
Immune Regulatory Cell Biology and Clinical Applications to Prevent or Treat Acute Graft-Versus-Host Disease
Bruce R. Blazar
Engineering ›› 2019, Vol. 5 ›› Issue (1) : 98-105.
Immune Regulatory Cell Biology and Clinical Applications to Prevent or Treat Acute Graft-Versus-Host Disease
The most common approaches to prevent and treat graft-versus-host disease (GVHD) are intended to deplete or suppress the T cells capable of mediating or supporting alloresponses; however, this renders the recipients functionally T cell deficient and hence highly susceptible to infections and tumor recurrence. Depletion is often accomplished through the use of broadly reactive antibodies, while functional impairment is typically achieved by pharmacological agents that require long-term administration (usually six months or more), have significant side effects, and may not result in tolerance (i.e., non-responsiveness) of donor T cells to conditioning regimen-resistant host alloantigen-bearing cells. As our knowledge of immune system homeostasis has increased, cell populations with immune regulatory function have been identified and characterized. Although such cell populations are typically present in low frequencies, methods to isolate and expand these cells have permitted their supplementation to the donor graft or infusion late post-transplant in order to stifle GVHD. This review discusses the biology and preclinical proof of concept of GVHD models, along with GVHD outcomes that focus exclusively on immune regulatory cell therapies that have progressed to clinical testing.
Graft-versus-host disease (GVHD) / Immune regulatory cells / Cell therapy
[1] |
Gatti R.A., Meuwissen H.J., Allen H.D., Hong R., Good R.A.. Immunological reconstitution of sex-linked lymphopenic immunological deficiency. Lancet. 1968; 292(7583): 1366-1369.
|
[2] |
Gratwohl A., Pasquini M.C., Aljurf M., Atsuta Y., Baldomero H., Foeken L.,
|
[3] |
Zeiser R., Blazar B.R.. Acute graft-versus-host disease—biologic process, prevention, and therapy. N Engl J Med. 2017; 377(22): 2167-2179.
|
[4] |
Barnes D.W., Loutit J.F.. The radiation recovery factor: preservation by the Polge–Smith–Parkes technique. J Natl Cancer Inst. 1955; 15(4): 901-905.
|
[5] |
Billingham R.E.. The biology of graft-versus-host reactions. Harvey Lect. 1966–1967; 62: 21-78.
|
[6] |
Blazar B.R., Korngold R., Vallera D.A.. Recent advances in graft-versus-host disease (GVHD) prevention. Immunol Rev. 1997; 157(1): 79-109.
|
[7] |
Tutschka P.J., Beschorner W.E., Hess A.D., Santos G.W.. Cyclosporin-A to prevent graft-versus-host disease: a pilot study in 22 patients receiving allogeneic marrow transplants. Blood. 1983; 61(2): 318-325.
|
[8] |
Fay J.W., Wingard J.R., Antin J.H., Collins R.H., Piñeiro L.A., Blazar B.R.,
|
[9] |
Cutler C., Antin J.H.. Sirolimus immunosuppression for graft-versus-host disease prophylaxis and therapy: an update. Curr Opin Hematol. 2010; 17(6): 500-504.
|
[10] |
Luznik L., Bolaños-Meade J., Zahurak M., Chen A.R., Smith B.D., Brodsky R.,
|
[11] |
Luznik L., Jones R.J., Fuchs E.J.. High-dose cyclophosphamide for graft-versus-host disease prevention. Curr Opin Hematol. 2010; 17(6): 493-499.
|
[12] |
Luznik L., O’Donnell P.V., Fuchs E.J.. Post-transplantation cyclophosphamide for tolerance induction in HLA-haploidentical bone marrow transplantation. Semin Oncol. 2012; 39(6): 683-693.
|
[13] |
Kanakry C.G., Tsai H.L., Bolaños-Meade J., Smith B.D., Gojo I., Kanakry J.A.,
|
[14] |
Ildstad S.T., Sachs D.H.. Reconstitution with syngeneic plus allogeneic or xenogeneic bone marrow leads to specific acceptance of allografts or xenografts. Nature. 1984; 307(5947): 168-170.
|
[15] |
Sykes M., Sheard M., Sachs D.H.. Effects of T cell depletion in radiation bone marrow chimeras. I. Evidence for a donor cell population which increases allogeneic chimerism but which lacks the potential to produce GVHD. J Immunol. 1988; 141(7): 2282-2288.
|
[16] |
Bacchetta R., Bigler M., Touraine J.L., Parkman R., Tovo P.A., Abrams J.,
|
[17] |
Roncarolo M.G., Gregori S., Bacchetta R., Battaglia M.. Tr1 cells and the counter-regulation of immunity: natural mechanisms and therapeutic applications. Curr Top Microbiol Immunol. 2014; 380: 39-68.
|
[18] |
Kohrt H.E., Turnbull B.B., Heydari K., Shizuru J.A., Laport G.G., Miklos D.B.,
|
[19] |
Schneidawind D., Pierini A., Negrin R.S.. Regulatory T cells and natural killer T cells for modulation of GVHD following allogeneic hematopoietic cell transplantation. Blood. 2013; 122(18): 3116-3121.
|
[20] |
Arpaia N., Green J.A., Moltedo B., Arvey A., Hemmers S., Yuan S.,
|
[21] |
Fibbe W.E., Rabelink T.J.. Lupus nephritis: mesenchymal stromal cells in lupus nephritis. Nat Rev Nephrol. 2017; 13(8): 452-453.
|
[22] |
Shevach E.M.. Mechanisms of FOXP3+ T regulatory cell-mediated suppression. Immunity. 2009; 30(5): 636-645.
|
[23] |
Sakaguchi S., Miyara M., Costantino C.M., Hafler D.A.. FOXP3+ regulatory T cells in the human immune system. Nat Rev Immunol. 2010; 10(7): 490-500.
|
[24] |
Bluestone J.A., Tang Q., Sedwick C.E.. T regulatory cells in autoimmune diabetes: past challenges, future prospects. J Clin Immunol. 2008; 28(6): 677-684.
|
[25] |
Curotto de Lafaille M.A., Lafaille J.J.. Natural and adaptive FOXP3+ regulatory T cells: more of the same or a division of labor?. Immunity. 2009; 30(5): 626-635.
|
[26] |
Taylor P.A., Noelle R.J., Blazar B.R.. CD4+CD25+ immune regulatory cells are required for induction of tolerance to alloantigen via costimulatory blockade. J Exp Med. 2001; 193(11): 1311-1318.
|
[27] |
Schmidt A., Oberle N., Krammer P.H.. Molecular mechanisms of Treg-mediated T cell suppression. Front Immunol. 2012; 3: 51.
|
[28] |
McNally A., Hill G.R., Sparwasser T., Thomas R., Steptoe R.J.. CD4+CD25+ regulatory T cells control CD8+ T-cell effector differentiation by modulating IL-2 homeostasis. Proc Natl Acad Sci USA. 2011; 108(18): 7529-7534.
|
[29] |
Taylor P.A., Lees C.J., Blazar B.R.. The infusion of ex vivo activated and expanded CD4+CD25+ immune regulatory cells inhibits graft-versus-host disease lethality. Blood. 2002; 99(10): 3493-3499.
|
[30] |
Hoffmann P., Ermann J., Edinger M., Fathman C.G., Strober S.. Donor-type CD4+CD25+ regulatory T cells suppress lethal acute graft-versus-host disease after allogeneic bone marrow transplantation. J Exp Med. 2002; 196(3): 389-399.
|
[31] |
Cohen J.L., Trenado A., Vasey D., Klatzmann D., Salomon B.L.. CD4+CD25+ immunoregulatory T cells: new therapeutics for graft-versus-host disease. J Exp Med. 2002; 196(3): 401-406.
|
[32] |
Godfrey W.R., Ge Y.G., Spoden D.J., Levine B.L., June C.H., Blazar B.R.,
|
[33] |
Hippen K.L., Harker-Murray P., Porter S.B., Merkel S.C., Londer A., Taylor D.K.,
|
[34] |
Godfrey W.R., Spoden D.J., Ge Y.G., Baker S.R., Liu B., Levine B.L.,
|
[35] |
Trzonkowski P., Bieniaszewska M., Juścińska J., Dobyszuk A., Krzystyniak A., Marek N.,
|
[36] |
Brunstein C.G., Miller J.S., Cao Q., McKenna D.H., Hippen K.L., Curtsinger J.,
|
[37] |
Brunstein C.G., Miller J.S., McKenna D.H., Hippen K.L., DeFor T.E., Sumstad D.,
|
[38] |
Di Ianni M., Falzetti F., Carotti A., Terenzi A., Castellino F., Bonifacio E.,
|
[39] |
Martelli M.F., Di Ianni M., Ruggeri L., Falzetti F., Carotti A., Terenzi A.,
|
[40] |
Sockolosky J.T., Trotta E., Parisi G., Picton L., Su L.L., Le A.C.,
|
[41] |
Trotta E., Bessette P.H., Silveria S.L., Ely L.K., Jude K.M., Le D.T.,
|
[42] |
Chopra M., Biehl M., Steinfatt T., Brandl A., Kums J., Amich J.,
|
[43] |
Chen X., Das R., Komorowski R., Beres A., Hessner M.J., Mihara M.,
|
[44] |
Kennedy G.A., Varelias A., Vuckovic S., Le Texier L., Gartlan K.H., Zhang P.,
|
[45] |
Zhang P., Tey S.K., Koyama M., Kuns R.D., Olver S.D., Lineburg K.E.,
|
[46] |
Robb R.J., Lineburg K.E., Kuns R.D., Wilson Y.A., Raffelt N.C., Olver S.D.,
|
[47] |
Beres A.J., Haribhai D., Chadwick A.C., Gonyo P.J., Williams C.B., Drobyski W.R.. CD8+FOXP3+ regulatory T cells are induced during graft-versus-host disease and mitigate disease severity. J Immunol. 2012; 189(1): 464-474.
|
[48] |
Selvaraj R.K., Geiger T.L.. Mitigation of experimental allergic encephalomyelitis by TGF-β induced FOXP3+ regulatory T lymphocytes through the induction of anergy and infectious tolerance. J Immunol. 2008; 180(5): 2830-2838.
|
[49] |
Godebu E., Summers-Torres D., Lin M.M., Baaten B.J., Bradley L.M.. Polyclonal adaptive regulatory CD4 cells that can reverse type I diabetes become oligoclonal long-term protective memory cells. J Immunol. 2008; 181(3): 1798-1805.
|
[50] |
Kang S.G., Lim H.W., Andrisani O.M., Broxmeyer H.E., Kim C.H.. Vitamin A metabolites induce gut-homing FOXP3+ regulatory T cells. J Immunol. 2007; 179(6): 3724-3733.
|
[51] |
Golovina T.N., Mikheeva T., Brusko T.M., Blazar B.R., Bluestone J.A., Riley J.L.. Retinoic acid and rapamycin differentially affect and synergistically promote the ex vivo expansion of natural human T regulatory cells. PLoS ONE. 2011; 6(1): e15868.
|
[52] |
Mold J.E., Michaëlsson J., Burt T.D., Muench M.O., Beckerman K.P., Busch M.P.,
|
[53] |
Tran D.Q., Ramsey H., Shevach E.M.. Induction of FOXP3 expression in naive human CD4+FOXP3− T cells by T-cell receptor stimulation is transforming growth factor-β dependent but does not confer a regulatory phenotype. Blood. 2007; 110(8): 2983-2990.
|
[54] |
Lu L., Zhou X., Wang J., Zheng S.G., Horwitz D.A.. Characterization of protective human CD4+CD25+FOXP3+ regulatory T cells generated with IL-2, TGF-β and retinoic acid. PLoS ONE. 2010; 5(12): e15150.
|
[55] |
Hippen K.L., Merkel S.C., Schirm D.K., Sieben C.M., Sumstad D., Kadidlo D.M.,
|
[56] |
Hippen K.L., O’Connor R.S., Lemire A.M., Saha A., Hanse E.A., Tennis N.C.,
|
[57] |
Bailey-Bucktrout S.L., Bluestone J.A.. Regulatory T cells: stability revisited. Trends Immunol. 2011; 32(7): 301-306.
|
[58] |
Zhou X., Bailey-Bucktrout S., Jeker L.T., Bluestone J.A.. Plasticity of CD4+FOXP3+ T cells. Curr Opin Immunol. 2009; 21(3): 281-285.
|
[59] |
Komatsu N., Okamoto K., Sawa S., Nakashima T., Oh-hora M., Kodama T.,
|
[60] |
Hua J., Inomata T., Chen Y., Foulsham W., Stevenson W., Shiang T.,
|
[61] |
McClymont S.A., Putnam A.L., Lee M.R., Esensten J.H., Liu W., Hulme M.A.,
|
[62] |
Gagliani N., Magnani C.F., Huber S., Gianolini M.E., Pala M., Licona-Limon P.,
|
[63] |
Gregori S., Roncarolo M.G.. Engineered T regulatory type 1 cells for clinical application. Front Immunol. 2018; 9: 233.
|
[64] |
Zhang P., Lee J.S., Gartlan K.H., Schuster I.S., Comerford I., Varelias A.,
|
[65] |
Bacchetta R., Lucarelli B., Sartirana C., Gregori S., Lupo Stanghellini M.T., Miqueu P.,
|
[66] |
Jiang Y., Vaessen B., Lenvik T., Blackstad M., Reyes M., Verfaillie C.M.. Multipotent progenitor cells can be isolated from postnatal murine bone marrow, muscle, and brain. Exp Hematol. 2002; 30(8): 896-904.
|
[67] |
Prockop D.J.. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science. 1997; 276(5309): 71-74.
|
[68] |
Pittenger M.F., Mackay A.M., Beck S.C., Jaiswal R.K., Douglas R., Mosca J.D.,
|
[69] |
Dominici M., Le Blanc K., Mueller I., Slaper-Cortenbach I., Marini F., Krause D.,
|
[70] |
Covas D.T., Panepucci R.A., Fontes A.M., Silva W.A.Jr, Orellana M.D., Freitas M.C.,
|
[71] |
Auletta J.J., Eid S.K., Wuttisarnwattana P., Silva I., Metheny L., Keller M.D.,
|
[72] |
Meisel R., Zibert A., Laryea M., Göbel U., Däubener W., Dilloo D.. Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase-mediated tryptophan degradation. Blood. 2004; 103(12): 4619-4621.
|
[73] |
Duffy M.M., Pindjakova J., Hanley S.A., McCarthy C., Weidhofer G.A., Sweeney E.M.,
|
[74] |
Qu X., Liu X., Cheng K., Yang R., Zhao R.C.. Mesenchymal stem cells inhibit Th17 cell differentiation by IL-10 secretion. Exp Hematol. 2012; 40(9): 761-770.
|
[75] |
Highfill S.L., Kelly R.M., O’Shaughnessy M.J., Zhou Q., Xia L., Panoskaltsis-Mortari A.,
|
[76] |
Wang D., Yu Y., Haarberg K., Fu J., Kaosaard K., Nagaraj S.,
|
[77] |
Ren G., Zhang L., Zhao X., Xu G., Zhang Y., Roberts A.I.,
|
[78] |
Tipnis S., Viswanathan C., Majumdar A.S.. Immunosuppressive properties of human umbilical cord-derived mesenchymal stem cells: role of B7-H1 and IDO. Immunol Cell Biol. 2010; 88(8): 795-806.
|
[79] |
Davies L.C., Heldring N., Kadri N., Le Blanc K.. Mesenchymal stromal cell secretion of programmed death-1 ligands regulates T cell mediated immunosuppression. Stem Cells. 2017; 35(3): 766-776.
|
[80] |
Lim J.Y., Ryu D.B., Lee S.E., Park G., Min C.K.. Mesenchymal stem cells (MSCs) attenuate cutaneous sclerodermatous graft-versus-host disease (Scl-GVHD) through inhibition of immune cell infiltration in a mouse model. J Invest Dermatol. 2017; 137(9): 1895-1904.
|
[81] |
Phinney D.G., Pittenger M.F.. Concise review: MSC-derived exosomes for cell-free therapy. Stem Cells. 2017; 35(4): 851-858.
|
[82] |
Di Trapani M., Bassi G., Midolo M., Gatti A., Kamga P.T., Cassaro A.,
|
[83] |
Mokarizadeh A., Delirezh N., Morshedi A., Mosayebi G., Farshid A.A., Mardani K.. Microvesicles derived from mesenchymal stem cells: potent organelles for induction of tolerogenic signaling. Immunol Lett. 2012; 147(1–2): 47-54.
|
[84] |
Amarnath S., Foley J.E., Farthing D.E., Gress R.E., Laurence A., Eckhaus M.A.,
|
[85] |
Ragni E., Banfi F., Barilani M., Cherubini A., Parazzi V., Larghi P.,
|
[86] |
Galleu A., Riffo-Vasquez Y., Trento C., Lomas C., Dolcetti L., Cheung T.S.,
|
[87] |
Alfaro M.P., Deskins D.L., Wallus M., DasGupta J., Davidson J.M., Nanney L.B.,
|
[88] |
Chen L., Tredget E.E., Wu P.Y., Wu Y.. Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing. PLoS ONE. 2008; 3(4): e1886.
|
[89] |
Reiter J., Drummond S., Sammour I., Huang J., Florea V., Dornas P.,
|
[90] |
Le Blanc K., Rasmusson I., Sundberg B., Götherström C., Hassan M., Uzunel M.,
|
[91] |
Ringdén O., Uzunel M., Rasmusson I., Remberger M., Sundberg B., Lönnies H.,
|
[92] |
Fang B., Song Y., Liao L., Zhang Y., Zhao R.C.. Favorable response to human adipose tissue-derived mesenchymal stem cells in steroid-refractory acute graft-versus-host disease. Transplant Proc. 2007; 39(10): 3358-3362.
|
[93] |
Le Blanc K., Frassoni F., Ball L., Locatelli F., Roelofs H., Lewis I.,
|
[94] |
Von Bonin M., Stölzel F., Goedecke A., Richter K., Wuschek N., Hölig K.,
|
[95] |
Kebriaei P., Isola L., Bahceci E., Holland K., Rowley S., McGuirk J.,
|
[96] |
Pérez-Simon J.A., López-Villar O., Andreu E.J., Rifón J., Muntion S., Campelo M.D.,
|
[97] |
Herrmann R., Sturm M., Shaw K., Purtill D., Cooney J., Wright M.,
|
[98] |
Muroi K., Miyamura K., Ohashi K., Murata M., Eto T., Kobayashi N.,
|
[99] |
Kurtzberg J., Prockop S., Teira P., Bittencourt H., Lewis V., Chan K.W.,
|
[100] |
Hashmi S., Ahmed M., Murad M.H., Litzow M.R., Adams R.H., Ball L.M.,
|
[101] |
Ball L.M., Bernardo M.E., Roelofs H., Lankester A., Cometa A., Egeler R.M.,
|
[102] |
Bernardo M.E., Ball L.M., Cometa A.M., Roelofs H., Zecca M., Avanzini M.A.,
|
[103] |
MacMillan M.L., Blazar B.R., DeFor T.E., Wagner J.E.. Transplantation of ex-vivo culture-expanded parental haploidentical mesenchymal stem cells to promote engraftment in pediatric recipients of unrelated donor umbilical cord blood: results of a phase I-II clinical trial. Bone Marrow Transplant. 2009; 43(6): 447-454.
|
[104] |
Reyes M., Dudek A., Jahagirdar B., Koodie L., Marker P.H., Verfaillie C.M.. Origin of endothelial progenitors in human postnatal bone marrow. J Clin Invest. 2002; 109(3): 337-346.
|
[105] |
Schwartz R.E., Reyes M., Koodie L., Jiang Y., Blackstad M., Lund T.,
|
[106] |
Boozer S., Lehman N., Lakshmipathy U., Love B., Raber A., Maitra A.,
|
[107] |
Jacobs S.A., Pinxteren J., Roobrouck V.D., Luyckx A., van’t Hof W., Deans R.,
|
[108] |
Reading J.L., Vaes B., Hull C., Sabbah S., Hayday T., Wang N.S.,
|
[109] |
Kovacsovics-Bankowski M., Streeter P.R., Mauch K.A., Frey M.R., Raber A., van’t Hof W.,
|
[110] |
Maziarz R.T., Devos T., Bachier C.R., Goldstein S.C., Leis J.F., Devine S.M.,
|
[111] |
Riley J.L., June C.H., Blazar B.R.. Human T regulatory cell therapy: take a billion or so and call me in the morning. Immunity. 2009; 30(5): 656-665.
|
[112] |
McKenna D.H.Jr, Sumstad D., Kadidlo D.M., Batdorf B., Lord C.J., Merkel S.C.,
|
[113] |
Tolar J., Nauta A.J., Osborn M.J., Panoskaltsis Mortari A., McElmurry R.T., Bell S.,
|
[114] |
Blazar B.R., MacDonald K.P.A., Hill G.R.. Immune regulatory cell infusion for graft-versus-host disease prevention and therapy. Blood. 2018; 131(24): 2651-2660.
|
[115] |
Agle K., Vincent B.G., Piper C., Belle L., Zhou V., Shlomchik W.,
|
[116] |
Belle L., Agle K., Zhou V., Yin-Yuan C., Komorowski R., Eastwood D.,
|
[117] |
Heinrichs J., Li J., Nguyen H., Wu Y., Bastian D., Daethanasanmak A.,
|
[118] |
Highfill S.L., Rodriguez P.C., Zhou Q., Goetz C.A., Koehn B.H., Veenstra R.,
|
[119] |
Koehn B.H., Apostolova P., Haverkamp J.M., Miller J.S., McCullar V., Tolar J.,
|
[120] |
Zhou Z., French D.L., Ma G., Eisenstein S., Chen Y., Divino C.M.,
|
[121] |
Leveson-Gower D.B., Olson J.A., Sega E.I., Luong R.H., Baker J., Zeiser R.,
|
[122] |
Schneidawind D., Baker J., Pierini A., Buechele C., Luong R.H., Meyer E.H.,
|
[123] |
Du J., Paz K., Thangavelu G., Schneidawind D., Baker J., Flynn R.,
|
[124] |
Bruce D.W., Stefanski H.E., Vincent B.G., Dant T.A., Reisdorf S., Bommiasamy H.,
|
[125] |
Sato K., Yamashita N., Baba M., Matsuyama T.. Modified myeloid dendritic cells act as regulatory dendritic cells to induce anergic and regulatory T cells. Blood. 2003; 101(9): 3581-3589.
|
[126] |
Sato K., Yamashita N., Yamashita N., Baba M., Matsuyama T.. Regulatory dendritic cells protect mice from murine acute graft-versus-host disease and leukemia relapse. Immunity. 2003; 18(3): 367-379.
|
[127] |
MacDonald K.P., Rowe V., Clouston A.D., Welply J.K., Kuns R.D., Ferrara J.L.,
|
[128] |
Yang J., Li R., Ren Y., Yang Y., Xie R., Fan H.. Third-party tolerogenic dendritic cells reduce allo-reactivity in vitro and ameliorate the severity of acute graft-versus-host disease in allo-bone marrow transplantation. Scand J Immunol. 2013; 78(6): 486-496.
|
[129] |
D’Aveni M., Rossignol J., Coman T., Sivakumaran S., Henderson S., Manzo T.,
|
This work was supported by grants from the National Institute of Allergy and Infectious Diseases, National Institutes of Health (R37 AI34495), National Heart, Lung, and Blood Institute, National Institutes of Health (R01 HL56067 and R01 HL11879), and National Cancer Institute, National Institutes of Health (P01 CA142106 and P01 CA065493).
The author thanks Drs. Geoff Hill and Kelli MacDonald for their collaboration in assembling literature related to this topic area, to colleagues and laboratory members who have moved the cell therapy field forward, and to patients and families for their participation in clinical trials.
/
〈 |
|
〉 |