Immune Regulatory Cell Biology and Clinical Applications to Prevent or Treat Acute Graft-Versus-Host Disease

Bruce R. Blazar

Engineering ›› 2019, Vol. 5 ›› Issue (1) : 98-105.

PDF(481 KB)
PDF(481 KB)
Engineering ›› 2019, Vol. 5 ›› Issue (1) : 98-105. DOI: 10.1016/j.eng.2018.11.016
Research
Research Immunology—Review

Immune Regulatory Cell Biology and Clinical Applications to Prevent or Treat Acute Graft-Versus-Host Disease

Author information +
History +

Abstract

The most common approaches to prevent and treat graft-versus-host disease (GVHD) are intended to deplete or suppress the T cells capable of mediating or supporting alloresponses; however, this renders the recipients functionally T cell deficient and hence highly susceptible to infections and tumor recurrence. Depletion is often accomplished through the use of broadly reactive antibodies, while functional impairment is typically achieved by pharmacological agents that require long-term administration (usually six months or more), have significant side effects, and may not result in tolerance (i.e., non-responsiveness) of donor T cells to conditioning regimen-resistant host alloantigen-bearing cells. As our knowledge of immune system homeostasis has increased, cell populations with immune regulatory function have been identified and characterized. Although such cell populations are typically present in low frequencies, methods to isolate and expand these cells have permitted their supplementation to the donor graft or infusion late post-transplant in order to stifle GVHD. This review discusses the biology and preclinical proof of concept of GVHD models, along with GVHD outcomes that focus exclusively on immune regulatory cell therapies that have progressed to clinical testing.

Keywords

Graft-versus-host disease (GVHD) / Immune regulatory cells / Cell therapy

Cite this article

Download citation ▾
Bruce R. Blazar. Immune Regulatory Cell Biology and Clinical Applications to Prevent or Treat Acute Graft-Versus-Host Disease. Engineering, 2019, 5(1): 98‒105 https://doi.org/10.1016/j.eng.2018.11.016

References

[1]
Gatti R.A., Meuwissen H.J., Allen H.D., Hong R., Good R.A.. Immunological reconstitution of sex-linked lymphopenic immunological deficiency. Lancet. 1968; 292(7583): 1366-1369.
[2]
Gratwohl A., Pasquini M.C., Aljurf M., Atsuta Y., Baldomero H., Foeken L., . One million haemopoietic stem-cell transplants: a retrospective observational study. Lancet Haematol. 2015; 2(3): e91-e100.
[3]
Zeiser R., Blazar B.R.. Acute graft-versus-host disease—biologic process, prevention, and therapy. N Engl J Med. 2017; 377(22): 2167-2179.
[4]
Barnes D.W., Loutit J.F.. The radiation recovery factor: preservation by the Polge–Smith–Parkes technique. J Natl Cancer Inst. 1955; 15(4): 901-905.
[5]
Billingham R.E.. The biology of graft-versus-host reactions. Harvey Lect. 1966–1967; 62: 21-78.
[6]
Blazar B.R., Korngold R., Vallera D.A.. Recent advances in graft-versus-host disease (GVHD) prevention. Immunol Rev. 1997; 157(1): 79-109.
[7]
Tutschka P.J., Beschorner W.E., Hess A.D., Santos G.W.. Cyclosporin-A to prevent graft-versus-host disease: a pilot study in 22 patients receiving allogeneic marrow transplants. Blood. 1983; 61(2): 318-325.
[8]
Fay J.W., Wingard J.R., Antin J.H., Collins R.H., Piñeiro L.A., Blazar B.R., . FK506 (tacrolimus) monotherapy for prevention of graft-versus-host disease after histocompatible sibling allogenic bone marrow transplantation. Blood. 1996; 87(8): 3514-3519.
[9]
Cutler C., Antin J.H.. Sirolimus immunosuppression for graft-versus-host disease prophylaxis and therapy: an update. Curr Opin Hematol. 2010; 17(6): 500-504.
[10]
Luznik L., Bolaños-Meade J., Zahurak M., Chen A.R., Smith B.D., Brodsky R., . High-dose cyclophosphamide as single-agent, short-course prophylaxis of graft-versus-host disease. Blood. 2010; 115(16): 3224-3230.
[11]
Luznik L., Jones R.J., Fuchs E.J.. High-dose cyclophosphamide for graft-versus-host disease prevention. Curr Opin Hematol. 2010; 17(6): 493-499.
[12]
Luznik L., O’Donnell P.V., Fuchs E.J.. Post-transplantation cyclophosphamide for tolerance induction in HLA-haploidentical bone marrow transplantation. Semin Oncol. 2012; 39(6): 683-693.
[13]
Kanakry C.G., Tsai H.L., Bolaños-Meade J., Smith B.D., Gojo I., Kanakry J.A., . Single-agent GVHD prophylaxis with posttransplantation cyclophosphamide after myeloablative, HLA-matched BMT for AML, ALL, and MDS. Blood. 2014; 124(25): 3817-3827.
[14]
Ildstad S.T., Sachs D.H.. Reconstitution with syngeneic plus allogeneic or xenogeneic bone marrow leads to specific acceptance of allografts or xenografts. Nature. 1984; 307(5947): 168-170.
[15]
Sykes M., Sheard M., Sachs D.H.. Effects of T cell depletion in radiation bone marrow chimeras. I. Evidence for a donor cell population which increases allogeneic chimerism but which lacks the potential to produce GVHD. J Immunol. 1988; 141(7): 2282-2288.
[16]
Bacchetta R., Bigler M., Touraine J.L., Parkman R., Tovo P.A., Abrams J., . High levels of interleukin 10 production in vivo are associated with tolerance in SCID patients transplanted with HLA mismatched hematopoietic stem cells. J Exp Med. 1994; 179(2): 493-502.
[17]
Roncarolo M.G., Gregori S., Bacchetta R., Battaglia M.. Tr1 cells and the counter-regulation of immunity: natural mechanisms and therapeutic applications. Curr Top Microbiol Immunol. 2014; 380: 39-68.
[18]
Kohrt H.E., Turnbull B.B., Heydari K., Shizuru J.A., Laport G.G., Miklos D.B., . TLI and ATG conditioning with low risk of graft-versus-host disease retains antitumor reactions after allogeneic hematopoietic cell transplantation from related and unrelated donors. Blood. 2009; 114(5): 1099-1109.
[19]
Schneidawind D., Pierini A., Negrin R.S.. Regulatory T cells and natural killer T cells for modulation of GVHD following allogeneic hematopoietic cell transplantation. Blood. 2013; 122(18): 3116-3121.
[20]
Arpaia N., Green J.A., Moltedo B., Arvey A., Hemmers S., Yuan S., . A distinct function of regulatory T cells in tissue protection. Cell. 2015; 162(5): 1078-1089.
[21]
Fibbe W.E., Rabelink T.J.. Lupus nephritis: mesenchymal stromal cells in lupus nephritis. Nat Rev Nephrol. 2017; 13(8): 452-453.
[22]
Shevach E.M.. Mechanisms of FOXP3+ T regulatory cell-mediated suppression. Immunity. 2009; 30(5): 636-645.
[23]
Sakaguchi S., Miyara M., Costantino C.M., Hafler D.A.. FOXP3+ regulatory T cells in the human immune system. Nat Rev Immunol. 2010; 10(7): 490-500.
[24]
Bluestone J.A., Tang Q., Sedwick C.E.. T regulatory cells in autoimmune diabetes: past challenges, future prospects. J Clin Immunol. 2008; 28(6): 677-684.
[25]
Curotto de Lafaille M.A., Lafaille J.J.. Natural and adaptive FOXP3+ regulatory T cells: more of the same or a division of labor?. Immunity. 2009; 30(5): 626-635.
[26]
Taylor P.A., Noelle R.J., Blazar B.R.. CD4+CD25+ immune regulatory cells are required for induction of tolerance to alloantigen via costimulatory blockade. J Exp Med. 2001; 193(11): 1311-1318.
[27]
Schmidt A., Oberle N., Krammer P.H.. Molecular mechanisms of Treg-mediated T cell suppression. Front Immunol. 2012; 3: 51.
[28]
McNally A., Hill G.R., Sparwasser T., Thomas R., Steptoe R.J.. CD4+CD25+ regulatory T cells control CD8+ T-cell effector differentiation by modulating IL-2 homeostasis. Proc Natl Acad Sci USA. 2011; 108(18): 7529-7534.
[29]
Taylor P.A., Lees C.J., Blazar B.R.. The infusion of ex vivo activated and expanded CD4+CD25+ immune regulatory cells inhibits graft-versus-host disease lethality. Blood. 2002; 99(10): 3493-3499.
[30]
Hoffmann P., Ermann J., Edinger M., Fathman C.G., Strober S.. Donor-type CD4+CD25+ regulatory T cells suppress lethal acute graft-versus-host disease after allogeneic bone marrow transplantation. J Exp Med. 2002; 196(3): 389-399.
[31]
Cohen J.L., Trenado A., Vasey D., Klatzmann D., Salomon B.L.. CD4+CD25+ immunoregulatory T cells: new therapeutics for graft-versus-host disease. J Exp Med. 2002; 196(3): 401-406.
[32]
Godfrey W.R., Ge Y.G., Spoden D.J., Levine B.L., June C.H., Blazar B.R., . In vitro-expanded human CD4+CD25+ T-regulatory cells can markedly inhibit allogeneic dendritic cell-stimulated MLR cultures. Blood. 2004; 104(2): 453-461.
[33]
Hippen K.L., Harker-Murray P., Porter S.B., Merkel S.C., Londer A., Taylor D.K., . Umbilical cord blood regulatory T-cell expansion and functional effects of tumor necrosis factor receptor family members OX40 and 4-1BB expressed on artificial antigen-presenting cells. Blood. 2008; 112(7): 2847-2857.
[34]
Godfrey W.R., Spoden D.J., Ge Y.G., Baker S.R., Liu B., Levine B.L., . Cord blood CD4+CD25+-derived T regulatory cell lines express FOXP3 protein and manifest potent suppressor function. Blood. 2005; 105(2): 750-758.
[35]
Trzonkowski P., Bieniaszewska M., Juścińska J., Dobyszuk A., Krzystyniak A., Marek N., . First-in-man clinical results of the treatment of patients with graft versus host disease with human ex vivo expanded CD4+CD25+CD127 T regulatory cells. Clin Immunol. 2009; 133(1): 22-26.
[36]
Brunstein C.G., Miller J.S., Cao Q., McKenna D.H., Hippen K.L., Curtsinger J., . Infusion of ex vivo expanded T regulatory cells in adults transplanted with umbilical cord blood: safety profile and detection kinetics. Blood. 2011; 117(3): 1061-1070.
[37]
Brunstein C.G., Miller J.S., McKenna D.H., Hippen K.L., DeFor T.E., Sumstad D., . Umbilical cord blood-derived T regulatory cells to prevent GVHD: kinetics, toxicity profile, and clinical effect. Blood. 2016; 127(8): 1044-1051.
[38]
Di Ianni M., Falzetti F., Carotti A., Terenzi A., Castellino F., Bonifacio E., . Tregs prevent GVHD and promote immune reconstitution in HLA-haploidentical transplantation. Blood. 2011; 117(14): 3921-3928.
[39]
Martelli M.F., Di Ianni M., Ruggeri L., Falzetti F., Carotti A., Terenzi A., . HLA-haploidentical transplantation with regulatory and conventional T-cell adoptive immunotherapy prevents acute leukemia relapse. Blood. 2014; 124(4): 638-644.
[40]
Sockolosky J.T., Trotta E., Parisi G., Picton L., Su L.L., Le A.C., . Selective targeting of engineered T cells using orthogonal IL-2 cytokine-receptor complexes. Science. 2018; 359(6379): 1037-1042.
[41]
Trotta E., Bessette P.H., Silveria S.L., Ely L.K., Jude K.M., Le D.T., . A human anti-IL-2 antibody that potentiates regulatory T cells by a structure-based mechanism. Nat Med. 2018; 24(7): 1005-1014.
[42]
Chopra M., Biehl M., Steinfatt T., Brandl A., Kums J., Amich J., . Exogenous TNFR2 activation protects from acute GVHD via host Treg cell expansion. J Exp Med. 2016; 213(9): 1881-1900.
[43]
Chen X., Das R., Komorowski R., Beres A., Hessner M.J., Mihara M., . Blockade of interleukin-6 signaling augments regulatory T-cell reconstitution and attenuates the severity of graft-versus-host disease. Blood. 2009; 114(4): 891-900.
[44]
Kennedy G.A., Varelias A., Vuckovic S., Le Texier L., Gartlan K.H., Zhang P., . Addition of interleukin-6 inhibition with tocilizumab to standard graft-versus-host disease prophylaxis after allogeneic stem-cell transplantation: a phase 1/2 trial. Lancet Oncol. 2014; 15(13): 1451-1459.
[45]
Zhang P., Tey S.K., Koyama M., Kuns R.D., Olver S.D., Lineburg K.E., . Induced regulatory T cells promote tolerance when stabilized by rapamycin and IL-2 in vivo. J Immunol. 2013; 191(10): 5291-5303.
[46]
Robb R.J., Lineburg K.E., Kuns R.D., Wilson Y.A., Raffelt N.C., Olver S.D., . Identification and expansion of highly suppressive CD8+FOXP3+ regulatory T cells after experimental allogeneic bone marrow transplantation. Blood. 2012; 119(24): 5898-5908.
[47]
Beres A.J., Haribhai D., Chadwick A.C., Gonyo P.J., Williams C.B., Drobyski W.R.. CD8+FOXP3+ regulatory T cells are induced during graft-versus-host disease and mitigate disease severity. J Immunol. 2012; 189(1): 464-474.
[48]
Selvaraj R.K., Geiger T.L.. Mitigation of experimental allergic encephalomyelitis by TGF-β induced FOXP3+ regulatory T lymphocytes through the induction of anergy and infectious tolerance. J Immunol. 2008; 180(5): 2830-2838.
[49]
Godebu E., Summers-Torres D., Lin M.M., Baaten B.J., Bradley L.M.. Polyclonal adaptive regulatory CD4 cells that can reverse type I diabetes become oligoclonal long-term protective memory cells. J Immunol. 2008; 181(3): 1798-1805.
[50]
Kang S.G., Lim H.W., Andrisani O.M., Broxmeyer H.E., Kim C.H.. Vitamin A metabolites induce gut-homing FOXP3+ regulatory T cells. J Immunol. 2007; 179(6): 3724-3733.
[51]
Golovina T.N., Mikheeva T., Brusko T.M., Blazar B.R., Bluestone J.A., Riley J.L.. Retinoic acid and rapamycin differentially affect and synergistically promote the ex vivo expansion of natural human T regulatory cells. PLoS ONE. 2011; 6(1): e15868.
[52]
Mold J.E., Michaëlsson J., Burt T.D., Muench M.O., Beckerman K.P., Busch M.P., . Maternal alloantigens promote the development of tolerogenic fetal regulatory T cells in utero. Science. 2008; 322(5907): 1562-1565.
[53]
Tran D.Q., Ramsey H., Shevach E.M.. Induction of FOXP3 expression in naive human CD4+FOXP3 T cells by T-cell receptor stimulation is transforming growth factor-β dependent but does not confer a regulatory phenotype. Blood. 2007; 110(8): 2983-2990.
[54]
Lu L., Zhou X., Wang J., Zheng S.G., Horwitz D.A.. Characterization of protective human CD4+CD25+FOXP3+ regulatory T cells generated with IL-2, TGF-β and retinoic acid. PLoS ONE. 2010; 5(12): e15150.
[55]
Hippen K.L., Merkel S.C., Schirm D.K., Sieben C.M., Sumstad D., Kadidlo D.M., . Massive ex vivo expansion of human natural regulatory T cells (Tregs) with minimal loss of in vivo functional activity. Sci Transl Med. 2011;3(83); 83ra41.
[56]
Hippen K.L., O’Connor R.S., Lemire A.M., Saha A., Hanse E.A., Tennis N.C., . In vitro induction of human regulatory T cells using conditions of low tryptophan plus kynurenines. Am J Transplant. 2017; 17(12): 3098-3113.
[57]
Bailey-Bucktrout S.L., Bluestone J.A.. Regulatory T cells: stability revisited. Trends Immunol. 2011; 32(7): 301-306.
[58]
Zhou X., Bailey-Bucktrout S., Jeker L.T., Bluestone J.A.. Plasticity of CD4+FOXP3+ T cells. Curr Opin Immunol. 2009; 21(3): 281-285.
[59]
Komatsu N., Okamoto K., Sawa S., Nakashima T., Oh-hora M., Kodama T., . Pathogenic conversion of FOXP3+ T cells into Th17 cells in autoimmune arthritis. Nat Med. 2014; 20(1): 62-68.
[60]
Hua J., Inomata T., Chen Y., Foulsham W., Stevenson W., Shiang T., . Pathological conversion of regulatory T cells is associated with loss of allotolerance. Sci Rep. 2018; 8(1): 7059.
[61]
McClymont S.A., Putnam A.L., Lee M.R., Esensten J.H., Liu W., Hulme M.A., . Plasticity of human regulatory T cells in healthy subjects and patients with type 1 diabetes. J Immunol. 2011; 186(7): 3918-3926.
[62]
Gagliani N., Magnani C.F., Huber S., Gianolini M.E., Pala M., Licona-Limon P., . Coexpression of CD49b and LAG-3 identifies human and mouse T regulatory type 1 cells. Nat Med. 2013; 19(6): 739-746.
[63]
Gregori S., Roncarolo M.G.. Engineered T regulatory type 1 cells for clinical application. Front Immunol. 2018; 9: 233.
[64]
Zhang P., Lee J.S., Gartlan K.H., Schuster I.S., Comerford I., Varelias A., . Eomesodermin promotes the development of type 1 regulatory T (TR1) cells. Sci Immunol. 2017; 2(10): eaah7152
[65]
Bacchetta R., Lucarelli B., Sartirana C., Gregori S., Lupo Stanghellini M.T., Miqueu P., . Immunological outcome in haploidentical-HSC transplanted patients treated with IL-10-anergized donor T cells. Front Immunol. 2014; 5: 16.
[66]
Jiang Y., Vaessen B., Lenvik T., Blackstad M., Reyes M., Verfaillie C.M.. Multipotent progenitor cells can be isolated from postnatal murine bone marrow, muscle, and brain. Exp Hematol. 2002; 30(8): 896-904.
[67]
Prockop D.J.. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science. 1997; 276(5309): 71-74.
[68]
Pittenger M.F., Mackay A.M., Beck S.C., Jaiswal R.K., Douglas R., Mosca J.D., . Multilineage potential of adult human mesenchymal stem cells. Science. 1999; 284(5411): 143-147.
[69]
Dominici M., Le Blanc K., Mueller I., Slaper-Cortenbach I., Marini F., Krause D., . Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy. 2006; 8(4): 315-317.
[70]
Covas D.T., Panepucci R.A., Fontes A.M., Silva W.A.Jr, Orellana M.D., Freitas M.C., . Multipotent mesenchymal stromal cells obtained from diverse human tissues share functional properties and gene-expression profile with CD146+ perivascular cells and fibroblasts. Exp Hematol. 2008; 36(5): 642-654.
[71]
Auletta J.J., Eid S.K., Wuttisarnwattana P., Silva I., Metheny L., Keller M.D., . Human mesenchymal stromal cells attenuate graft-versus-host disease and maintain graft-versus-leukemia activity following experimental allogeneic bone marrow transplantation. Stem Cells. 2015; 33(2): 601-614.
[72]
Meisel R., Zibert A., Laryea M., Göbel U., Däubener W., Dilloo D.. Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase-mediated tryptophan degradation. Blood. 2004; 103(12): 4619-4621.
[73]
Duffy M.M., Pindjakova J., Hanley S.A., McCarthy C., Weidhofer G.A., Sweeney E.M., . Mesenchymal stem cell inhibition of T-helper 17 cell-differentiation is triggered by cell–cell contact and mediated by prostaglandin E2 via the EP4 receptor. Eur J Immunol. 2011; 41(10): 2840-2851.
[74]
Qu X., Liu X., Cheng K., Yang R., Zhao R.C.. Mesenchymal stem cells inhibit Th17 cell differentiation by IL-10 secretion. Exp Hematol. 2012; 40(9): 761-770.
[75]
Highfill S.L., Kelly R.M., O’Shaughnessy M.J., Zhou Q., Xia L., Panoskaltsis-Mortari A., . Multipotent adult progenitor cells can suppress graft-versus-host disease via prostaglandin E2 synthesis and only if localized to sites of allopriming. Blood. 2009; 114(3): 693-701.
[76]
Wang D., Yu Y., Haarberg K., Fu J., Kaosaard K., Nagaraj S., . Dynamic change and impact of myeloid-derived suppressor cells in allogeneic bone marrow transplantation in mice. Biol Blood Marrow Transplant. 2013; 19(5): 692-702.
[77]
Ren G., Zhang L., Zhao X., Xu G., Zhang Y., Roberts A.I., . Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide. Cell Stem Cell. 2008; 2(2): 141-150.
[78]
Tipnis S., Viswanathan C., Majumdar A.S.. Immunosuppressive properties of human umbilical cord-derived mesenchymal stem cells: role of B7-H1 and IDO. Immunol Cell Biol. 2010; 88(8): 795-806.
[79]
Davies L.C., Heldring N., Kadri N., Le Blanc K.. Mesenchymal stromal cell secretion of programmed death-1 ligands regulates T cell mediated immunosuppression. Stem Cells. 2017; 35(3): 766-776.
[80]
Lim J.Y., Ryu D.B., Lee S.E., Park G., Min C.K.. Mesenchymal stem cells (MSCs) attenuate cutaneous sclerodermatous graft-versus-host disease (Scl-GVHD) through inhibition of immune cell infiltration in a mouse model. J Invest Dermatol. 2017; 137(9): 1895-1904.
[81]
Phinney D.G., Pittenger M.F.. Concise review: MSC-derived exosomes for cell-free therapy. Stem Cells. 2017; 35(4): 851-858.
[82]
Di Trapani M., Bassi G., Midolo M., Gatti A., Kamga P.T., Cassaro A., . Differential and transferable modulatory effects of mesenchymal stromal cell-derived extracellular vesicles on T, B and NK cell functions. Sci Rep. 2016; 6(1): 24120.
[83]
Mokarizadeh A., Delirezh N., Morshedi A., Mosayebi G., Farshid A.A., Mardani K.. Microvesicles derived from mesenchymal stem cells: potent organelles for induction of tolerogenic signaling. Immunol Lett. 2012; 147(1–2): 47-54.
[84]
Amarnath S., Foley J.E., Farthing D.E., Gress R.E., Laurence A., Eckhaus M.A., . Bone marrow-derived mesenchymal stromal cells harness purinergenic signaling to tolerize human Th1 cells in vivo. Stem Cells. 2015; 33(4): 1200-1212.
[85]
Ragni E., Banfi F., Barilani M., Cherubini A., Parazzi V., Larghi P., . Extracellular vesicle-shuttled mRNA in mesenchymal stem cell communication. Stem Cells. 2017; 35(4): 1093-1105.
[86]
Galleu A., Riffo-Vasquez Y., Trento C., Lomas C., Dolcetti L., Cheung T.S., . Apoptosis in mesenchymal stromal cells induces in vivo recipient-mediated immunomodulation. Sci Transl Med. 2017; 9(416): eaam7828
[87]
Alfaro M.P., Deskins D.L., Wallus M., DasGupta J., Davidson J.M., Nanney L.B., . A physiological role for connective tissue growth factor in early wound healing. Lab Invest. 2013; 93(1): 81-95.
[88]
Chen L., Tredget E.E., Wu P.Y., Wu Y.. Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing. PLoS ONE. 2008; 3(4): e1886.
[89]
Reiter J., Drummond S., Sammour I., Huang J., Florea V., Dornas P., . Stromal derived factor-1 mediates the lung regenerative effects of mesenchymal stem cells in a rodent model of bronchopulmonary dysplasia. Respir Res. 2017; 18(1): 137.
[90]
Le Blanc K., Rasmusson I., Sundberg B., Götherström C., Hassan M., Uzunel M., . Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet. 2004; 363(9419): 1439-1441.
[91]
Ringdén O., Uzunel M., Rasmusson I., Remberger M., Sundberg B., Lönnies H., . Mesenchymal stem cells for treatment of therapy-resistant graft-versus-host disease. Transplantation. 2006; 81(10): 1390-1397.
[92]
Fang B., Song Y., Liao L., Zhang Y., Zhao R.C.. Favorable response to human adipose tissue-derived mesenchymal stem cells in steroid-refractory acute graft-versus-host disease. Transplant Proc. 2007; 39(10): 3358-3362.
[93]
Le Blanc K., Frassoni F., Ball L., Locatelli F., Roelofs H., Lewis I., . Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet. 2008; 371(9624): 1579-1586.
[94]
Von Bonin M., Stölzel F., Goedecke A., Richter K., Wuschek N., Hölig K., . Treatment of refractory acute GVHD with third-party MSC expanded in platelet lysate-containing medium. Bone Marrow Transplant. 2009; 43(3): 245-251.
[95]
Kebriaei P., Isola L., Bahceci E., Holland K., Rowley S., McGuirk J., . Adult human mesenchymal stem cells added to corticosteroid therapy for the treatment of acute graft-versus-host disease. Biol Blood Marrow Transplant. 2009; 15(7): 804-811.
[96]
Pérez-Simon J.A., López-Villar O., Andreu E.J., Rifón J., Muntion S., Campelo M.D., . Mesenchymal stem cells expanded in vitro with human serum for the treatment of acute and chronic graft-versus-host disease: results of a phase I/II clinical trial. Haematologica. 2011; 96(7): 1072-1076.
[97]
Herrmann R., Sturm M., Shaw K., Purtill D., Cooney J., Wright M., . Mesenchymal stromal cell therapy for steroid-refractory acute and chronic graft versus host disease: a phase 1 study. Int J Hematol. 2012; 95(2): 182-188.
[98]
Muroi K., Miyamura K., Ohashi K., Murata M., Eto T., Kobayashi N., . Unrelated allogeneic bone marrow-derived mesenchymal stem cells for steroid-refractory acute graft-versus-host disease: a phase I/II study. Int J Hematol. 2013; 98(2): 206-213.
[99]
Kurtzberg J., Prockop S., Teira P., Bittencourt H., Lewis V., Chan K.W., . Allogeneic human mesenchymal stem cell therapy (remestemcel-L, Prochymal) as a rescue agent for severe refractory acute graft-versus-host disease in pediatric patients. Biol Blood Marrow Transplant. 2014; 20(2): 229-235.
[100]
Hashmi S., Ahmed M., Murad M.H., Litzow M.R., Adams R.H., Ball L.M., . Survival after mesenchymal stromal cell therapy in steroid-refractory acute graft-versus-host disease: systematic review and meta-analysis. Lancet Haematol. 2016; 3(1): e45-e52.
[101]
Ball L.M., Bernardo M.E., Roelofs H., Lankester A., Cometa A., Egeler R.M., . Cotransplantation of ex vivo expanded mesenchymal stem cells accelerates lymphocyte recovery and may reduce the risk of graft failure in haploidentical hematopoietic stem-cell transplantation. Blood. 2007; 110(7): 2764-2767.
[102]
Bernardo M.E., Ball L.M., Cometa A.M., Roelofs H., Zecca M., Avanzini M.A., . Co-infusion of ex vivo-expanded, parental MSCs prevents life-threatening acute GVHD, but does not reduce the risk of graft failure in pediatric patients undergoing allogeneic umbilical cord blood transplantation. Bone Marrow Transplant. 2011; 46(2): 200-207.
[103]
MacMillan M.L., Blazar B.R., DeFor T.E., Wagner J.E.. Transplantation of ex-vivo culture-expanded parental haploidentical mesenchymal stem cells to promote engraftment in pediatric recipients of unrelated donor umbilical cord blood: results of a phase I-II clinical trial. Bone Marrow Transplant. 2009; 43(6): 447-454.
[104]
Reyes M., Dudek A., Jahagirdar B., Koodie L., Marker P.H., Verfaillie C.M.. Origin of endothelial progenitors in human postnatal bone marrow. J Clin Invest. 2002; 109(3): 337-346.
[105]
Schwartz R.E., Reyes M., Koodie L., Jiang Y., Blackstad M., Lund T., . Multipotent adult progenitor cells from bone marrow differentiate into functional hepatocyte-like cells. J Clin Invest. 2002; 109(10): 1291-1302.
[106]
Boozer S., Lehman N., Lakshmipathy U., Love B., Raber A., Maitra A., . Global characterization and genomic stability of human multistem, a multipotent adult progenitor cell. J Stem Cells. 2009; 4(1): 17-28.
[107]
Jacobs S.A., Pinxteren J., Roobrouck V.D., Luyckx A., van’t Hof W., Deans R., . Human multipotent adult progenitor cells are nonimmunogenic and exert potent immunomodulatory effects on alloreactive T-cell responses. Cell Transplant. 2013; 22(10): 1915-1928.
[108]
Reading J.L., Vaes B., Hull C., Sabbah S., Hayday T., Wang N.S., . Suppression of IL-7-dependent effector T-cell expansion by multipotent adult progenitor cells and PGE2. Mol Ther. 2015; 23(11): 1783-1793.
[109]
Kovacsovics-Bankowski M., Streeter P.R., Mauch K.A., Frey M.R., Raber A., van’t Hof W., . Clinical scale expanded adult pluripotent stem cells prevent graft-versus-host disease. Cell Immunol. 2009; 255(1–2): 55-60.
[110]
Maziarz R.T., Devos T., Bachier C.R., Goldstein S.C., Leis J.F., Devine S.M., . Single and multiple dose MultiStem (multipotent adult progenitor cell) therapy prophylaxis of acute graft-versus-host disease in myeloablative allogeneic hematopoietic cell transplantation: a phase 1 trial. Biol Blood Marrow Transplant. 2015; 21(4): 720-728.
[111]
Riley J.L., June C.H., Blazar B.R.. Human T regulatory cell therapy: take a billion or so and call me in the morning. Immunity. 2009; 30(5): 656-665.
[112]
McKenna D.H.Jr, Sumstad D., Kadidlo D.M., Batdorf B., Lord C.J., Merkel S.C., . Optimization of cGMP purification and expansion of umbilical cord blood-derived T-regulatory cells in support of first-in-human clinical trials. Cytotherapy. 2017; 19(2): 250-262.
[113]
Tolar J., Nauta A.J., Osborn M.J., Panoskaltsis Mortari A., McElmurry R.T., Bell S., . Sarcoma derived from cultured mesenchymal stem cells. Stem Cells. 2007; 25(2): 371-379.
[114]
Blazar B.R., MacDonald K.P.A., Hill G.R.. Immune regulatory cell infusion for graft-versus-host disease prevention and therapy. Blood. 2018; 131(24): 2651-2660.
[115]
Agle K., Vincent B.G., Piper C., Belle L., Zhou V., Shlomchik W., . Bim regulates the survival and suppressive capability of CD8+FOXP3+ regulatory T cells during murine GVHD. Blood. 2018; 132(4): 435-447.
[116]
Belle L., Agle K., Zhou V., Yin-Yuan C., Komorowski R., Eastwood D., . Blockade of interleukin-27 signaling reduces GVHD in mice by augmenting Treg reconstitution and stabilizing FOXP3 expression. Blood. 2016; 128(16): 2068-2082.
[117]
Heinrichs J., Li J., Nguyen H., Wu Y., Bastian D., Daethanasanmak A., . CD8+ Tregs promote GVHD prevention and overcome the impaired GVL effect mediated by CD4+ Tregs in mice. OncoImmunology. 2016; 5(6): e1146842.
[118]
Highfill S.L., Rodriguez P.C., Zhou Q., Goetz C.A., Koehn B.H., Veenstra R., . Bone marrow myeloid-derived suppressor cells (MDSCs) inhibit graft-versus-host disease (GVHD) via an arginase-1-dependent mechanism that is up-regulated by interleukin-13. Blood. 2010; 116(25): 5738-5747.
[119]
Koehn B.H., Apostolova P., Haverkamp J.M., Miller J.S., McCullar V., Tolar J., . GVHD-associated, inflammasome-mediated loss of function in adoptively transferred myeloid-derived suppressor cells. Blood. 2015; 126(13): 1621-1628.
[120]
Zhou Z., French D.L., Ma G., Eisenstein S., Chen Y., Divino C.M., . Development and function of myeloid-derived suppressor cells generated from mouse embryonic and hematopoietic stem cells. Stem Cells. 2010; 28(3): 620-632.
[121]
Leveson-Gower D.B., Olson J.A., Sega E.I., Luong R.H., Baker J., Zeiser R., . Low doses of natural killer T cells provide protection from acute graft-versus-host disease via an IL-4-dependent mechanism. Blood. 2011; 117(11): 3220-3229.
[122]
Schneidawind D., Baker J., Pierini A., Buechele C., Luong R.H., Meyer E.H., . Third-party CD4+ invariant natural killer T cells protect from murine GVHD lethality. Blood. 2015; 125(22): 3491-3500.
[123]
Du J., Paz K., Thangavelu G., Schneidawind D., Baker J., Flynn R., . Invariant natural killer T cells ameliorate murine chronic GVHD by expanding donor regulatory T cells. Blood. 2017; 129(23): 3121-3125.
[124]
Bruce D.W., Stefanski H.E., Vincent B.G., Dant T.A., Reisdorf S., Bommiasamy H., . Type 2 innate lymphoid cells treat and prevent acute gastrointestinal graft-versus-host disease. J Clin Invest. 2017; 127(5): 1813-1825.
[125]
Sato K., Yamashita N., Baba M., Matsuyama T.. Modified myeloid dendritic cells act as regulatory dendritic cells to induce anergic and regulatory T cells. Blood. 2003; 101(9): 3581-3589.
[126]
Sato K., Yamashita N., Yamashita N., Baba M., Matsuyama T.. Regulatory dendritic cells protect mice from murine acute graft-versus-host disease and leukemia relapse. Immunity. 2003; 18(3): 367-379.
[127]
MacDonald K.P., Rowe V., Clouston A.D., Welply J.K., Kuns R.D., Ferrara J.L., . Cytokine expanded myeloid precursors function as regulatory antigen-presenting cells and promote tolerance through IL-10-producing regulatory T cells. J Immunol. 2005; 174(4): 1841-1850.
[128]
Yang J., Li R., Ren Y., Yang Y., Xie R., Fan H.. Third-party tolerogenic dendritic cells reduce allo-reactivity in vitro and ameliorate the severity of acute graft-versus-host disease in allo-bone marrow transplantation. Scand J Immunol. 2013; 78(6): 486-496.
[129]
D’Aveni M., Rossignol J., Coman T., Sivakumaran S., Henderson S., Manzo T., . G-CSF mobilizes CD34+ regulatory monocytes that inhibit graft-versus-host disease. Sci Transl Med. 2015; 7(281): 281ra42
Acknowledgements

This work was supported by grants from the National Institute of Allergy and Infectious Diseases, National Institutes of Health (R37 AI34495), National Heart, Lung, and Blood Institute, National Institutes of Health (R01 HL56067 and R01 HL11879), and National Cancer Institute, National Institutes of Health (P01 CA142106 and P01 CA065493).

The author thanks Drs. Geoff Hill and Kelli MacDonald for their collaboration in assembling literature related to this topic area, to colleagues and laboratory members who have moved the cell therapy field forward, and to patients and families for their participation in clinical trials.

RIGHTS & PERMISSIONS

2019 THE AUTHOR
AI Summary AI Mindmap
PDF(481 KB)

Accesses

Citations

Detail

Sections
Recommended

/