
Artemisinin, the Magic Drug Discovered from Traditional Chinese Medicine
Jigang Wang, Chengchao Xu, Yin Kwan Wong, Yujie Li, Fulong Liao, Tingliang Jiang, Youyou Tu
Engineering ›› 2019, Vol. 5 ›› Issue (1) : 32-39.
Artemisinin, the Magic Drug Discovered from Traditional Chinese Medicine
Artemisinin and its derivatives represent the most important and influential class of drugs in the fight against malaria. Since the discovery of artemisinin in the early 1970s, the global community has made great strides in characterizing and understanding this remarkable phytochemical and its unique chemical and pharmacological properties. Today, even as artemisinin continues to serve as the foundation for antimalarial therapy, numerous challenges have surfaced in the continued application and development of this family of drugs. These challenges include the emergence of delayed treatment responses to artemisinins in malaria and efforts to apply artemisinins for non-malarial indications. Here, we provide an overview of the story of artemisinin in terms of its past, present, and future. In particular, we comment on the current understanding of the mechanism of action (MOA) of artemisinins, and emphasize the importance of relating mechanistic studies to therapeutic outcomes, both in malarial and non-malarial contexts.
Artemisinin / Mechanism of action / Malaria / Anti-cancer
[1] |
Tu Y.. Artemisinin—a gift from traditional Chinese medicine to the world (Nobel lecture). Angew Chem Int Ed. 2016; 55(35): 10210-10226.
|
[2] |
Cox F.E.. History of the discovery of the malaria parasites and their vectors. Parasit Vectors. 2010; 3(1): 5.
|
[3] |
Krishna S., Bustamante L., Haynes R.K., Staines H.M.. Artemisinins: their growing importance in medicine. Trends Pharmacol Sci. 2008; 29(10): 520-527.
|
[4] |
World Health Organization. World malaria report 2017.
|
[5] |
Ding X.C., Beck H.P., Raso G.. Plasmodium sensitivity to artemisinins: magic bullets hit elusive targets. Trends Parasitol. 2011; 27(2): 73-81.
|
[6] |
Efferth T., Romero M.R., Bilia A.R., Osman A.G., Sohly M.E.,
|
[7] |
D’Alessandro U., Buttiëns H.. History and importance of antimalarial drug resistance. Trop Med Int Health. 2001; 6(11): 845-848.
|
[8] |
Tu Y.. The discovery of artemisinin (Qinghaosu) and gifts from Chinese medicine. Nat Med. 2011; 17(10): 1217-1220.
|
[9] |
Liao F.. Discovery of artemisinin (Qinghaosu). Molecules. 2009; 14(12): 5362-5366.
|
[10] |
Collaboration Research Group for Qinghaosu. A new sesquiterpene lactone—Qinghaosu. Chin Sci Bull 1997;3:142. Chinese.
|
[11] |
Wang M.Y.. Publication process involving the discovery of artemisinin (Qinghaosu) before 1985. Asian Pac J Trop Biomed. 2016; 6(6): 461-467.
|
[12] |
China Cooperative Research Group on Qinghaosu and Its Derivatives as Antimalarials. Chemical studies on Qinghaosu (artemisinine). J Tradit Chin Med 1982;2(1):3–8. Chinese.
|
[13] |
Klayman D.L.. Qinghaosu (artemisinin): an antimalarial drug from China. Science. 1985; 228(4703): 1049-1055.
|
[14] |
Jiang J.B., Li G.Q., Guo X.B., Kong Y.C., Arnold K.. Antimalarial activity of mefloquine and Qinghaosu. Lancet. 1982; 2(8293): 285-288.
|
[15] |
Looareesuwan S., Viravan C., Vanijanonta S., Wilairatana P., Suntharasamai P., Charoenlarp P.,
|
[16] |
Nosten F., Luxemburger C., ter Kuile F.O., Woodrow C., Eh J.P., Chongsuphajaisiddhi T.,
|
[17] |
Tran T.H., Day N.P., Nguyen H.P., Nguyen T.H., Tran T.H., Pham P.L.,
|
[18] |
Looareesuwan S., Wilairatana P., Viravan C., Vanijanonta S., Pitisuttithum P., Kyle D.E.. Open randomized trial of oral artemether alone and a sequential combination with mefloquine for acute uncomplicated falciparum malaria. Am J Trop Med Hyg. 1997; 56(6): 613-617.
|
[19] |
Adjuik M., Babiker A., Garner P., Olliaro P., Taylor W., White N.,
|
[20] |
Von Seidlein L., Jaffar S., Pinder M., Haywood M., Snounou G., Gemperli B.,
|
[21] |
Von Seidlein L., Bojang K., Jones P., Jaffar S., Pinder M., Obaro S.,
|
[22] |
Doherty J.F., Sadiq A.D., Bayo L., Alloueche A., Olliaro P., Milligan P.,
|
[23] |
Dondorp A.M., Fanello C.I., Hendriksen I.C., Gomes E., Seni A., Chhaganlal K.D.,
|
[24] |
WWARN Artemisinin based Combination Therapy (ACT) Africa Baseline Study Group. Clinical determinants of early parasitological response to ACTs in African patients with uncomplicated falciparum malaria: a literature review and meta-analysis of individual patient data. BMC Med. 2015; 13: 212.
|
[25] |
Efferth T., Kaina B.. Toxicity of the antimalarial artemisinin and its derivatives. Crit Rev Toxicol. 2010; 40(5): 405-421.
|
[26] |
World Health Organization. Guidelines for the treatment of malaria.
|
[27] |
Luo X.D., Shen C.C.. The chemistry, pharmacology, and clinical applications of Qinghaosu (artemisinin) and its derivatives. Med Res Rev. 1987; 7(1): 29-52.
|
[28] |
White N.J.. Clinical pharmacokinetics and pharmacodynamics of artemisinin and derivatives. Trans R Soc Trop Med Hyg. 1994; 88(Suppl 1): S41-S43.
|
[29] |
De Vries P.J., Dien T.K.. Clinical pharmacology and therapeutic potential of artemisinin and its derivatives in the treatment of malaria. Drugs. 1996; 52(6): 818-836.
|
[30] |
German P.I., Aweeka F.T.. Clinical pharmacology of artemisinin-based combination therapies. Clin Pharmacokinet. 2008; 47(2): 91-102.
|
[31] |
Robert A., Dechy-Cabaret O., Cazelles J., Meunier B.. From mechanistic studies on artemisinin derivatives to new modular antimalarial drugs. Acc Chem Res. 2002; 35(3): 167-174.
|
[32] |
Li J., Zhou B.. Biological actions of artemisinin: insights from medicinal chemistry studies. Molecules. 2010; 15(8): 1378-1397.
|
[33] |
Van Agtmael M.A., Eggelte T.A., van Boxtel C.J.. Artemisinin drugs in the treatment of malaria: from medicinal herb to registered medication. Trends Pharmacol Sci. 1999; 20(5): 199-205.
|
[34] |
Meshnick S.R., Taylor T.E., Kamchonwongpaisan S.. Artemisinin and the antimalarial endoperoxides: from herbal remedy to targeted chemotherapy. Microbiol Rev. 1996; 60(2): 301-315.
|
[35] |
Posner G.H., O’Neill P.M.. Knowledge of the proposed chemical mechanism of action and cytochrome p450 metabolism of antimalarial trioxanes like artemisinin allows rational design of new antimalarial peroxides. Acc Chem Res. 2004; 37(6): 397-404.
|
[36] |
O’Neill P.M., Barton V.E., Ward S.A.. The molecular mechanism of action of artemisinin—the debate continues. Molecules. 2010; 15(3): 1705-1721.
|
[37] |
Lew V.L., Tiffert T., Ginsburg H.. Excess hemoglobin digestion and the osmotic stability of Plasmodium falciparum-infected red blood cells. Blood. 2003; 101(10): 4189-4194.
|
[38] |
Klonis N., Crespo-Ortiz M.P., Bottova I., Abu-Bakar N., Kenny S., Rosenthal P.J.,
|
[39] |
Xie S.C., Dogovski C., Hanssen E., Chiu F., Yang T., Crespo M.P.,
|
[40] |
Zhang F., Gosser D.K.Jr, Meshnick S.R.. Hemin-catalyzed decomposition of artemisinin (Qinghaosu). Biochem Pharmacol. 1992; 43(8): 1805-1809.
|
[41] |
Posner G.H., Oh C.H., Wang D., Gerena L., Milhous W.K., Meshnick S.R.,
|
[42] |
Wu W.M., Wu Y., Wu Y.L., Yao Z.J., Zhou C.M., Li Y.,
|
[43] |
Stocks P.A., Bray P.G., Barton V.E., Al-Helal M., Jones M., Araujo N.C.,
|
[44] |
Haynes R.K., Chan W.C., Lung C.M., Uhlemann A.C., Eckstein U., Taramelli D.,
|
[45] |
Meunier B., Robert A.. Heme as trigger and target for trioxane-containing antimalarial drugs. Acc Chem Res. 2010; 43(11): 1444-1451.
|
[46] |
Haynes R.K., Cheu K.W., N’Da D., Coghi P., Monti D.. Considerations on the mechanism of action of artemisinin antimalarials: part 1—the ‘carbon radical’ and ‘heme’ hypotheses. Infect Disord Drug Targets. 2013; 13(4): 217-277.
|
[47] |
Wang J., Zhang C.J., Chia W.N., Loh C.C., Li Z., Lee Y.M.,
|
[48] |
Zhou Y., Li W., Xiao Y.. Profiling of multiple targets of artemisinin activated by hemin in cancer cell proteome. ACS Chem Biol. 2016; 11(4): 882-888.
|
[49] |
Zhang S., Gerhard G.S.. Heme activates artemisinin more efficiently than hemin, inorganic iron, or hemoglobin. Bioorg Med Chem. 2008; 16(16): 7853-7861.
|
[50] |
Li W., Zhou Y., Tang G., Xiao Y.. Characterization of the artemisinin binding site for translationally controlled tumor protein (TCTP) by bioorthogonal click chemistry. Bioconjug Chem. 2016; 27(12): 2828-2833.
|
[51] |
Li W., Mo W., Shen D., Sun L., Wang J., Lu S.,
|
[52] |
Wang J., Huang L., Li J., Fan Q., Long Y., Li Y.,
|
[53] |
Sun C., Li J., Cao Y., Long G., Zhou B.. Two distinct and competitive pathways confer the cellcidal actions of artemisinins. Microb Cell. 2015; 2(1): 14-25.
|
[54] |
Fitch C.D., Chevli R., Kanjananggulpan P., Dutta P., Chevli K., Chou A.C.. Intracellular ferriprotoporphyrin IX is a lytic agent. Blood. 1983; 62(6): 1165-1168.
|
[55] |
Egan T.J.. Recent advances in understanding the mechanism of hemozoin (malaria pigment) formation. J Inorg Biochem. 2008; 102(5–6): 1288-1299.
|
[56] |
Cazelles J., Robert A., Meunier B.. Alkylation of heme by artemisinin, an antimalarial drug. Acad Sci Chem. 2001; 4(2): 85-89.
|
[57] |
Robert A., Benoit-Vical F., Claparols C., Meunier B.. The antimalarial drug artemisinin alkylates heme in infected mice. Proc Natl Acad Sci USA. 2005; 102(38): 13676-13680.
|
[58] |
Loup C., Lelièvre J., Benoit-Vical F., Meunier B.. Trioxaquines and heme-artemisinin adducts inhibit the in vitro formation of hemozoin better than chloroquine. Antimicrob Agents Chemother. 2007; 51(10): 3768-3770.
|
[59] |
Yang Y.Z., Little B.. Meshnick SR. Alkylation of proteins by artemisinin. Effects of heme, pH, and drug structure. Biochem Pharmacol. 1994; 48(3): 569-573.
|
[60] |
Meshnick S.R.. Artemisinin: mechanisms of action, resistance and toxicity. Int J Parasitol. 2002; 32(13): 1655-1660.
|
[61] |
Bhisutthibhan J., Pan X.Q., Hossler P.A., Walker D.J., Yowell C.A., Carlton J.,
|
[62] |
Eckstein-Ludwig U., Webb R.J., Van Goethem I.D., East J.M., Lee A.G., Kimura M.,
|
[63] |
Uhlemann A.C., Cameron A., Eckstein-Ludwig U., Fischbarg J., Iserovich P., Zuniga F.A.,
|
[64] |
Krishna S., Pulcini S., Fatih F., Staines H.. Artemisinins and the biological basis for the PfATP6/SERCA hypothesis. Trends Parasitol. 2010; 26(11): 517-523.
|
[65] |
Arnou B., Montigny C., Morth J.P., Nissen P., Jaxel C., Møller J.V.,
|
[66] |
Cui L., Wang Z., Jiang H., Parker D., Wang H., Su X.Z.,
|
[67] |
Krishna S., Pulcini S., Moore C.M., Teo B.H., Staines H.M.. Pumped up: reflections on PfATP6 as the target for artemisinins. Trends Pharmacol Sci. 2014; 35(1): 4-11.
|
[68] |
Ismail H.M., Barton V., Phanchana M., Charoensutthivarakul S., Wong M.H., Hemingway J.,
|
[69] |
Ashley E.A., Dhorda M., Fairhurst R.M., Amaratunga C., Lim P., Suon S.,
|
[70] |
Dondorp A.M., Yeung S., White L., Nguon C., Day N.P., Socheat D.,
|
[71] |
Paloque L., Ramadani A.P., Mercereau-Puijalon O., Augereau J.M., Benoit-Vical F.. Plasmodium falciparum: multifaceted resistance to artemisinins. Malar J. 2016; 15: 149.
|
[72] |
Tilley L., Straimer J., Gnädig N.F., Ralph S.A., Fidock D.A.. Artemisinin action and resistance in Plasmodium falciparum. Trends Parasitol. 2016; 32(9): 682-696.
|
[73] |
Wang J., Xu C., Lun Z.R., Meshnick S.R.. Unpacking ‘artemisinin resistance’. Trends Pharmacol Sci. 2017; 38(6): 506-511.
|
[74] |
Gil J.P., Krishna S.. pfmdr1 (Plasmodium falciparum multidrug drug resistance gene 1): a pivotal factor in malaria resistance to artemisinin combination therapies. Expert Rev Anti Infect Ther. 2017; 15(6): 527-543.
|
[75] |
Hanscheid T., Hardisty D.W.. How “resistant” is artemisinin resistant malaria?—The risks of ambiguity using the term “resistant” malaria. Travel Med Infect Dis. 2018; 24: 23-24.
|
[76] |
Meshnick S.. Perspective: artemisinin-resistant malaria and the wolf. Am J Trop Med Hyg. 2012; 87(5): 783-784.
|
[77] |
World Health Organization. Artemisinin and artemisinin-based combination therapy resistance. Report. Apr
|
[78] |
Ho W.E., Peh H.Y., Chan T.K., Wong W.S.. Artemisinins: pharmacological actions beyond anti-malarial. Pharmacol Ther. 2014; 142(1): 126-139.
|
[79] |
Firestone G.L., Sundar S.N.. Anticancer activities of artemisinin and its bioactive derivatives. Expert Rev Mol Med. 2009; 11: e32.
|
[80] |
Crespo-Ortiz M.P., Wei M.Q.. Antitumor activity of artemisinin and its derivatives: from a well-known antimalarial agent to a potential anticancer drug. J Biomed Biotechnol. 2012; 2012: 247597.
|
[81] |
Lai H.C., Singh N.P., Sasaki T.. Development of artemisinin compounds for cancer treatment. Invest New Drugs. 2013; 31(1): 230-246.
|
[82] |
Efferth T.. Artemisinin—second career as anticancer drug?. World J Tradit Chin Med. 2015; 1(4): 2-25.
|
[83] |
Woerdenbag H.J., Moskal T.A., Pras N., Malingré T.M., el-Feraly F.S., Kampinga H.H.,
|
[84] |
Lai H., Singh N.P.. Selective cancer cell cytotoxicity from exposure to dihydroartemisinin and holotransferrin. Cancer Lett. 1995; 91(1): 41-46.
|
[85] |
Efferth T., Dunstan H., Sauerbrey A., Miyachi H., Chitambar C.R.. The anti-malarial artesunate is also active against cancer. Int J Oncol. 2001; 18(4): 767-773.
|
[86] |
Efferth T., Sauerbrey A., Olbrich A., Gebhart E., Rauch P., Weber H.O.,
|
[87] |
Zhang Z.Y., Yu S.Q., Miao L.Y., Huang X.Y., Zhang X.P., Zhu Y.P.,
|
[88] |
Jansen F.H., Adoubi I., JC K.C., DE Cnodder T., Jansen N., Tschulakow A.,
|
[89] |
Krishna S., Ganapathi S., Ster I.C., Saeed M.E., Cowan M., Finlayson C.,
|
[90] |
Efferth T., Rücker G., Falkenberg M., Manns D., Olbrich A., Fabry U.,
|
[91] |
Willoughby J.A.Sr, Sundar S.N., Cheung M., Tin A.S., Modiano J., Firestone G.L.. Artemisinin blocks prostate cancer growth and cell cycle progression by disrupting Sp1 interactions with the cyclin-dependent kinase-4 (CDK4) promoter and inhibiting CDK4 gene expression. J Biol Chem. 2009; 284(4): 2203-2213.
|
[92] |
Steinbrück L., Pereira G., Efferth T.. Effects of artesunate on cytokinesis and G2/M cell cycle progression of tumour cells and budding yeast. Cancer Genomics Proteomics. 2010; 7(6): 337-346.
|
[93] |
Hamacher-Brady A., Stein H.A., Turschner S., Toegel I., Mora R., Jennewein N.,
|
[94] |
Anfosso L., Efferth T., Albini A., Pfeffer U.. Microarray expression profiles of angiogenesis-related genes predict tumor cell response to artemisinins. Pharmacogenomics J. 2006; 6(4): 269-278.
|
[95] |
Button R.W., Lin F., Ercolano E., Vincent J.H., Hu B., Hanemann C.O.,
|
[96] |
Buommino E., Baroni A., Canozo N., Petrazzuolo M., Nicoletti R., Vozza A.,
|
[97] |
Chen T., Li M., Zhang R., Wang H.. Dihydroartemisinin induces apoptosis and sensitizes human ovarian cancer cells to carboplatin therapy. J Cell Mol Med. 2009; 13(7): 1358-1370.
|
[98] |
Li P.C., Lam E., Roos W.P., Zdzienicka M.Z., Kaina B., Efferth T.. Artesunate derived from traditional Chinese medicine induces DNA damage and repair. Cancer Res. 2008; 68(11): 4347-4351.
|
[99] |
Hou J., Wang D., Zhang R., Wang H.. Experimental therapy of hepatoma with artemisinin and its derivatives: in vitro and in vivo activity, chemosensitization, and mechanisms of action. Clin Cancer Res. 2008; 14(17): 5519-5530.
|
[100] |
Berdelle N., Nikolova T., Quiros S., Efferth T., Kaina B.. Artesunate induces oxidative DNA damage, sustained DNA double-strand breaks, and the ATM/ATR damage response in cancer cells. Mol Cancer Ther. 2011; 10(12): 2224-2233.
|
[101] |
Huang C., Ba Q., Yue Q., Li J., Li J., Chu R.,
|
[102] |
Li X., Ba Q., Liu Y., Yue Q., Chen P., Li J.,
|
[103] |
Efferth T., Benakis A., Romero M.R., Tomicic M., Rauh R., Steinbach D.,
|
[104] |
Ba Q., Zhou N., Duan J., Chen T., Hao M., Yang X.,
|
[105] |
Zhang S., Gerhard G.S.. Heme mediates cytotoxicity from artemisinin and serves as a general anti-proliferation target. PLoS One. 2009; 4(10): e7472.
|
[106] |
Stockwin L.H., Han B., Yu S.X., Hollingshead M.G., ElSohly M.A., Gul W.,
|
[107] |
Zhang S., Chen H., Gerhard G.S.. Heme synthesis increases artemisinin-induced radical formation and cytotoxicity that can be suppressed by superoxide scavengers. Chem Biol Interact. 2010; 186(1): 30-35.
|
[108] |
Mercer A.E., Copple I.M., Maggs J.L., O’Neill P.M., Park B.K.. The role of heme and the mitochondrion in the chemical and molecular mechanisms of mammalian cell death induced by the artemisinin antimalarials. J Biol Chem. 2011; 286(2): 987-996.
|
[109] |
Hooda J., Cadinu D., Alam M.M., Shah A., Cao T.M., Sullivan L.A.,
|
[110] |
Hooda J., Shah A., Zhang L.. Heme, an essential nutrient from dietary proteins, critically impacts diverse physiological and pathological processes. Nutrients. 2014; 6(3): 1080-1102.
|
[111] |
Hooda J., Alam M., Zhang L.. Measurement of heme synthesis levels in mammalian cells. J Vis Exp. 2015; 101: e51579.
|
[112] |
Zhang X., Ba Q., Gu Z., Guo D., Zhou Y., Xu Y.,
|
[113] |
Zhang C.J., Wang J., Zhang J., Lee Y.M., Feng G., Lim T.K.,
|
[114] |
Wang J., Zhang J., Shi Y., Xu C., Zhang C., Wong Y.K.,
|
[115] |
Wong Y.K., Xu C., Kalesh K.A., He Y., Lin Q., Wong W.S.F.,
|
[116] |
Dixon S.J., Lemberg K.M., Lamprecht M.R., Skouta R., Zaitsev E.M., Gleason C.E.,
|
[117] |
Eling N., Reuter L., Hazin J., Hamacher-Brady A., Brady N.R.. Identification of artesunate as a specific activator of ferroptosis in pancreatic cancer cells. Oncoscience. 2015; 2(5): 517-532.
|
[118] |
Ooko E., Saeed M.E., Kadioglu O., Sarvi S., Colak M., Elmasaoudi K.,
|
[119] |
Yang N.D., Tan S.H., Ng S., Shi Y., Zhou J., Tan K.S.,
|
[120] |
Efferth T.. From ancient herb to modern drug: Artemisia annua and artemisinin for cancer therapy. Semin Cancer Biol. 2017; 46: 65-83.
|
[121] |
Abba M.L., Patil N., Leupold J.H., Saeed M.E.M., Efferth T., Allgayer H.. Prevention of carcinogenesis and metastasis by artemisinin-type drugs. Cancer Lett. 2018; 429: 11-18.
|
[122] |
Noori S., Hassan Z.M.. Dihydroartemisinin shift the immune response towards Th1, inhibit the tumor growth in vitro and in vivo. Cell Immunol. 2011; 271(1): 67-72.
|
[123] |
Farsam V., Hassan Z.M., Zavaran-Hosseini A., Noori S., Mahdavi M., Ranjbar M.. Antitumor and immunomodulatory properties of artemether and its ability to reduce CD4+CD25+FoxP3+ T reg cells in vivo. Int Immunopharmacol. 2011; 11(11): 1802-1808.
|
[124] |
Zhang L.X., Liu Z.N., Ye J., Sha M., Qian H., Bu X.H.,
|
[125] |
Cui C., Feng H., Shi X., Wang Y., Feng Z., Liu J.,
|
[126] |
Reiter C., Fröhlich T., Gruber L., Hutterer C., Marschall M., Voigtländer C.,
|
[127] |
Fröhlich T., Çapcı Karagöz A., Reiter C., Tsogoeva S.B.. Artemisinin-derived dimers: potent antimalarial and anticancer agents. J Med Chem. 2016; 59(16): 7360-7388.
|
[128] |
Fröhlich T., Ndreshkjana B., Muenzner J.K., Reiter C., Hofmeister E., Mederer S.,
|
[129] |
Efferth T.. Cancer combination therapies with artemisinin-type drugs. Biochem Pharmacol. 2017; 139: 56-70.
|
[130] |
Fröhlich T., Hahn F., Belmudes L., Leidenberger M., Friedrich O., Kappes B.,
|
[131] |
Horwedel C., Tsogoeva S.B., Wei S., Efferth T.. Cytotoxicity of artesunic acid homo- and heterodimer molecules toward sensitive and multidrug-resistant CCRF-CEM leukemia cells. J Med Chem. 2010; 53(13): 4842-4848.
|
[132] |
Reiter C., Herrmann A., Çapci A., Efferth T., Tsogoeva S.B.. New artesunic acid homodimers: potent reversal agents of multidrug resistance in leukemia cells. Bioorg Med Chem. 2012; 20(18): 5637-5641.
|
[133] |
Reiter C., Capcı Karagöz A., Fröhlich T., Klein V., Zeino M., Viertel K.,
|
[134] |
Reiter C., Fröhlich T., Zeino M., Marschall M., Bahsi H., Leidenberger M.,
|
[135] |
Leto I., Coronnello M., Righeschi C., Bergonzi M.C., Mini E., Bilia A.R.. Enhanced efficacy of artemisinin loaded in transferrin-conjugated liposomes versus stealth liposomes against HCT-8 colon cancer cells. ChemMedChem. 2016; 11(16): 1745-1751.
|
[136] |
Bunnag D., Viravan C., Looareesuwan S., Karbwang J., Harinasuta T.. Clinical trial of artesunate and artemether on multidrug resistant falciparum malaria in Thailand. A preliminary report. Southeast Asian J Trop Med Public Health. 1991; 22(3): 380-385.
|
[137] |
Efferth T., Romero M.R., Wolf D.G., Stamminger T., Marin J.J., Marschall M.. The antiviral activities of artemisinin and artesunate. Clin Infect Dis. 2008; 47(6): 804-811.
|
[138] |
Keiser J., Utzinger J.. Artemisinins and synthetic trioxolanes in the treatment of helminth infections. Curr Opin Infect Dis. 2007; 20(6): 605-612.
|
[139] |
Saeed M.E.M., Krishna S., Greten H.J., Kremsner P.G., Efferth T.. Antischistosomal activity of artemisinin derivatives in vivo and in patients. Pharmacol Res. 2016; 110: 216-226.
|
[140] |
Lam N.S., Long X., Su X.Z., Lu F.. Artemisinin and its derivatives in treating helminthic infections beyond schistosomiasis. Pharmacol Res. 2018; 133: 77-100.
|
[141] |
Efferth T.. Beyond malaria: the inhibition of viruses by artemisinin-type compounds. Biotechnol Adv. 2018; 36(6): 1730-1737.
|
[142] |
Li J., Casteels T., Frogne T., Ingvorsen C., Honoré C., Courtney M.,
|
[143] |
Van der Meulen T., Lee S., Noordeloos E., Donaldson C.J., Adams M.W., Noguchi G.M.,
|
[144] |
Ho W.E., Cheng C., Peh H.Y., Xu F., Tannenbaum S.R., Ong C.N.,
|
[145] |
Isacchi B., Arrigucci S., la Marca G., Bergonzi M.C., Vannucchi M.G., Novelli A.,
|
This work was supported, in whole or in part, by the projects of the National Natural Science Foundation of China (81641002 and 81473548); Major National Science and Technology Program of China for Innovative Drug (2017ZX09101002-001-001-05 and 2017ZX09101002-001-001-3); and the Fundamental Research Funds for the Central Public Welfare Research Institutes (ZZ10-024 and ZXKT18003). We would like to thank Dr. Lina Chen, Li Xiang, and Yuhua Shi for providing the photo of Artemisia annua L. We thank Prof. Sanjeev Krishna and Prof. Svetlana Tsogoeva for their valuable comments and assistance for polishing our manuscript.
Jigang Wang, Chengchao Xu, Yin Kwan Wong, Yujie Li, Fulong Liao, Tingliang Jiang, and Youyou Tu declare that they have no conflict of interest or financial conflicts to disclose.
/
〈 |
|
〉 |