
A Historical Sedimentary Record of Mercury in a Shallow Eutrophic Lake: Impacts of Human Activities and Climate Change
Hanxiao Zhang, Shouliang Huo, Kevin M. Yeager, Beidou Xi, Jingtian Zhang, Fengchang Wu
Engineering ›› 2019, Vol. 5 ›› Issue (2) : 296-304.
A Historical Sedimentary Record of Mercury in a Shallow Eutrophic Lake: Impacts of Human Activities and Climate Change
Mercury and its derivatives are hazardous environmental pollutants and could affect the aquatic ecosystems and human health by biomagnification. Lake sediments can provide important historical information regarding changes in pollution levels and thus trace anthropogenic or natural influences. This research investigates the 100-year history of mercury (Hg) deposition in sediments from Chao Lake, a shallow eutrophic lake in China. The results indicate that the Hg deposition history can be separated into three stages (pre-1960s, 1960s–1980s, and post-1980s) over the last 100 years. Before the 1960s, Hg concentrations in the sediment cores varied little and had no spatial difference. Since the 1960s, the concentration of Hg began to increase gradually, and showed a higher concentration of contamination in the western half of the lake region than in the eastern half of the lake region due to all kinds of centralized human-input sources. The influences of anthropogenic factors and hydrological change are revealed by analyzing correlations between Hg and heavy metals (Fe, Co, Cr, Cu, Mn, Pb, and Zn), stable carbon and nitrogen isotopes (δ13C and δ15N), nutrients, particle sizes, and meteorological factors. The results show that Hg pollution intensified after the 1960s, mainly due to hydrological change, rapid regional development and urbanization, and the proliferation of anthropogenic Hg sources. Furthermore, the temperature, wind speed, and evaporation are found to interactively influence the environmental behaviors and environmental fate of Hg.
Lake sediment / Mercury / Vertical distribution / Anthropogenic activities
[1] |
Chen L., Xu Z., Ding X., Zhang W., Huang Y., Fan R.,
|
[2] |
Eyrikh S., Eichler A., Tobler L., Malygina N., Papina T., Schwikowski M.. A 320 year ice-core record of atmospheric Hg pollution in the Altai, central Asia. Environ Sci Technol. 2017; 51(20): 11597-11606.
|
[3] |
Rimondi V., Gray J.E., Costagliola P., Vaselli O., Lattanzi P.. Concentration, distribution, and translocation of mercury and methylmercury in mine-waste, sediment, soil, water, and fish collected near the Abbadia San Salvatore mercury mine, Monte Amiata district, Italy. Sci Total Environ. 2012; 414(1): 318-327.
|
[4] |
Gray J.E., Van Metre P.C., Pribil M.J., Horowitz A.J.. Tracing historical trends of Hg in the Mississippi River using Hg concentrations and Hg isotopic compositions in a lake sediment core, Lake Whittington, Mississippi, USA. Chem Geol. 2015; 395: 80-87.
|
[5] |
Huo S., Zhang J., Yeager K.M., Xi B., Qin Y., He Z.,
|
[6] |
Yeager K.M., Santschi P.H., Rifai H.S., Suarez M.P., Brinkmeyer R., Hung C.C.,
|
[7] |
Lindberg S., Bullock R., Ebinghaus R., Engstrom D., Feng X., Fitzgerald W.,
|
[8] |
Gray J.E., Pribil M.J., Van Metre P.C., Borrok D.M., Thapalia A.. Identification of contamination in a lake sediment core using Hg and Pb isotopic compositions, Lake Ballinger, Washington, USA. Appl Geochem. 2013; 29(1): 1-12.
|
[9] |
Lin H., Wang X., Gong P., Ren J., Wang C., Yuan X.,
|
[10] |
Feng X., Foucher D., Hintelmann H., Yan H., He T., Qiu G.. Tracing mercury contamination sources in sediments using mercury isotope compositions. Environ Sci Technol. 2010; 44(9): 3363-3368.
|
[11] |
Jackson T.A., Muir D.C.G.. Mass-dependent and mass-independent variations in the isotope composition of mercury in a sediment core from a lake polluted by emissions from the combustion of coal. Sci Total Environ. 2012; 417–8: 189-203.
|
[12] |
Zan F., Huo S., Xi B., Zhu C., Liao H., Zhang J.,
|
[13] |
Zan F., Huo S., Xi B., Su J., Li X., Zhang J.,
|
[14] |
Huo S., Li C., Xi B., Yu Z., Yeager K.M., Wu F.. Historical record of polychlorinated biphenyls (PCBs) and special occurrence of PCB 209 in a shallow fresh-water lake from eastern China. Chemosphere. 2017; 184: 832-840.
|
[15] |
Li C., Huo S., Xi B., Yu Z., Zeng X., Zhang J.,
|
[16] |
Li C., Huo S., Yu Z., Guo W., Xi B., He Z.,
|
[17] |
Guo W., Huo S., Ding W.. Historical record of human impact in a lake of northern China: magnetic susceptibility, nutrients, heavy metals and OCPs. Ecol Indic. 2015; 57: 74-81.
|
[18] |
Binford M.W.. Calculation and uncertainty analysis of 210Pb dates for PIRLA project lake sediment cores. J Paleolimnol. 1990; 3(3): 253-267.
|
[19] |
Zhang W., Feng H., Chang J., Qu J., Xie H., Yu L.. Heavy metal contamination in surface sediments of Yangtze River intertidal zone: an assessment from different indexes. Environ Pollut. 2009; 157(5): 1533-1543.
|
[20] |
Wan G.J., Chen J.A., Wu F.C., Xu S.Q., Bai Z.G., Wan E.Y.,
|
[21] |
Xu Y., Gao X., Shen Y., Xu C., Shi Y., Giorgi F.. A daily temperature dataset over China and its application in validating a RCM simulation. Adv Atmos Sci. 2009; 26(4): 763-772.
|
[22] |
Guo W., Pei Y., Yang Z., Chen H.. Historical changes in polycyclic aromatic hydrocarbons (PAHs) input in Lake Baiyangdian related to regional socio-economic development. J Hazard Mater. 2011; 187(1–3): 441-449.
|
[23] |
Liu L., Wang J., Wei G., Guan Y., Wong C., Zeng E.. Sediment records of polycyclic aromatic hydrocarbons (PAHs) in the continental shelf of China: implications for evolving anthropogenic impacts. Environ Sci Technol. 2012; 46(12): 6497-6504.
|
[24] |
Chen X., Yang X., Dong X., Liu Q.. Nutrient dynamics linked to hydrological condition and anthropogenic nutrient loading in Chaohu Lake (southeast China). Hydrobiologia. 2011; 661(1): 223-234.
|
[25] |
Yang H., Turner S., Rose N.L.. Mercury pollution in the lake sediments and catchment soils of anthropogenically-disturbed sites across England. Environ Pollut. 2016; 219: 1092-1101.
|
[26] |
Wiklund J.A., Kirk J.L., Muir D.C.G., Evans M., Yang F., Keating J.,
|
[27] |
Zhang L., Ye X., Feng H., Jing Y., Ouyang T., Yu X.,
|
[28] |
Weiss-Penzias P.S., Gay D.A., Brigham M.E., Parsons M.T., Gustin M.S., Ter Schure A.. Trends in mercury wet deposition and mercury air concentrations across the U.S. and Canada. Sci Total Environ. 2016; 568: 546-556.
|
[29] |
Haris H., Aris A.Z.. The geoaccumulation index and enrichment factor of mercury in mangrove sediment of Port Klang, Selangor, Malaysia. Arabian J Geosci. 2013; 6(11): 4119-4128.
|
[30] |
McKee L.J., Bonnema A., David N., Davis J.A., Franz A., Grace R.,
|
[31] |
Wang Q., Kim D., Dionysiou D.D., Sorial G.A., Timberlake D.. Sources and remediation for mercury contamination in aquatic systems–a literature review. Environ Pollut. 2004; 131(2): 323-336.
|
[32] |
Anhui Statistical Bureau, NBS Survey office in Anhui. Anhui statistical yearbook 2016. Chinese
|
[33] |
Wang Q., Shen W., Ma Z.. Estimation of mercury emission from coal combustion in China. Environ Sci Technol. 2000; 34(13): 2711-2713.
|
[34] |
Li Y., Ma C., Zhu C., Huang R., Zheng C.. Historical anthropogenic contributions to mercury accumulation recorded by a peat core from Dajiuhu montane mire, central China. Environ Pollut. 2016; 216: 332-339.
|
[35] |
Nakagawa R., Yumita Y.. Change and behavior of residual mercury in paddy soils and rice of Japan. Chemosphere. 1998; 37(8): 1483-1487.
|
[36] |
Liu Y., Wang J., Zheng Y., Zhang L., He J.. Patterns of bacterial diversity along a long-term mercury-contaminated gradient in the paddy soils. Microb Ecol. 2014; 68(3): 575-583.
|
[37] |
Walters C., Couto M., McClurg N., Silwana B., Somerset V.. Baseline monitoring of mercury levels in environmental matrices in the Limpopo Province. Water Air Soil Pollut. 2017; 228(2): 57-71.
|
[38] |
Cesário R., Hintelmann H., O’Driscoll N.J., Monteiro C.E., Caetano M., Nogueira M.,
|
[39] |
Woodward C.A., Potito A.P., Beilman D.W.. Carbon and nitrogen stable isotope ratios in surface sediments from lakes of western Ireland: implications for inferring past lake productivity and nitrogen loading. J Paleolimnol. 2012; 47(2): 167-184.
|
[40] |
Meyers P.A., Lallier-Verges E.. Lacustrine sedimentary organic matter records of late quaternary paleoclimates. J Paleolimnol. 1999; 21(3): 345-372.
|
[41] |
O’Beirne M.D., Werne J.P., Hecky R.E., Johnson T.C., Katsev S., Reavie E.D.. Anthropogenic climate change has altered primary productivity in Lake Superior. Nat Commun. 2017; 8: 15713.
|
[42] |
Weber J.H.. Review of possible paths for abiotic methylation of mercury (II) in the aquatic environment. Chemosphere. 1993; 26(11): 2063-2077.
|
[43] |
Ramond J.B., Petit F., Quillet L., Ouddane B., Berthe T.. Evidence of methylmercury production and modification of the microbial community structure in estuary sediments contaminated with wastewater treatment plant effluents. Mar Pollut Bull. 2011; 62(5): 1073-1080.
|
[44] |
Brown C.A., Sharp D., Collura T.C.M.. Effect of climate change on water temperature and attainment of water temperature criteria in the Yaquina Estuary, Oregon (USA). Estuar Coast Shelf Sci. 2016; 169: 136-146.
|
[45] |
Tomiyasu T., Kodamatani H., Imura R., Matsuyama A., Miyamoto J., Akagi H.,
|
[46] |
Brazeau M.L., Blais J.M., Paterson A.M., Keller W., Poulain A.J.. Evidence for microbially mediated production of elemental mercury (Hg0) in subarctic lake sediments. Appl Geochem. 2013; 37: 142-148.
|
[47] |
Zhu Y., Zou X., Feng S., Tang H.. The effect of grain size on the Cu, Pb, Ni, Cd speciation and distribution in sediments: a case study of Dongping Lake, China. Environ Geol. 2006; 50(5): 753-759.
|
[48] |
Kraemer B.M., Chandra S., Dell A.I., Dix M., Kuusisto E., Livingtone D.M.,
|
[49] |
Hansen K.M., Christensen J.H., Brandt J.. The influence of climate change on atmospheric deposition of mercury in the Arctic—a model sensitivity study. Int J Environ Res Public Health. 2015; 12(9): 11254-11268.
|
[50] |
Wang X., Sun D., Yao T.. Climate change and global cycling of persistent organic pollutants: a critical review. Sci China Earth Sci. 2016; 59(10): 1899-1911.
|
[51] |
Lepori F., Roberts J.J.. Past and future warming of a deep European lake (Lake Lugano): what are the climatic drivers?. J Great Lakes Res. 2015; 41(4): 973-981.
|
[52] |
O’Reilly C.M., Sharma S., Gray D.K., Hampton S.E., Read J.S., Rowley R.J.,
|
[53] |
Li F., Chung N., Bae M.J., Kwon Y.S., Kwon T.S., Park Y.S.. Temperature change and macroinvertebrate biodiversity: assessments of organism vulnerability and potential distributions. Clim Change. 2013; 119(2): 4231-4434.
|
[54] |
Kane E.S., Mazzoleni L.R., Kratz C.J., Hribljan J.A., Johnson C.P., Pypker T.G.,
|
[55] |
Bravo A.G., Bouchet S., Tolu J., Björn E., Mateos-Rivera A., Bertilsson S.. Molecular composition of organic matter controls methylmercury formation in boreal lakes. Nat Commun. 2017; 8: 14255.
|
[56] |
Li Y., Wang W., Yang L., Li H.. A review of mercury in environmental biogeochemistry. Prog Geogr. 2004; 23(6): 33-40.
|
The National Key Research and Development Program of China (2017YFA0605003) and the National Natural Science Foundation of China (91751114 and 41521003) supported this study.
Hanxiao Zhang, Shouliang Huo, Kevin M. Yeager, Beidou Xi, Jingtian Zhang, and Fengchang Wu declare that they have no conflict of interest or financial conflicts to disclose.
/
〈 |
|
〉 |