacokinetic profile in mice. J Liposome Res. 2011; 21(3): 237-244.
Acknowledgements

This work was supported, in whole or in part, by the projects of the National Natural Science Foundation of China (81641002 and 81473548); Major National Science and Technology Program of China for Innovative Drug (2017ZX09101002-001-001-05 and 2017ZX09101002-001-001-3); and the Fundamental Research Funds for the Central Public Welfare Research Institutes (ZZ10-024 and ZXKT18003). We would like to thank Dr. Lina Chen, Li Xiang, and Yuhua Shi for providing the photo of Artemisia annua L. We thank Prof. Sanjeev Krishna and Prof. Svetlana Tsogoeva for their valuable comments and assistance for polishing our manuscript.

Compliance with ethics guidelines

Jigang Wang, Chengchao Xu, Yin Kwan Wong, Yujie Li, Fulong Liao, Tingliang Jiang, and Youyou Tu declare that they have no conflict of interest or financial conflicts to disclose.

RIGHTS & PERMISSIONS

2019 THE AUTHORS
AI Summary AI Mindmap
PDF(1019 KB)

Accesses

Citations

Detail

Sections
Recommended

/