Enhancing Clinical Efficacy through the Gut Microbiota: A New Field of Traditional Chinese Medicine

Yan-Meng Lu, Jiao-Jiao Xie, Cong-Gao Peng, Bao-Hong Wang, Kai-Cen Wang, Lan-Juan Li

PDF(1324 KB)
PDF(1324 KB)
Engineering ›› 2019, Vol. 5 ›› Issue (1) : 40-49. DOI: 10.1016/j.eng.2018.11.013
Research
Research Traditional Chinese Medicine—Review

Enhancing Clinical Efficacy through the Gut Microbiota: A New Field of Traditional Chinese Medicine

Author information +
History +

Abstract

Traditional Chinese medicines (TCMs) have a long history of playing a vital role in disease prevention, symptom alleviation, and health improvement. However, their complex ingredients and as-yet-unknown mechanisms restrict their application. With increasing evidence indicating that the gut microbiota is important in host health and may be associated with the therapeutic activity of TCM components, it may now be possible to assess the effects of TCMs from the perspective of the gut microbiota. The gut microbiota functions within four major physiological pathways as follows: It participates in host metabolism, forms global immunity, maintains homeostasis of the gastrointestinal tract, and affects brain function and host behavior. This article reviews the reported correlations between TCMs and certain diseases, such as chronic liver disease, ulcerative colitis, obesity, and type 2 diabetes, and elucidates the underlying mechanisms, with a focus on changes in the gut microbiota. In future, further studies are required with more advanced experimental design in order to reveal the interactions between TCMs and the gut microbiota, and provide new insight into and guidance for TCM-based drug discovery.

Keywords

Traditional Chinese medicines / Gut microbiome / Fatty liver disease / Ulcerative colitis / Obesity / Diabetes

Cite this article

Download citation ▾
Yan-Meng Lu, Jiao-Jiao Xie, Cong-Gao Peng, Bao-Hong Wang, Kai-Cen Wang, Lan-Juan Li. Enhancing Clinical Efficacy through the Gut Microbiota: A New Field of Traditional Chinese Medicine. Engineering, 2019, 5(1): 40‒49 https://doi.org/10.1016/j.eng.2018.11.013

References

[[1]]
Xu J., Chen H.B., Li S.L.. Understanding the molecular mechanisms of the interplay between herbal medicines and gut microbiota. Med Res Rev. 2017; 37(5): 1140-1185.
[[2]]
Wishart D.S.. Emerging applications of metabolomics in drug discovery and precision medicine. Nat Rev Drug Discov. 2016; 15(7): 473-484.
[[3]]
Harvey A.L., Edrada-Ebel R., Quinn R.J.. The re-emergence of natural products for drug discovery in the genomics era. Nat Rev Drug Discov. 2015; 14(2): 111-129.
[[4]]
Clemente J.C., Ursell L.K., Parfrey L.W., Knight R.. The impact of the gut microbiota on human health: an integrative view. Cell. 2012; 148(6): 1258-1270.
[[5]]
Leung C., Rivera L., Furness J.B., Angus P.W.. The role of the gut microbiota in NAFLD. Nat Rev Gastroenterol Hepatol. 2016; 13(7): 412-425.
[[6]]
Manichanh C., Borruel N., Casellas F., Guarner F.. The gut microbiota in IBD. Nat Rev Gastroenterol Hepatol. 2012; 9(10): 599-608.
[[7]]
Cox A.J., West N.P., Cripps A.W.. Obesity, inflammation, and the gut microbiota. Lancet Diabetes Endocrinol. 2015; 3(3): 207-215.
[[8]]
Knip M., Siljander H.. The role of the intestinal microbiota in type 1 diabetes mellitus. Nat Rev Endocrinol. 2016; 12(3): 154-167.
[[9]]
Qin J., Li Y., Cai Z., Li S., Zhu J., Zhang F., . A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. 2012; 490(7418): 55-60.
[[10]]
Collins S.M.. A role for the gut microbiota in IBS. Nat Rev Gastroenterol Hepatol. 2014; 11(8): 497-505.
[[11]]
Zitvogel L., Galluzzi L., Viaud S., Vétizou M., Daillère R., Merad M., . Cancer and the gut microbiota: an unexpected link. Sci Transl Med. 2015; 7(271): 271ps1.
[[12]]
Li H., Zhou M., Zhao A., Jia W.. Traditional Chinese medicine: balancing the gut ecosystem. Phytother Res. 2009; 23(9): 1332-1335.
[[13]]
Chen F., Wen Q., Jiang J., Li H.L., Tan Y.F., Li Y.H., . Could the gut microbiota reconcile the oral bioavailability conundrum of traditional herbs?. J Ethnopharmacol. 2016; 179: 253-264.
[[14]]
O’Hara A.M., Shanahan F.. The gut flora as a forgotten organ. EMBO Rep. 2006; 7(7): 688-693.
[[15]]
Bäckhed F., Ley R.E., Sonnenburg J.L., Peterson D.A., Gordon J.I.. Host-bacterial mutualism in the human intestine. Science. 2005; 307(5717): 1915-1920.
[[16]]
Nicholson J.K., Holmes E., Kinross J., Burcelin R., Gibson G., Jia W., . Host-gut microbiota metabolic interactions. Science. 2012; 336(6086): 1262-1267.
[[17]]
Hooper L.V., Wong M.H., Thelin A., Hansson L., Falk P.G., Gordon J.I.. Molecular analysis of commensal host-microbial relationships in the intestine. Science. 2001; 291(5505): 881-884.
[[18]]
Smith P.A.. The tantalizing links between gut microbes and the brain. Nature. 2015; 526(7573): 312-314.
[[19]]
Tremaroli V., Bäckhed F.. Functional interactions between the gut microbiota and host metabolism. Nature. 2012; 489(7415): 242-249.
[[20]]
Round J.L., Mazmanian S.K.. The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol. 2009; 9(5): 313-323.
[[21]]
Mazmanian S.K., Liu C.H., Tzianabos A.O., Kasper D.L.. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell. 2005; 122(1): 107-118.
[[22]]
Bouskra D., Brézillon C., Bérard M., Werts C., Varona R., Boneca I.G., . Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis. Nature. 2008; 456(7221): 507-510.
[[23]]
Viaud S., Saccheri F., Mignot G., Yamazaki T., Daillère R., Hannani D., . The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science. 2013; 342(6161): 971-976.
[[24]]
Zeuthen L.H., Fink L.N., Frokiaer H.. Epithelial cells prime the immune response to an array of gut-derived commensals towards a tolerogenic phenotype through distinct actions of thymic stromal lymphopoietin and transforming growth factor-beta. Immunology. 2008; 123(2): 197-208.
[[25]]
Massacand J.C., Kaiser P., Ernst B., Tardivel A., Bürki K., Schneider P., . Intestinal bacteria condition dendritic cells to promote IgA production. PLoS One. 2008; 3(7): e2588.
[[26]]
Kamada N., Chen G.Y., Inohara N., Núñez G.. Control of pathogens and pathobionts by the gut microbiota. Nat Immunol. 2013; 14(7): 685-690.
[[27]]
Franks I.. Microbiota: gut microbes might promote intestinal angiogenesis. Nat Rev Gastroenterol Hepatol. 2013; 10(1): 3.
[[28]]
Sharma R., Young C., Neu J.. Molecular modulation of intestinal epithelial barrier: contribution of microbiota. J Biomed Biotechnol. 2010; 2010: 305879.
[[29]]
Freitas M., Axelsson L.G., Cayuela C., Midtvedt T., Trugnan G.. Microbial-host interactions specifically control the glycosylation pattern in intestinal mouse mucosa. Histochem Cell Biol. 2002; 118(2): 149-161.
[[30]]
Cryan J.F., Dinan T.G.. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci. 2012; 13(10): 701-712.
[[31]]
Desbonnet L., Garrett L., Clarke G., Bienenstock J., Dinan T.G.. The probiotic Bifidobacteria infantis: an assessment of potential antidepressant properties in the rat. J Psychiatr Res. 2008; 43(2): 164-174.
[[32]]
Thomas R.H., Meeking M.M., Mepham J.R., Tichenoff L., Possmayer F., Liu S., . The enteric bacterial metabolite propionic acid alters brain and plasma phospholipid molecular species: further development of a rodent model of autism spectrum disorders. J Neuroinflammation. 2012; 9(1): 153.
[[33]]
Qiu J.. ‘Back to the future’ for Chinese herbal medicines. Nat Rev Drug Discov. 2007; 6(7): 506-507.
[[34]]
Wang H.Y., Qi L.W., Wang C.Z., Li P.. Bioactivity enhancement of herbal supplements by intestinal microbiota focusing on ginsenosides. Am J Chin Med. 2011; 39(6): 1103-1115.
[[35]]
Zhang X., Zhao Y., Zhang M., Pang X., Xu J., Kang C., . Structural changes of gut microbiota during berberine-mediated prevention of obesity and insulin resistance in high-fat diet-fed rats. PLoS ONE. 2012; 7(8): e42529.
[[36]]
Cotillard A., Kennedy S.P., Kong L.C., Prifti E., Pons N., Le Chatelier E., . MicroObes consortium. Dietary intervention impact on gut microbial gene richness. Nature. 2013; 500(7464): 585-588.
[[37]]
Guo M., Ding S., Zhao C., Gu X., He X., Huang K., . Red ginseng and Semen Coicis can improve the structure of gut microbiota and relieve the symptoms of ulcerative colitis. J Ethnopharmacol. 2015; 162: 7-13.
[[38]]
Sekirov I., Russell S.L., Antunes L.C., Finlay B.B.. Gut microbiota in health and disease. Physiol Rev. 2010; 90(3): 859-904.
[[39]]
Marchesi J.R., Adams D.H., Fava F., Hermes G.D., Hirschfield G.M., Hold G., . The gut microbiota and host health: a new clinical frontier. Gut. 2016; 65(2): 330-339.
[[40]]
Qin N., Yang F., Li A., Prifti E., Chen Y., Shao L., . Alterations of the human gut microbiome in liver cirrhosis. Nature. 2014; 513(7516): 59-64.
[[41]]
Chen Y., Yang F., Lu H., Wang B., Chen Y., Lei D., . Characterization of fecal microbial communities in patients with liver cirrhosis. Hepatology. 2011; 54(2): 562-572.
[[42]]
Lu H., Wu Z., Xu W., Yang J., Chen Y., Li L.. Intestinal microbiota was assessed in cirrhotic patients with hepatitis B virus infection. Intestinal microbiota of HBV cirrhotic patients. Microb Ecol. 2011; 61(3): 693-703.
[[43]]
Michail S., Lin M., Frey M.R., Fanter R., Paliy O., Hilbush B., . Altered gut microbial energy and metabolism in children with non-alcoholic fatty liver disease. FEMS Microbiol Ecol. 2015; 91(2): 1-9.
[[44]]
Tang R., Wei Y., Li Y., Chen W., Chen H., Wang Q., . Gut microbial profile is altered in primary biliary cholangitis and partially restored after UDCA therapy. Gut. 2018; 67(3): 534-541.
[[45]]
Cao Y., Pan Q., Cai W., Shen F., Chen G.Y., Xu L.M., . Modulation of gut microbiota by berberine improves steatohepatitis in high-fat diet-fed BALB/C mice. Arch Iran Med. 2016; 19(3): 197-203.
[[46]]
Yin X., Peng J., Zhao L., Yu Y., Zhang X., Liu P., . Structural changes of gut microbiota in a rat non-alcoholic fatty liver disease model treated with a Chinese herbal formula. Syst Appl Microbiol. 2013; 36(3): 188-196.
[[47]]
Dong H., Lu F.E., Zhao L.. Chinese herbal medicine in the treatment of nonalcoholic fatty liver disease. Chin J Integr Med. 2012; 18(2): 152-160.
[[48]]
Sakaida I., Tsuchiya M., Kawaguchi K., Kimura T., Terai S., Okita K.. Herbal medicine Inchin-ko-to (TJ-135) prevents liver fibrosis and enzyme-altered lesions in rat liver cirrhosis induced by a choline-deficient L-amino acid-defined diet. J Hepatol. 2003; 38(6): 762-769.
[[49]]
Yamamoto M., Miura N., Ohtake N., Amagaya S., Ishige A., Sasaki H., . Genipin, a metabolite derived from the herbal medicine Inchin-ko-to, and suppression of Fas-induced lethal liver apoptosis in mice. Gastroenterology. 2000; 118(2): 380-389.
[[50]]
Yamamoto M., Ogawa K., Morita M., Fukuda K., Komatsu Y.. The herbal medicine Inchin-ko-to inhibits liver cell apoptosis induced by transforming growth factor beta 1. Hepatology. 1996; 23(3): 552-559.
[[51]]
Yamashiki M., Mase A., Arai I., Huang X.X., Nobori T., Nishimura A., . Effects of the Japanese herbal medicine ‘Inchinko-to’ (TJ-135) on concanavalin A-induced hepatitis in mice. Clin Sci. 2000; 99(5): 421-431.
[[52]]
Huang W., Zhang J., Moore D.D.. A traditional herbal medicine enhances bilirubin clearance by activating the nuclear receptor CAR. J Clin Invest. 2004; 113(1): 137-143.
[[53]]
Liu P., Hu Y.Y., Liu C., Zhu D.Y., Xue H.M., Xu Z.Q., . Clinical observation of salvianolic acid B in treatment of liver fibrosis in chronic hepatitis B. World J Gastroenterol. 2002; 8(4): 679-685.
[[54]]
Katiyar S.K.. Silymarin and skin cancer prevention: anti-inflammatory, antioxidant and immunomodulatory effects (Review). Int J Oncol. 2005; 26(1): 169-176.
[[55]]
Lee J.S., Kim S.G., Kim H.K., Lee T.H., Jeong Y.I., Lee C.M., . Silibinin polarizes Th1/Th2 immune responses through the inhibition of immunostimulatory function of dendritic cells. J Cell Physiol. 2007; 210(2): 385-397.
[[56]]
Krecman V., Skottová N., Walterová D., Ulrichová J., Simánek V.. Silymarin inhibits the development of diet-induced hypercholesterolemia in rats. Planta Med. 1998; 64(2): 138-142.
[[57]]
Skottová N., Krecman V.. Silymarin as a potential hypocholesterolaemic drug. Physiol Res. 1998; 47(1): 1-7.
[[58]]
Wang S., Li X., Niu Y., Liu Y., Zhu Y., Lu X., . Identification and screening of chemical constituents with hepatoprotective effects from three traditional Chinese medicines for treating jaundice. J Sep Sci. 2016; 39(19): 3690-3699.
[[59]]
Li Z., Yang S., Lin H., Huang J., Watkins P.A., Moser A.B., . Probiotics and antibodies to TNF inhibit inflammatory activity and improve nonalcoholic fatty liver disease. Hepatology. 2003; 37(2): 343-350.
[[60]]
Hsieh C.Y., Osaka T., Moriyama E., Date Y., Kikuchi J., Tsuneda S.. Strengthening of the intestinal epithelial tight junction by Bifidobacterium bifidum. Physiol Rep. 2015; 3(3): e12327.
[[61]]
Inao M., Mochida S., Matsui A., Eguchi Y., Yulutuz Y., Wang Y., . Japanese herbal medicine Inchin-ko-to as a therapeutic drug for liver fibrosis. J Hepatol. 2004; 41(4): 584-591.
[[62]]
Hackett E.S., Twedt D.C., Gustafson D.L.. Milk thistle and its derivative compounds: a review of opportunities for treatment of liver disease. J Vet Intern Med. 2013; 27(1): 10-16.
[[63]]
Fehér J., Láng I., Nékám K., Csomós G., Müzes G., Deák G.. Effect of silibinin on the activity and expression of superoxide dismutase in lymphocytes from patients with chronic alcoholic liver disease. Free Radic Res Commun. 1987; 3(6): 373-377.
[[64]]
Zhang W., Hong R., Tian T.. Silymarin’s protective effects and possible mechanisms on alcoholic fatty liver for rats. Biomol Ther. 2013; 21(4): 264-269.
[[65]]
Prakash P., Singh V., Jain M., Rana M., Khanna V., Barthwal M.K., . Silymarin ameliorates fructose induced insulin resistance syndrome by reducing de novo hepatic lipogenesis in the rat. Eur J Pharmacol. 2014; 727: 15-28.
[[66]]
Feldstein A.E., Canbay A., Angulo P., Taniai M., Burgart L.J., Lindor K.D., . Hepatocyte apoptosis and fas expression are prominent features of human nonalcoholic steatohepatitis. Gastroenterology. 2003; 125(2): 437-443.
[[67]]
Akiho H., Yokoyama A., Abe S., Nakazono Y., Murakami M., Otsuka Y., . Promising biological therapies for ulcerative colitis: a review of the literature. World J Gastrointest Pathophysiol. 2015; 6(4): 219-227.
[[68]]
Ghouri Y.A., Richards D.M., Rahimi E.F., Krill J.T., Jelinek K.A., DuPont A.W.. Systematic review of randomized controlled trials of probiotics, prebiotics, and synbiotics in inflammatory bowel disease. Clin Exp Gastroenterol. 2014; 7: 473-487.
[[69]]
Nunes S., Danesi F., Del Rio D., Silva P.. Resveratrol and inflammatory bowel disease: the evidence so far. Nutr Res Rev. 2018; 31(1): 85-97.
[[70]]
Zhang Z., Wu X., Cao S., Wang L., Wang D., Yang H., . Caffeic acid ameliorates colitis in association with increased Akkermansia population in the gut microbiota of mice. Oncotarget. 2016; 7(22): 31790-31799.
[[71]]
Wang X.M., Lu Y., Wu L.Y., Yu S.G., Zhao B.X., Hu H.Y., . Moxibustion inhibits interleukin-12 and tumor necrosis factor alpha and modulates intestinal flora in rat with ulcerative colitis. World J Gastroenterol. 2012; 18(46): 6819-6828.
[[72]]
Wen J., Teng B., Yang P., Chen X., Li C., Jing Y., . The potential mechanism of Bawei Xileisan in the treatment of dextran sulfate sodium-induced ulcerative colitis in mice. J Ethnopharmacol. 2016; 188: 31-38.
[[73]]
Rahman H., Kim M., Leung G., Green J.A., Katz S.. Drug-herb interactions in the elderly patient with IBD: a growing concern. Curr Treat Options Gastroenterol. 2017; 15(4): 618-636.
[[74]]
Marchesi J.R., Holmes E., Khan F., Kochhar S., Scanlan P., Shanahan F., . Rapid and noninvasive metabonomic characterization of inflammatory bowel disease. J Proteome Res. 2007; 6(2): 546-551.
[[75]]
Larrosa M., González-Sarrías A., Yáñez-Gascón M.J., Selma M.V., Azorín-Ortuño M., Toti S., . Anti-inflammatory properties of a pomegranate extract and its metabolite urolithin-A in a colitis rat model and the effect of colon inflammation on phenolic metabolism. J Nutr Biochem. 2010; 21(8): 717-725.
[[76]]
Tchernof A., Després J.P.. Pathophysiology of human visceral obesity: an update. Physiol Rev. 2013; 93(1): 359-404.
[[77]]
Zhao L.. The gut microbiota and obesity: from correlation to causality. Nat Rev Microbiol. 2013; 11(9): 639-647.
[[78]]
Itoh H.. Gut microbiota and diseases: gut microbiota and obesity. Nippon Naika Gakkai Zasshi. 2016; 105(9): 1712-1716.
[[79]]
Tang J., Feng Y., Tsao S., Wang N., Curtain R., Wang Y.. Berberine and Coptidis rhizoma as novel antineoplastic agents: a review of traditional use and biomedical investigations. J Ethnopharmacol. 2009; 126(1): 5-17.
[[80]]
Li M., Shu X., Xu H., Zhang C., Yang L., Zhang L., . Integrative analysis of metabolome and gut microbiota in diet-induced hyperlipidemic rats treated with berberine compounds. J Transl Med. 2016; 14(1): 237.
[[81]]
Zhang X., Zhao Y., Xu J., Xue Z., Zhang M., Pang X., . Modulation of gut microbiota by berberine and metformin during the treatment of high-fat diet-induced obesity in rats. Sci Rep. 2015; 5(1): 14405.
[[82]]
Li X., Guo J., Ji K., Zhang P.. Bamboo shoot fiber prevents obesity in mice by modulating the gut microbiota. Sci Rep. 2016; 6(1): 32953.
[[83]]
Bai J., Zhu Y., Dong Y.. Modulation of gut microbiota and gut-generated metabolites by bitter melon results in improvement in the metabolic status in high fat diet-induced obese rats. J Funct Foods. 2018; 41: 127-134.
[[84]]
Sánchez-Tapia M., Aguilar-López M., Pérez-Cruz C., Pichardo-Ontiveros E., Wang M., Donovan S.M., . Nopal (Opuntia ficus indica) protects from metabolic endotoxemia by modifying gut microbiota in obese rats fed high fat/sucrose diet. Sci Rep. 2017; 7(1): 4716.
[[85]]
Eid H.M., Wright M.L., Anil Kumar N.V., Qawasmeh A., Hassan S.T.S., Mocan A., . Significance of microbiota in obesity and metabolic diseases and the modulatory potential by medicinal plant and food ingredients. Front Pharmacol. 2017; 8: 387.
[[86]]
Han J., Lin H., Huang W.. Modulating gut microbiota as an anti-diabetic mechanism of berberine. Med Sci Monit. 2011; 17(7): RA164-RA167.
[[87]]
Xie W., Gu D., Li J., Cui K., Zhang Y.. Effects and action mechanisms of berberine and Rhizoma coptidis on gut microbes and obesity in high-fat diet-fed C57BL/6J mice. PLoS ONE. 2011; 6(9): e24520.
[[88]]
Crow J.M.. Microbiome: that healthy gut feeling. Nature. 2011; 480(7378): S88-S89.
[[89]]
Maslowski K.M., Vieira A.T., Ng A., Kranich J., Sierro F., Yu D., . Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature. 2009; 461(7268): 1282-1286.
[[90]]
Zhang Q., Piao X.L., Piao X.S., Lu T., Wang D., Kim S.W.. Preventive effect of Coptis chinensis and berberine on intestinal injury in rats challenged with lipopolysaccharides. Food Chem Toxicol. 2011; 49(1): 61-69.
[[91]]
Gu L., Li N., Gong J., Li Q., Zhu W., Li J.. Berberine ameliorates intestinal epithelial tight-junction damage and down-regulates myosin light chain kinase pathways in a mouse model of endotoxinemia. J Infect Dis. 2011; 203(11): 1602-1612.
[[92]]
De Filippo C., Cavalieri D., Di Paola M., Ramazzotti M., Poullet J.B., Massart S., . Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci USA. 2010; 107(33): 14691-14696.
[[93]]
Duncan S.H., Lobley G.E., Holtrop G., Ince J., Johnstone A.M., Louis P., . Human colonic microbiota associated with diet, obesity and weight loss. Int J Obes. 2008; 32(11): 1720-1724.
[[94]]
Li A.N., Li S., Zhang Y.J., Xu X.R., Chen Y.M., Li H.B.. Resources and biological activities of natural polyphenols. Nutrients. 2014; 6(12): 6020-6047.
[[95]]
Hanhineva K., Törrönen R., Bondia-Pons I., Pekkinen J., Kolehmainen M., Mykkänen H., . Impact of dietary polyphenols on carbohydrate metabolism. Int J Mol Sci. 2010; 11(4): 1365-1402.
[[96]]
Cardona F., Andrés-Lacueva C., Tulipani S., Tinahones F.J., Queipo-Ortuño M.I.. Benefits of polyphenols on gut microbiota and implications in human health. J Nutr Biochem. 2013; 24(8): 1415-1422.
[[97]]
Duda-Chodak A., Tarko T., Satora P., Sroka P.. Interaction of dietary compounds, especially polyphenols, with the intestinal microbiota: a review. Eur J Nutr. 2015; 54(3): 325-341.
[[98]]
Hidalgo M., Oruna-Concha M.J., Kolida S., Walton G.E., Kallithraka S., Spencer J.P.E., . Metabolism of anthocyanins by human gut microflora and their influence on gut bacterial growth. J Agric Food Chem. 2012; 60(15): 3882-3890.
[[99]]
Stevens J.F., Maier C.S.. The chemistry of gut microbial metabolism of polyphenols. Phytochem Rev. 2016; 15(3): 425-444.
[[100]]
Kumar S., Pandey A.K.. Chemistry and biological activities of flavonoids: an overview. Sci World J. 2013; 2013: 162750.
[[101]]
Kwon O., Eck P., Chen S., Corpe C.P., Lee J.H., Kruhlak M., . Inhibition of the intestinal glucose transporter GLUT2 by flavonoids. FASEB J. 2007; 21(2): 366-377.
[[102]]
Wang S., Moustaid-Moussa N., Chen L., Mo H., Shastri A., Su R., . Novel insights of dietary polyphenols and obesity. J Nutr Biochem. 2014; 25(1): 1-18.
[[103]]
Nie Q., Hu J., Gao H., Fan L., Chen H., Nie S.. Polysaccharide from Plantago asiatica L. attenuates hyperglycemia, hyperlipidemia and affects colon microbiota in type 2 diabetic rats. Food Hydrocoll. 2019; 86: 34-42.
[[104]]
Liu G., Bei J., Liang L., Yu G., Li L., Li Q.. Stachyose improves inflammation through modulating gut microbiota of high-fat diet/streptozotocin-induced type 2 diabetes in rats. Mol Nutr Food Res. 2018; 62(6): e1700954.
[[105]]
Sung M.M., Kim T.T., Denou E., Soltys C.M., Hamza S.M., Byrne N.J., . Improved glucose homeostasis in obese mice treated with resveratrol is associated with alterations in the gut microbiome. Diabetes. 2017; 66(2): 418-425.
[[106]]
Martel J., Ojcius D.M., Chang C.J., Lin C.S., Lu C.C., Ko Y.F., . Anti-obesogenic and antidiabetic effects of plants and mushrooms. Nat Rev Endocrinol. 2017; 13(3): 149-160.
[[107]]
Wang J.H., Bose S., Kim G.C., Hong S.U., Kim J.H., Kim J.E., . Flos Lonicera ameliorates obesity and associated endotoxemia in rats through modulation of gut permeability and intestinal microbiota. PLoS ONE. 2014; 9(1): e86117.
[[108]]
Fang W., Wei C., Dong Y., Tang X., Zu Y., Chen Q.. The effect on gut microbiota structure of primarily diagnosed type 2 diabetes patients intervened by Sancai Lianmei Particle and acarbose: a randomized controlled trial. J Clin Trials. 2016; 6(3): 270.
[[109]]
Xu J., Lian F., Zhao L., Zhao Y., Chen X., Zhang X., . Structural modulation of gut microbiota during alleviation of type 2 diabetes with a Chinese herbal formula. ISME J. 2015; 9(3): 552-562.
[[110]]
Chen X., D’Souza R., Hong S.T.. The role of gut microbiota in the gut-brain axis: current challenges and perspectives. Protein Cell. 2013; 4(6): 403-414.
[[111]]
Critchley J.A., Zhang Y., Suthisisang C.C., Chan T.Y., Tomlinson B.. Alternative therapies and medical science: designing clinical trials of alternative/complementary medicines–is evidence-based traditional Chinese medicine attainable?. J Clin Pharmacol. 2000; 40(5): 462-467.
Acknowledgements

We thank the Key Program of the National Natural Science Foundation of China (81330011), the National Natural Science Foundation of China (81790630, 81790631, and 81790633), the Zhejiang Provincial Natural Science Foundation of China (R16H260001), and the National Basic Research Program of China (2013CB531401).

Compliance with ethics guidelines

Yan-Meng Lu, Jiao-Jiao Xie, Cong-Gao Peng, Bao-Hong Wang, Kai-Cen Wang, and Lan-Juan Li have no conflicts of interest to declare, and the manuscript has been approved for publication by all authors.

RIGHTS & PERMISSIONS

2019 THE AUTHORS
AI Summary AI Mindmap
PDF(1324 KB)

Accesses

Citations

Detail

Sections
Recommended

/