
Enhancing Clinical Efficacy through the Gut Microbiota: A New Field of Traditional Chinese Medicine
Yan-Meng Lu, Jiao-Jiao Xie, Cong-Gao Peng, Bao-Hong Wang, Kai-Cen Wang, Lan-Juan Li
Enhancing Clinical Efficacy through the Gut Microbiota: A New Field of Traditional Chinese Medicine
Traditional Chinese medicines (TCMs) have a long history of playing a vital role in disease prevention, symptom alleviation, and health improvement. However, their complex ingredients and as-yet-unknown mechanisms restrict their application. With increasing evidence indicating that the gut microbiota is important in host health and may be associated with the therapeutic activity of TCM components, it may now be possible to assess the effects of TCMs from the perspective of the gut microbiota. The gut microbiota functions within four major physiological pathways as follows: It participates in host metabolism, forms global immunity, maintains homeostasis of the gastrointestinal tract, and affects brain function and host behavior. This article reviews the reported correlations between TCMs and certain diseases, such as chronic liver disease, ulcerative colitis, obesity, and type 2 diabetes, and elucidates the underlying mechanisms, with a focus on changes in the gut microbiota. In future, further studies are required with more advanced experimental design in order to reveal the interactions between TCMs and the gut microbiota, and provide new insight into and guidance for TCM-based drug discovery.
Traditional Chinese medicines / Gut microbiome / Fatty liver disease / Ulcerative colitis / Obesity / Diabetes
[[1]] |
Xu J., Chen H.B., Li S.L.. Understanding the molecular mechanisms of the interplay between herbal medicines and gut microbiota. Med Res Rev. 2017; 37(5): 1140-1185.
|
[[2]] |
Wishart D.S.. Emerging applications of metabolomics in drug discovery and precision medicine. Nat Rev Drug Discov. 2016; 15(7): 473-484.
|
[[3]] |
Harvey A.L., Edrada-Ebel R., Quinn R.J.. The re-emergence of natural products for drug discovery in the genomics era. Nat Rev Drug Discov. 2015; 14(2): 111-129.
|
[[4]] |
Clemente J.C., Ursell L.K., Parfrey L.W., Knight R.. The impact of the gut microbiota on human health: an integrative view. Cell. 2012; 148(6): 1258-1270.
|
[[5]] |
Leung C., Rivera L., Furness J.B., Angus P.W.. The role of the gut microbiota in NAFLD. Nat Rev Gastroenterol Hepatol. 2016; 13(7): 412-425.
|
[[6]] |
Manichanh C., Borruel N., Casellas F., Guarner F.. The gut microbiota in IBD. Nat Rev Gastroenterol Hepatol. 2012; 9(10): 599-608.
|
[[7]] |
Cox A.J., West N.P., Cripps A.W.. Obesity, inflammation, and the gut microbiota. Lancet Diabetes Endocrinol. 2015; 3(3): 207-215.
|
[[8]] |
Knip M., Siljander H.. The role of the intestinal microbiota in type 1 diabetes mellitus. Nat Rev Endocrinol. 2016; 12(3): 154-167.
|
[[9]] |
Qin J., Li Y., Cai Z., Li S., Zhu J., Zhang F.,
|
[[10]] |
Collins S.M.. A role for the gut microbiota in IBS. Nat Rev Gastroenterol Hepatol. 2014; 11(8): 497-505.
|
[[11]] |
Zitvogel L., Galluzzi L., Viaud S., Vétizou M., Daillère R., Merad M.,
|
[[12]] |
Li H., Zhou M., Zhao A., Jia W.. Traditional Chinese medicine: balancing the gut ecosystem. Phytother Res. 2009; 23(9): 1332-1335.
|
[[13]] |
Chen F., Wen Q., Jiang J., Li H.L., Tan Y.F., Li Y.H.,
|
[[14]] |
O’Hara A.M., Shanahan F.. The gut flora as a forgotten organ. EMBO Rep. 2006; 7(7): 688-693.
|
[[15]] |
Bäckhed F., Ley R.E., Sonnenburg J.L., Peterson D.A., Gordon J.I.. Host-bacterial mutualism in the human intestine. Science. 2005; 307(5717): 1915-1920.
|
[[16]] |
Nicholson J.K., Holmes E., Kinross J., Burcelin R., Gibson G., Jia W.,
|
[[17]] |
Hooper L.V., Wong M.H., Thelin A., Hansson L., Falk P.G., Gordon J.I.. Molecular analysis of commensal host-microbial relationships in the intestine. Science. 2001; 291(5505): 881-884.
|
[[18]] |
Smith P.A.. The tantalizing links between gut microbes and the brain. Nature. 2015; 526(7573): 312-314.
|
[[19]] |
Tremaroli V., Bäckhed F.. Functional interactions between the gut microbiota and host metabolism. Nature. 2012; 489(7415): 242-249.
|
[[20]] |
Round J.L., Mazmanian S.K.. The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol. 2009; 9(5): 313-323.
|
[[21]] |
Mazmanian S.K., Liu C.H., Tzianabos A.O., Kasper D.L.. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell. 2005; 122(1): 107-118.
|
[[22]] |
Bouskra D., Brézillon C., Bérard M., Werts C., Varona R., Boneca I.G.,
|
[[23]] |
Viaud S., Saccheri F., Mignot G., Yamazaki T., Daillère R., Hannani D.,
|
[[24]] |
Zeuthen L.H., Fink L.N., Frokiaer H.. Epithelial cells prime the immune response to an array of gut-derived commensals towards a tolerogenic phenotype through distinct actions of thymic stromal lymphopoietin and transforming growth factor-beta. Immunology. 2008; 123(2): 197-208.
|
[[25]] |
Massacand J.C., Kaiser P., Ernst B., Tardivel A., Bürki K., Schneider P.,
|
[[26]] |
Kamada N., Chen G.Y., Inohara N., Núñez G.. Control of pathogens and pathobionts by the gut microbiota. Nat Immunol. 2013; 14(7): 685-690.
|
[[27]] |
Franks I.. Microbiota: gut microbes might promote intestinal angiogenesis. Nat Rev Gastroenterol Hepatol. 2013; 10(1): 3.
|
[[28]] |
Sharma R., Young C., Neu J.. Molecular modulation of intestinal epithelial barrier: contribution of microbiota. J Biomed Biotechnol. 2010; 2010: 305879.
|
[[29]] |
Freitas M., Axelsson L.G., Cayuela C., Midtvedt T., Trugnan G.. Microbial-host interactions specifically control the glycosylation pattern in intestinal mouse mucosa. Histochem Cell Biol. 2002; 118(2): 149-161.
|
[[30]] |
Cryan J.F., Dinan T.G.. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci. 2012; 13(10): 701-712.
|
[[31]] |
Desbonnet L., Garrett L., Clarke G., Bienenstock J., Dinan T.G.. The probiotic Bifidobacteria infantis: an assessment of potential antidepressant properties in the rat. J Psychiatr Res. 2008; 43(2): 164-174.
|
[[32]] |
Thomas R.H., Meeking M.M., Mepham J.R., Tichenoff L., Possmayer F., Liu S.,
|
[[33]] |
Qiu J.. ‘Back to the future’ for Chinese herbal medicines. Nat Rev Drug Discov. 2007; 6(7): 506-507.
|
[[34]] |
Wang H.Y., Qi L.W., Wang C.Z., Li P.. Bioactivity enhancement of herbal supplements by intestinal microbiota focusing on ginsenosides. Am J Chin Med. 2011; 39(6): 1103-1115.
|
[[35]] |
Zhang X., Zhao Y., Zhang M., Pang X., Xu J., Kang C.,
|
[[36]] |
Cotillard A., Kennedy S.P., Kong L.C., Prifti E., Pons N., Le Chatelier E.,
|
[[37]] |
Guo M., Ding S., Zhao C., Gu X., He X., Huang K.,
|
[[38]] |
Sekirov I., Russell S.L., Antunes L.C., Finlay B.B.. Gut microbiota in health and disease. Physiol Rev. 2010; 90(3): 859-904.
|
[[39]] |
Marchesi J.R., Adams D.H., Fava F., Hermes G.D., Hirschfield G.M., Hold G.,
|
[[40]] |
Qin N., Yang F., Li A., Prifti E., Chen Y., Shao L.,
|
[[41]] |
Chen Y., Yang F., Lu H., Wang B., Chen Y., Lei D.,
|
[[42]] |
Lu H., Wu Z., Xu W., Yang J., Chen Y., Li L.. Intestinal microbiota was assessed in cirrhotic patients with hepatitis B virus infection. Intestinal microbiota of HBV cirrhotic patients. Microb Ecol. 2011; 61(3): 693-703.
|
[[43]] |
Michail S., Lin M., Frey M.R., Fanter R., Paliy O., Hilbush B.,
|
[[44]] |
Tang R., Wei Y., Li Y., Chen W., Chen H., Wang Q.,
|
[[45]] |
Cao Y., Pan Q., Cai W., Shen F., Chen G.Y., Xu L.M.,
|
[[46]] |
Yin X., Peng J., Zhao L., Yu Y., Zhang X., Liu P.,
|
[[47]] |
Dong H., Lu F.E., Zhao L.. Chinese herbal medicine in the treatment of nonalcoholic fatty liver disease. Chin J Integr Med. 2012; 18(2): 152-160.
|
[[48]] |
Sakaida I., Tsuchiya M., Kawaguchi K., Kimura T., Terai S., Okita K.. Herbal medicine Inchin-ko-to (TJ-135) prevents liver fibrosis and enzyme-altered lesions in rat liver cirrhosis induced by a choline-deficient L-amino acid-defined diet. J Hepatol. 2003; 38(6): 762-769.
|
[[49]] |
Yamamoto M., Miura N., Ohtake N., Amagaya S., Ishige A., Sasaki H.,
|
[[50]] |
Yamamoto M., Ogawa K., Morita M., Fukuda K., Komatsu Y.. The herbal medicine Inchin-ko-to inhibits liver cell apoptosis induced by transforming growth factor beta 1. Hepatology. 1996; 23(3): 552-559.
|
[[51]] |
Yamashiki M., Mase A., Arai I., Huang X.X., Nobori T., Nishimura A.,
|
[[52]] |
Huang W., Zhang J., Moore D.D.. A traditional herbal medicine enhances bilirubin clearance by activating the nuclear receptor CAR. J Clin Invest. 2004; 113(1): 137-143.
|
[[53]] |
Liu P., Hu Y.Y., Liu C., Zhu D.Y., Xue H.M., Xu Z.Q.,
|
[[54]] |
Katiyar S.K.. Silymarin and skin cancer prevention: anti-inflammatory, antioxidant and immunomodulatory effects (Review). Int J Oncol. 2005; 26(1): 169-176.
|
[[55]] |
Lee J.S., Kim S.G., Kim H.K., Lee T.H., Jeong Y.I., Lee C.M.,
|
[[56]] |
Krecman V., Skottová N., Walterová D., Ulrichová J., Simánek V.. Silymarin inhibits the development of diet-induced hypercholesterolemia in rats. Planta Med. 1998; 64(2): 138-142.
|
[[57]] |
Skottová N., Krecman V.. Silymarin as a potential hypocholesterolaemic drug. Physiol Res. 1998; 47(1): 1-7.
|
[[58]] |
Wang S., Li X., Niu Y., Liu Y., Zhu Y., Lu X.,
|
[[59]] |
Li Z., Yang S., Lin H., Huang J., Watkins P.A., Moser A.B.,
|
[[60]] |
Hsieh C.Y., Osaka T., Moriyama E., Date Y., Kikuchi J., Tsuneda S.. Strengthening of the intestinal epithelial tight junction by Bifidobacterium bifidum. Physiol Rep. 2015; 3(3): e12327.
|
[[61]] |
Inao M., Mochida S., Matsui A., Eguchi Y., Yulutuz Y., Wang Y.,
|
[[62]] |
Hackett E.S., Twedt D.C., Gustafson D.L.. Milk thistle and its derivative compounds: a review of opportunities for treatment of liver disease. J Vet Intern Med. 2013; 27(1): 10-16.
|
[[63]] |
Fehér J., Láng I., Nékám K., Csomós G., Müzes G., Deák G.. Effect of silibinin on the activity and expression of superoxide dismutase in lymphocytes from patients with chronic alcoholic liver disease. Free Radic Res Commun. 1987; 3(6): 373-377.
|
[[64]] |
Zhang W., Hong R., Tian T.. Silymarin’s protective effects and possible mechanisms on alcoholic fatty liver for rats. Biomol Ther. 2013; 21(4): 264-269.
|
[[65]] |
Prakash P., Singh V., Jain M., Rana M., Khanna V., Barthwal M.K.,
|
[[66]] |
Feldstein A.E., Canbay A., Angulo P., Taniai M., Burgart L.J., Lindor K.D.,
|
[[67]] |
Akiho H., Yokoyama A., Abe S., Nakazono Y., Murakami M., Otsuka Y.,
|
[[68]] |
Ghouri Y.A., Richards D.M., Rahimi E.F., Krill J.T., Jelinek K.A., DuPont A.W.. Systematic review of randomized controlled trials of probiotics, prebiotics, and synbiotics in inflammatory bowel disease. Clin Exp Gastroenterol. 2014; 7: 473-487.
|
[[69]] |
Nunes S., Danesi F., Del Rio D., Silva P.. Resveratrol and inflammatory bowel disease: the evidence so far. Nutr Res Rev. 2018; 31(1): 85-97.
|
[[70]] |
Zhang Z., Wu X., Cao S., Wang L., Wang D., Yang H.,
|
[[71]] |
Wang X.M., Lu Y., Wu L.Y., Yu S.G., Zhao B.X., Hu H.Y.,
|
[[72]] |
Wen J., Teng B., Yang P., Chen X., Li C., Jing Y.,
|
[[73]] |
Rahman H., Kim M., Leung G., Green J.A., Katz S.. Drug-herb interactions in the elderly patient with IBD: a growing concern. Curr Treat Options Gastroenterol. 2017; 15(4): 618-636.
|
[[74]] |
Marchesi J.R., Holmes E., Khan F., Kochhar S., Scanlan P., Shanahan F.,
|
[[75]] |
Larrosa M., González-Sarrías A., Yáñez-Gascón M.J., Selma M.V., Azorín-Ortuño M., Toti S.,
|
[[76]] |
Tchernof A., Després J.P.. Pathophysiology of human visceral obesity: an update. Physiol Rev. 2013; 93(1): 359-404.
|
[[77]] |
Zhao L.. The gut microbiota and obesity: from correlation to causality. Nat Rev Microbiol. 2013; 11(9): 639-647.
|
[[78]] |
Itoh H.. Gut microbiota and diseases: gut microbiota and obesity. Nippon Naika Gakkai Zasshi. 2016; 105(9): 1712-1716.
|
[[79]] |
Tang J., Feng Y., Tsao S., Wang N., Curtain R., Wang Y.. Berberine and Coptidis rhizoma as novel antineoplastic agents: a review of traditional use and biomedical investigations. J Ethnopharmacol. 2009; 126(1): 5-17.
|
[[80]] |
Li M., Shu X., Xu H., Zhang C., Yang L., Zhang L.,
|
[[81]] |
Zhang X., Zhao Y., Xu J., Xue Z., Zhang M., Pang X.,
|
[[82]] |
Li X., Guo J., Ji K., Zhang P.. Bamboo shoot fiber prevents obesity in mice by modulating the gut microbiota. Sci Rep. 2016; 6(1): 32953.
|
[[83]] |
Bai J., Zhu Y., Dong Y.. Modulation of gut microbiota and gut-generated metabolites by bitter melon results in improvement in the metabolic status in high fat diet-induced obese rats. J Funct Foods. 2018; 41: 127-134.
|
[[84]] |
Sánchez-Tapia M., Aguilar-López M., Pérez-Cruz C., Pichardo-Ontiveros E., Wang M., Donovan S.M.,
|
[[85]] |
Eid H.M., Wright M.L., Anil Kumar N.V., Qawasmeh A., Hassan S.T.S., Mocan A.,
|
[[86]] |
Han J., Lin H., Huang W.. Modulating gut microbiota as an anti-diabetic mechanism of berberine. Med Sci Monit. 2011; 17(7): RA164-RA167.
|
[[87]] |
Xie W., Gu D., Li J., Cui K., Zhang Y.. Effects and action mechanisms of berberine and Rhizoma coptidis on gut microbes and obesity in high-fat diet-fed C57BL/6J mice. PLoS ONE. 2011; 6(9): e24520.
|
[[88]] |
Crow J.M.. Microbiome: that healthy gut feeling. Nature. 2011; 480(7378): S88-S89.
|
[[89]] |
Maslowski K.M., Vieira A.T., Ng A., Kranich J., Sierro F., Yu D.,
|
[[90]] |
Zhang Q., Piao X.L., Piao X.S., Lu T., Wang D., Kim S.W.. Preventive effect of Coptis chinensis and berberine on intestinal injury in rats challenged with lipopolysaccharides. Food Chem Toxicol. 2011; 49(1): 61-69.
|
[[91]] |
Gu L., Li N., Gong J., Li Q., Zhu W., Li J.. Berberine ameliorates intestinal epithelial tight-junction damage and down-regulates myosin light chain kinase pathways in a mouse model of endotoxinemia. J Infect Dis. 2011; 203(11): 1602-1612.
|
[[92]] |
De Filippo C., Cavalieri D., Di Paola M., Ramazzotti M., Poullet J.B., Massart S.,
|
[[93]] |
Duncan S.H., Lobley G.E., Holtrop G., Ince J., Johnstone A.M., Louis P.,
|
[[94]] |
Li A.N., Li S., Zhang Y.J., Xu X.R., Chen Y.M., Li H.B.. Resources and biological activities of natural polyphenols. Nutrients. 2014; 6(12): 6020-6047.
|
[[95]] |
Hanhineva K., Törrönen R., Bondia-Pons I., Pekkinen J., Kolehmainen M., Mykkänen H.,
|
[[96]] |
Cardona F., Andrés-Lacueva C., Tulipani S., Tinahones F.J., Queipo-Ortuño M.I.. Benefits of polyphenols on gut microbiota and implications in human health. J Nutr Biochem. 2013; 24(8): 1415-1422.
|
[[97]] |
Duda-Chodak A., Tarko T., Satora P., Sroka P.. Interaction of dietary compounds, especially polyphenols, with the intestinal microbiota: a review. Eur J Nutr. 2015; 54(3): 325-341.
|
[[98]] |
Hidalgo M., Oruna-Concha M.J., Kolida S., Walton G.E., Kallithraka S., Spencer J.P.E.,
|
[[99]] |
Stevens J.F., Maier C.S.. The chemistry of gut microbial metabolism of polyphenols. Phytochem Rev. 2016; 15(3): 425-444.
|
[[100]] |
Kumar S., Pandey A.K.. Chemistry and biological activities of flavonoids: an overview. Sci World J. 2013; 2013: 162750.
|
[[101]] |
Kwon O., Eck P., Chen S., Corpe C.P., Lee J.H., Kruhlak M.,
|
[[102]] |
Wang S., Moustaid-Moussa N., Chen L., Mo H., Shastri A., Su R.,
|
[[103]] |
Nie Q., Hu J., Gao H., Fan L., Chen H., Nie S.. Polysaccharide from Plantago asiatica L. attenuates hyperglycemia, hyperlipidemia and affects colon microbiota in type 2 diabetic rats. Food Hydrocoll. 2019; 86: 34-42.
|
[[104]] |
Liu G., Bei J., Liang L., Yu G., Li L., Li Q.. Stachyose improves inflammation through modulating gut microbiota of high-fat diet/streptozotocin-induced type 2 diabetes in rats. Mol Nutr Food Res. 2018; 62(6): e1700954.
|
[[105]] |
Sung M.M., Kim T.T., Denou E., Soltys C.M., Hamza S.M., Byrne N.J.,
|
[[106]] |
Martel J., Ojcius D.M., Chang C.J., Lin C.S., Lu C.C., Ko Y.F.,
|
[[107]] |
Wang J.H., Bose S., Kim G.C., Hong S.U., Kim J.H., Kim J.E.,
|
[[108]] |
Fang W., Wei C., Dong Y., Tang X., Zu Y., Chen Q.. The effect on gut microbiota structure of primarily diagnosed type 2 diabetes patients intervened by Sancai Lianmei Particle and acarbose: a randomized controlled trial. J Clin Trials. 2016; 6(3): 270.
|
[[109]] |
Xu J., Lian F., Zhao L., Zhao Y., Chen X., Zhang X.,
|
[[110]] |
Chen X., D’Souza R., Hong S.T.. The role of gut microbiota in the gut-brain axis: current challenges and perspectives. Protein Cell. 2013; 4(6): 403-414.
|
[[111]] |
Critchley J.A., Zhang Y., Suthisisang C.C., Chan T.Y., Tomlinson B.. Alternative therapies and medical science: designing clinical trials of alternative/complementary medicines–is evidence-based traditional Chinese medicine attainable?. J Clin Pharmacol. 2000; 40(5): 462-467.
|
We thank the Key Program of the National Natural Science Foundation of China (81330011), the National Natural Science Foundation of China (81790630, 81790631, and 81790633), the Zhejiang Provincial Natural Science Foundation of China (R16H260001), and the National Basic Research Program of China (2013CB531401).
Yan-Meng Lu, Jiao-Jiao Xie, Cong-Gao Peng, Bao-Hong Wang, Kai-Cen Wang, and Lan-Juan Li have no conflicts of interest to declare, and the manuscript has been approved for publication by all authors.
/
〈 |
|
〉 |