
Advances in Computer Vision-Based Civil Infrastructure Inspection and Monitoring
Billie F. Spencer, Vedhus Hoskere, Yasutaka Narazaki
Engineering ›› 2019, Vol. 5 ›› Issue (2) : 199-222.
Advances in Computer Vision-Based Civil Infrastructure Inspection and Monitoring
Computer vision techniques, in conjunction with acquisition through remote cameras and unmanned aerial vehicles (UAVs), offer promising non-contact solutions to civil infrastructure condition assessment. The ultimate goal of such a system is to automatically and robustly convert the image or video data into actionable information. This paper provides an overview of recent advances in computer vision techniques as they apply to the problem of civil infrastructure condition assessment. In particular, relevant research in the fields of computer vision, machine learning, and structural engineering is presented. The work reviewed is classified into two types: inspection applications and monitoring applications. The inspection applications reviewed include identifying context such as structural components, characterizing local and global visible damage, and detecting changes from a reference image. The monitoring applications discussed include static measurement of strain and displacement, as well as dynamic measurement of displacement for modal analysis. Subsequently, some of the key challenges that persist toward the goal of automated vision-based civil infrastructure and monitoring are presented. The paper concludes with ongoing work aimed at addressing some of these stated challenges.
Structural inspection and monitoring / Artificial intelligence / Computer vision / Machine learning / Optical flow
[1] |
ASCE’s 2017 infrastructure report card: bridges [Internet]. Reston: American Society of Civil Engineers; 2017 [cited 2017 Oct 11]. Available from: https://www.infrastructurereportcard.org/cat-item/bridges/.
|
[2] |
R. P. Gallagher Associates, Inc.. ATC-20-1 Field manual: postearthquake safety evaluation of buildings (second edition).
|
[3] |
Federal Highway Administration, Department of Transportation. National bridge inspection standards. Fed Regist [Internet] 2004 Dec [cited 2018 Jul 30];69(239):74419–39. Available from: https://www.govinfo.gov/content/pkg/FR-2004-12-14/pdf/04-27355.pdf.
|
[4] |
Corps of Engineers inspection team goes to new heights. Washington, DC: US Army Corps of Engineers; 2012.
|
[5] |
Ou J., Li H.. Structural health monitoring in mainland China: review and future trends. Struct Health Monit. 2010; 9(3): 219-231.
|
[6] |
Carden E.P., Fanning P.. Vibration based condition monitoring: a review. Struct Health Monit. 2004; 3(4): 355-377.
|
[7] |
Brownjohn J.M.W.. Structural health monitoring of civil infrastructure. Philos Trans A Math Phys Eng Sci. 1851; 2007(365): 589-622.
|
[8] |
Li H.N., Ren L., Jia Z.G., Yi T.H., Li D.S.. State-of-the-art in structural health monitoring of large and complex civil infrastructures. J Civ Struct Heal Monit. 2016; 6(1): 3-16.
|
[9] |
Roberts L.G.. Machine perception of three-dimensional solids [dissertation].
|
[10] |
Postal mechanization and early automation [Internet]. Washington, DC: United States Postal Service; 1956 [cited 2018 Jun 22]. Available from: https://about.usps.com/publications/pub100/pub100_042.htm.
|
[11] |
Szeliski R.. Computer vision: algorithms and applications.
|
[12] |
Viola P., Jones M.J.. Robust real-time face detection. Int J Comput Vis. 2004; 57(2): 137-154.
|
[13] |
Turk M.A., Pentland A.P.. Face recognition using eigenfaces. In: Proceedings of 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition; 1991 Jun 3–6; Maui, HI, USA. Piscataway: IEEE; 1991. p. 586-591.
|
[14] |
Dalal N., Triggs B.. Histograms of oriented gradients for human detection. In: Proceedings of 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition; 2005 Jun 20–25; San Diego, CA, USA. Piscataway: IEEE; 2005. p. 886-893.
|
[15] |
Pingali G., Opalach A., Jean Y.. Ball tracking and virtual replays for innovative tennis broadcasts. In: Proceedings of the 15th International Conference on Pattern Recognition; 2000 Sep 3–7; Barcelona, Spain. Piscataway: IEEE; 2000. p. 152-156.
|
[16] |
Bishop C.M.. Pattern recognition and machine learning.
|
[17] |
Glorot X., Bordes A., Bengio Y.. Deep sparse rectifier neural networks. In:
|
[18] |
Rumelhart D.E., Hinton G.E., Williams R.J.. Learning representations by back-propagating errors. Nature. 1986; 323(6088): 533-536.
|
[19] |
Kingma D.P., Ba J.. Adam: a method for stochastic optimization. In: Proceedings of the 3rd International Conference on Learning Representations; 2015 May 7–9; San Diego, CA, USA. 2015. p. 1-15.
|
[20] |
LeCun Y., Bottou L., Bengio Y., Haffner P.. Gradient-based learning applied to document recognition. Proc IEEE. 1998; 86(11): 2278-2324.
|
[21] |
Wu S., Zhong S., Liu Y.. Deep residual learning for image steganalysis. Multimed Tools Appl. 2018; 77(9): 10437-10453.
|
[22] |
Karpathy A. t-SNE visualization of CNN codes [Internet]. [cited 2018 Jul 27]. Available from: https://cs.stanford.edu/people/karpathy/cnnembed/.
|
[23] |
Long J., Shelhamer E., Darrell T.. Fully convolutional networks for semantic segmentation. In: Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition; 2015 Jun 7–12; Boston, MA, USA. Piscataway: IEEE; 2015. p. 3431-3440.
|
[24] |
Farabet C., Couprie C., Najman L., LeCun Y.. Learning hierarchical features for scene labeling. IEEE Trans Pattern Anal Mach Intell. 2013; 35(8): 1915-1929.
|
[25] |
Badrinarayanan V., Kendall A., Cipolla R.. SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans Pattern Anal Mach Intell. 2017; 39(12): 2481-2495.
|
[26] |
Couprie C, Farabet C, Najman L, LeCun Y. Indoor semantic segmentation using depth information. arXiv:1301.3572. 2013.
|
[27] |
He K., Zhang X., Ren S., Sun J.. Spatial pyramid pooling in deep convolutional networks for visual recognition. In:
|
[28] |
Girshick R., Donahue J., Darrell T., Malik J.. Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition; 2014 Jun 23–28; Columbus, OH, USA. Piscataway: IEEE; 2014. p. 580-587.
|
[29] |
Girshick R.. Fast R-CNN. In: Proceedings of 2015 IEEE International Conference on Computer Vision; 2015 Dec 7–13; Santiago, Chile. Piscataway: IEEE; 2015. p. 1440-1448.
|
[30] |
Ren S., He K., Girshick R., Sun J.. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans Pattern Anal Mach Intell. 2017; 39(6): 1137-1149.
|
[31] |
Redmon J., Divvala S., Girshick R., Farhadi A.. You only look once: unified, real-time object detection. In: Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition; 2016 Jun 27–30; Las Vegas, NV, USA. Piscataway: IEEE; 2016. p. 779-788.
|
[32] |
He K., Gkioxari G., Dollár P., Girshick R.. Mask R-CNN. In: Proceedings of 2017 IEEE International Conference on Computer Vision; 2017 Oct 22–29; Venice, Italy. Piscataway: IEEE; 2017. p. 2980-2988.
|
[33] |
De Brabandere B, Neven D, Van Gool L. Semantic instance segmentation with a discriminative loss function. arXiv:1708.02551. 2017.
|
[34] |
Zhang Z, Schwing AG, Fidler S, Urtasun R. Monocular object instance segmentation and depth ordering with CNNs. arXiv:1505.03159. 2015.
|
[35] |
Werbos P.J.. Backpropagation through time: what it does and how to do it. Proc IEEE. 1990; 78(10): 1550-1560.
|
[36] |
Perazzi F., Khoreva A., Benenson R., Schiele B., Sorkine-Hornung A.. Learning video object segmentation from static images. In: Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition; 2017 Jul 21–26; Honolulu, HI, USA. Piscataway: IEEE; 2017. p. 2663-2672.
|
[37] |
Nilsson D, Sminchisescu C. Semantic video segmentation by gated recurrent flow propagation. arXiv:1612.08871. 2016.
|
[38] |
Labelme.csail.mit.edu [Interent]. Cambridge: MIT Computer Science and Artificial Intelligence Laboratory; [cited 2018 Aug 1]. Available from: http://labelme.csail.mit.edu/Release3.0/.
|
[39] |
Hess M.R., Petrovic V., Kuester F.. Interactive classification of construction materials: feedback driven framework for annotation and analysis of 3D point clouds. In:
|
[40] |
Zhou B., Khosla A., Lapedriza A., Oliva A., Torralba A.. Learning deep features for discriminative localization. In: Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition; 2016 Jun 27–30; Las Vegas, NV, USA. Piscataway: IEEE; 2016. p. 2921-2929.
|
[41] |
Selvaraju R.R., Cogswell M., Das A., Vedantam R., Parikh D., Batra D.. Grad-CAM: visual explanations from deep networks via gradient-based localization. In: Proceedings of 2017 IEEE International Conference on Computer Vision; 2017 Oct 22–29; Venice, Italy. Piscataway: IEEE; 2017. p. 618-626.
|
[42] |
DeGol J., Golparvar-Fard M., Hoiem D.. Geometry-informed material recognition. In: Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition; 2016 Jun 27–30; Las Vegas, NV, USA. Piscataway: IEEE; 2016. p. 1554-1562.
|
[43] |
Hinton G.E.. Training products of experts by minimizing contrastive divergence. Neural Comput. 2002; 14(8): 1771-1800.
|
[44] |
Salakhutdinov R., Larochelle H.. Efficient learning of deep Boltzmann machines. In:
|
[45] |
Hinton G.E., Salakhutdinov R.R.. Reducing the dimensionality of data with neural networks. Science. 2006; 313(5786): 504-507.
|
[46] |
Pathak D., Krähenbühl P., Donahue J., Darrell T., Efros A.A.. Context encoders: feature learning by inpainting. In: Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition; 2016 Jun 27–30; Las Vegas, NV, USA. Piscataway: IEEE; 2016. p. 2536-12344.
|
[47] |
Zhang R., Isola P., Efros A.A.. Split-brain autoencoders: unsupervised learning by cross-channel prediction. In: Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition; 2017 Jul 21–26; Honolulu, HI, USA. Piscataway: IEEE; 2017. p. 645-654.
|
[48] |
Radford A, Metz L, Chintala S. Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv:1511.06434. 2015.
|
[49] |
Denton E., Chintala S., Szlam A., Fergus R.. Deep generative image models using a Laplacian pyramid of adversarial networks. In: Proceedings of the 28th International Conference on Neural Information Processing Systems: volume 1; 2015 Dec 7–12; Montreal, QC, Canada. Cambridge: MIT Press; 2015. p. 1486-1494.
|
[50] |
Salimans T., Goodfellow I., Zaremba W., Cheung V., Radford A., Chen X.. Improved techniques for training GANs. In: Proceedings of the 30th International Conference on Neural Information Processing Systems; 2016 Dec 5–10; Barcelona, Spain. New York City: Curran Associates Inc.; 2016. p. 2234-2242.
|
[51] |
LeCun Y., Bengio Y., Hinton G.. Deep learning. Nature. 2015; 521(7553): 436-444.
|
[52] |
Barron J.L., Fleet D.J., Beauchemin S.S.. Performance of optical flow techniques. Int J Comput Vis. 1994; 12(1): 43-77.
|
[53] |
Richardson I.E.G.. H.264 and MPEG-4 video compression: video coding for next-generation multimedia.
|
[54] |
Grundmann M., Kwatra V., Han M., Essa I.. Efficient hierarchical graph-based video segmentation. In: Proceedings of 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition; 2010 Jun 13–18; San Francisco, CA, USA. Piscataway: IEEE; 2010. p. 2141-2148.
|
[55] |
Wadhwa N., Rubinstein M., Durand F., Freeman W.T.. Phase-based video motion processing. ACM Trans Graph. 2013; 32(4): 80:1–9
|
[56] |
Engel J., Sturm J., Cremers D.. Camera-based navigation of a low-cost quadrocopter. In: Proceedings of 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems; 2012 Oct 7–12; Vilamoura, Portugal. Piscataway: IEEE; 2012. p. 2815-2821.
|
[57] |
Bojarski M, Del Testa D, Dworakowski D, Firner B, Flepp B, Goyal P, et al. End to end learning for self-driving cars. arXiv:1604.07316v1. 2016.
|
[58] |
Goodfellow IJ, Bulatov Y, Ibarz J, Arnoud S, Shet V. Multi-digit number recognition from street view imagery using deep convolutional neural networks. arXiv:1312.6082v4. 2014.
|
[59] |
Templeton B, inventor; Google LLC, Waymo LLC, assignees. Methods and systems for transportation to destinations by a self-driving vehicle. United States Patent US 9665101B1. 2017 May 30.
|
[60] |
Taigman Y., Yang M., Ranzato M.A., Wolf L.. DeepFace: closing the gap to human-level performance in face verification. In: Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition; 2014 Jun 23–28; Columbus, OH, USA. Piscataway: IEEE; 2014. p. 1701-1708.
|
[61] |
Airport’s facial recognition technology catches 2 people attempting to enter US illegally [Internet]. New York City: FOX News Network, LLC.; 2018 Sep 12 [cited 2018 Sep 25]. Available from: http://www.foxnews.com/travel/2018/09/12/airports-facial-recognition-technology-catches-2-people-attempting-to-enter-us-illegally.html.
|
[62] |
Wojna Z., Gorban A.N., Lee D.S., Murphy K., Yu Q., Li Y.,
|
[63] |
Litjens G., Kooi T., Bejnordi B.E., Setio A.A.A., Ciompi F., Ghafoorian M.,
|
[64] |
Zink J, Lovelace B. Unmanned aerial vehicle bridge inspection demonstration project: final report. St. Paul: Minnesota Department of Transportation; 2015 Jul. Report No.: MN/RC 2015-40.
|
[65] |
Wells J, Lovelace B. Unmanned aircraft system bridge inspection demonstration project phase II: final report. St. Paul: Minnesota Department of Transportation; 2017 Jun. Report No.: MN/RC 2017-18.
|
[66] |
Otero LD, Gagliardo N, Dalli D, Huang WH, Cosentino P. Proof of concept for using unmanned aerial vehicles for high mast pole and bridge inspections: final report. Tallahassee: Florida Department of Transportation; 2015 Jun. Contract No.: BDV28 TWO 977-02.
|
[67] |
Tomiczek A.P., Bridge J.A., Ifju P.G., Whitley T.J., Tripp C.S., Ortega A.E.,
|
[68] |
Brooks C, Dobson RJ, Banach DM, Dean D, Oommen T, Wolf RE, et al. Evaluating the use of unmanned aerial vehicles for transportation purposes: final report. Lansing: Michigan Department of Transportation; 2015 May. Report No.: RC-1616, MTRI-MDOTUAV-FR-2014. Contract No.: 2013-067.
|
[69] |
Duque L., Seo J., Wacker J.. Synthesis of unmanned aerial vehicle applications for infrastructures. J Perform Constr Facil. 2018; 32(4): 04018046.
|
[70] |
Abdel-Qader I., Abudayyeh O., Kelly M.E.. Analysis of edge-detection techniques for crack identification in bridges. J Comput Civ Eng. 2003; 17(4): 255-263.
|
[71] |
Jahanshahi M.R., Kelly J.S., Masri S.F., Sukhatme G.S.. A survey and evaluation of promising approaches for automatic image-based defect detection of bridge structures. Struct Infrastruct Eng. 2009; 5(6): 455-486.
|
[72] |
Jahanshahi M.R., Masri S.F.. A new methodology for non-contact accurate crack width measurement through photogrammetry for automated structural safety evaluation. Smart Mater Struct. 2013; 22(3): 035019.
|
[73] |
Zhu Z., German S., Brilakis I.. Visual retrieval of concrete crack properties for automated post-earthquake structural safety evaluation. Autom Construct. 2011; 20(7): 874-883.
|
[74] |
Nishikawa T., Yoshida J., Sugiyama T., Fujino Y.. Concrete crack detection by multiple sequential image filtering. Comput Civ Infrastruct Eng. 2012; 27(1): 29-47.
|
[75] |
Yamaguchi T., Hashimoto S.. Fast crack detection method for large-size concrete surface images using percolation-based image processing. Mach Vis Appl. 2010; 21(5): 797-809.
|
[76] |
Zhang W., Zhang Z., Qi D., Liu Y.. Automatic crack detection and classification method for subway tunnel safety monitoring. Sensors (Basel). 2014; 14(10): 19307-19328.
|
[77] |
Olsen M.J., Chen Z., Hutchinson T., Kuester F.. Optical techniques for multiscale damage assessment. Geomat Nat Haz Risk. 2013; 4(1): 49-70.
|
[78] |
Lee B.Y., Kim Y.Y., Yi S.T., Kim J.K.. Automated image processing technique for detecting and analysing concrete surface cracks. Struct Infrastruct Eng. 2013; 9(6): 567-577.
|
[79] |
Liu Y.F., Cho S.J., Spencer B.F.Jr, Fan J.S.. Automated assessment of cracks on concrete surfaces using adaptive digital image processing. Smart Struct Syst. 2014; 14(4): 719-741.
|
[80] |
Liu Y.F., Cho S.J., Spencer B.F.Jr, Fan J.S.. Concrete crack assessment using digital image processing and 3D scene reconstruction. J Comput Civ Eng. 2016; 30(1): 04014124.
|
[81] |
Jahanshahi M.R., Masri S.F., Padgett C.W., Sukhatme G.S.. An innovative methodology for detection and quantification of cracks through incorporation of depth perception. Mach Vis Appl. 2013; 24(2): 227-241.
|
[82] |
Erkal B.G., Hajjar J.F.. Laser-based surface damage detection and quantification using predicted surface properties. Autom Construct. 2017; 83: 285-302.
|
[83] |
Kim H., Ahn E., Cho S., Shin M., Sim S.H.. Comparative analysis of image binarization methods for crack identification in concrete structures. Cement Concr Res. 2017; 99: 53-61.
|
[84] |
Prasanna P., Dana K.J., Gucunski N., Basily B.B., La H.M., Lim R.S.,
|
[85] |
Adhikari R.S., Moselhi O., Bagchi A.. Image-based retrieval of concrete crack properties for bridge inspection. Autom Construct. 2014; 39: 180-194.
|
[86] |
Torok M.M., Golparvar-Fard M., Kochersberger K.B.. Image-based automated 3D crack detection for post-disaster building assessment. J Comput Civ Eng. 2014; 28(5): A4014004.
|
[87] |
Adhikari R.S., Moselhi O., Bagchi A.. A study of image-based element condition index for bridge inspection. In: Proceedings of the 30th International Symposium on Automation and Robotics in Construction and Mining: building the future in automation and robotics (volume 2); 2013 Aug 11–15; Montreal, QC, Canada. International Association for Automation and Robotics in Construction; 2013. p. 868-879.
|
[88] |
Paal S.G., Jeon J.S., Brilakis I., DesRoches R.. Automated damage index estimation of reinforced concrete columns for post-earthquake evaluations. J Struct Eng. 2015; 141(9): 04014228.
|
[89] |
Yeum C.M., Dyke S.J.. Vision-based automated crack detection for bridge inspection. Comput Civ Infrastruct Eng. 2015; 30(10): 759-770.
|
[90] |
Greimann L.F., Stecker J.H., Kao A.M., Rens K.L.. Inspection and rating of miter lock gates. J Perform Constr Facil. 1991; 5(4): 226-238.
|
[91] |
Jahanshahi M.R., Chen F.C., Joffe C., Masri S.F.. Vision-based quantitative assessment of microcracks on reactor internal components of nuclear power plants. Struct Infrastruct Eng. 2017; 13(8): 1013-1026.
|
[92] |
Ghanta S., Karp T., Lee S.. Wavelet domain detection of rust in steel bridge images. In: Proceedings of 2011 IEEE International Conference on Acoustics, Speech and Signal Processing; 2011 May 22–27; Prague, Czech Republic. Piscataway: IEEE; 2011. p. 1033-1036.
|
[93] |
Jahanshahi M.R., Masri S.F.. Parametric performance evaluation of wavelet-based corrosion detection algorithms for condition assessment of civil infrastructure systems. J Comput Civ Eng. 2013; 27(4): 345-357.
|
[94] |
Medeiros F.N.S., Ramalho G.L.B., Bento M.P., Medeiros L.C.L.. On the evaluation of texture and color features for nondestructive corrosion detection. EURASIP J Adv Signal Process. 2010; 2010: 817473.
|
[95] |
Shen H.K., Chen P.H., Chang L.M.. Automated steel bridge coating rust defect recognition method based on color and texture feature. Autom Construct. 2013; 31: 338-356.
|
[96] |
Son H., Hwang N., Kim C., Kim C.. Rapid and automated determination of rusted surface areas of a steel bridge for robotic maintenance systems. Autom Construct. 2014; 42: 13-24.
|
[97] |
Igoe D., Parisi A.V.. Characterization of the corrosion of iron using a smartphone camera. Instrum Sci Technol. 2016; 44(2): 139-147.
|
[98] |
Ahuja S.K., Shukla M.K.. A survey of computer vision based corrosion detection approaches. In:
|
[99] |
Koch C., Brilakis I.. Pothole detection in asphalt pavement images. Adv Eng Inform. 2011; 25(3): 507-515.
|
[100] |
Salman M., Mathavan S., Kamal K., Rahman M.. Pavement crack detection using the Gabor filter. In: Proceedings of the 16th International IEEE Conference on Intelligent Transportation Systems; 2013 Oct 6–9; The Hague, the Netherlands. Piscataway: IEEE; 2013. p. 2039-2044.
|
[101] |
Hu Y., Zhao C.. A novel LBP based methods for pavement crack detection. J Pattern Recognit Res. 2010; 5(1): 140-147.
|
[102] |
Zou Q., Cao Y., Li Q., Mao Q., Wang S.. CrackTree: automatic crack detection from pavement images. Pattern Recognit Lett. 2012; 33(3): 227-238.
|
[103] |
Kirschke K.R., Velinsky S.A.. Histogram-based approach for automated pavement-crack sensing. J Transp Eng. 1992; 118(5): 700-710.
|
[104] |
Li L., Sun L., Tan S., Ning G.. An efficient way in image preprocessing for pavement crack images. In: Proceedings of the 12th COTA International Conference of Transportation Professionals; 2012 Aug 3–6; Beijing, China. Reston: American Society of Civil Engineers; 2012. p. 3095-3103.
|
[105] |
Adu-Gyamfi Y.O., Okine N.O.A., Garateguy G., Carrillo R., Arce G.R.. Multiresolution information mining for pavement crack image analysis. J Comput Civ Eng. 2012; 26(6): 741-749.
|
[106] |
Chen Y.L., Jahanshahi M.R., Manjunatha P., Gan W.P., Abdelbarr M., Masri S.F.,
|
[107] |
Zakeri H., Nejad F.M., Fahimifar A.. Image based techniques for crack detection, classification and quantification in asphalt pavement: a review. Arch Comput Methods Eng. 2017; 24(4): 935-977.
|
[108] |
Koch C., Georgieva K., Kasireddy V., Akinci B., Fieguth P.. A review on computer vision based defect detection and condition assessment of concrete and asphalt civil infrastructure. Adv Eng Inform. 2015; 29(2): 196-210. Corrigendum in: Adv Eng Inform 2016;30(2):208–10
|
[109] |
Simonyan K., Zisserman A.. Very deep convolutional networks for large-scale image recognition. In: Proceedings of International Conference on Learning Representations 2015; 2015 May 7–9; San Diego, CA, USA. 2015. p. 1-14.
|
[110] |
Xu Y, Bao Y, Chen J, Zuo W, Li H. Surface fatigue crack identification in steel box girder of bridges by a deep fusion convolutional neural network based on consumer-grade camera images. Struct Heal Monit. Epub 2018 Apr 2.
|
[111] |
Zhang L., Yang F., Zhang Y.D., Zhu Y.J.. Road crack detection using deep convolutional neural network. In: Proceedings of 2016 IEEE International Conference on Image Processing; 2016 Sep 25–28; Phoenix, AZ, USA. Piscataway: IEEE; 2016. p. 3708-3712.
|
[112] |
Cha Y.J., Choi W., Büyüköztürk O.. Deep learning-based crack damage detection using convolutional neural networks. Comput Civ Infrastruct Eng. 2017; 32(5): 361-378.
|
[113] |
Kim H, Ahn E, Shin M, Sim SH. Crack and noncrack classification from concrete surface images using machine learning. Struct Health Monit. Epub 2018 Apr 23.
|
[114] |
Kim B., Cho S.. Automated vision-based detection of cracks on concrete surfaces using a deep learning technique. Sensors (Basel). 2018; 18(10): 3452.
|
[115] |
Kim B, Cho S. Automated and practical vision-based crack detection of concrete structures using deep learning. Comput Civ Infrastruct Eng. In press.
|
[116] |
Lee Y, Kim B, Cho S. Image-based spalling detection of concrete structures incorporating deep learning. In: Proceedings of the 7th World Conference on Structural Control and Monitoring; 2018 Jul 22–25; Qingdao, China; 2018.
|
[117] |
Atha D.J., Jahanshahi M.R.. Evaluation of deep learning approaches based on convolutional neural networks for corrosion detection. Struct Health Monit. 2018; 17(5): 1110-1128.
|
[118] |
Chen F.C., Jahanshahi M.R.. NB-CNN: deep learning-based crack detection using convolutional neural network and naïve Bayes data fusion. IEEE Trans Ind Electron. 2018; 65(5): 4392-4400.
|
[119] |
Yeum C.M.. Computer vision-based structural assessment exploiting large volumes of images [dissertation].
|
[120] |
Xu Y., Li S., Zhang D., Jin Y., Zhang F., Li N.,
|
[121] |
Maguire M., Dorafshan S., Thomas R.J.. SDNET2018: a concrete crack image dataset for machine learning applications [dataset].
|
[122] |
Bao Y., Tang Z., Li H., Zhang Y.. Computer vision and deep learning-based data anomaly detection method for structural health monitoring. Struct Heal Monit. 2019; 18(2): 401-421.
|
[123] |
Dang J, Shrestha A, Haruta D, Tabata Y, Chun P, Okubo K. Site verification tests for UAV bridge inspection and damage image detection based on deep learning. In: Proceedings of the 7th World Conference on Structural Control and Monitoring; 2018 Jul 22–25; Qingdao, China; 2018.
|
[124] |
Yeum C.M., Dyke S.J., Ramirez J.. Visual data classification in post-event building reconnaissance. Eng Struct. 2018; 155: 16-24.
|
[125] |
Cha Y.J., Choi W., Suh G., Mahmoudkhani S., Büyüköztürk O.. Autonomous structural visual inspection using region-based deep learning for detecting multiple damage types. Comput Civ Infrastruct Eng. 2018; 33(9): 731-747.
|
[126] |
Zhang A., Wang K.C.P., Li B., Yang E., Dai X., Peng Y.,
|
[127] |
Hoskere V, Narazaki Y, Hoang TA, Spencer BF Jr. Vision-based structural inspection using multiscale deep convolutional neural networks. In: Proceedings of the 3rd Huixian International Forum on Earthquake Engineering for Young Researchers; 2017 Aug 11–12; Urbana, IL, USA; 2017.
|
[128] |
Hoskere V, Narazaki Y, Hoang TA, Spencer BF Jr. Towards automated postearthquake inspections with deep learning-based condition-aware models. In: Proceedings of the 7th World Conference on Structural Control and Monitoring; 2018 Jul 22–25; Qingdao, China; 2018.
|
[129] |
Seitz S.M., Curless B., Diebel J., Scharstein D., Szeliski R.. A comparison and evaluation of multi-view stereo reconstruction algorithms. In: Proceedings of 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition: volume 1; 2006 Jun 17–22; New York City, NY, USA. Piscataway: IEEE; 2006. p. 519-528.
|
[130] |
Khaloo A., Lattanzi D., Cunningham K., Dell’Andrea R., Riley M.. Unmanned aerial vehicle inspection of the Placer River Trail Bridge through image-based 3D modelling. Struct Infrastruct Eng. 2018; 14(1): 124-136.
|
[131] |
Khaloo A., Lattanzi D., Jachimowicz A., Devaney C.. Utilizing UAV and 3D computer vision for visual inspection of a large gravity dam. Front Built Environ. 2018; 4: 31.
|
[132] |
Besl P.J., McKay N.D.. A method for registration of 3-D shapes. IEEE Trans Pattern Anal Mach Intell. 1992; 14(2): 239-256.
|
[133] |
Meshlab.net [Internet]. [cited 2018 Jun 20]. Available from: http://www.meshlab.net/.
|
[134] |
CloudCompare: 3D point cloud and mesh processing software open source project [Internet]. [cited 2018 Jun 20]. Available from: http://www.danielgm.net/cc/.
|
[135] |
Girardeau-Montaut D, Roux M, Marc R, Thibault G. Change detection on points cloud data acquired with a ground laser scanner. In: Proceedings of the ISPRS Workshop—Laser Scanning 2005; 2005 Sep 12–14; Enschede, the Netherlands; 2005. p. 30–5.
|
[136] |
Lague D., Brodu N., Leroux J.. Accurate 3D comparison of complex topography with terrestrial laser scanner: application to the Rangitikei canyon (N-Z). ISPRS J Photogramm Remote Sens. 2013; 82: 10-26.
|
[137] |
Morgenthal G., Hallermann N.. Quality assessment of unmanned aerial vehicle (UAV) based visual inspection of structures. Adv Struct Eng. 2014; 17(3): 289-302.
|
[138] |
Hallermann N, Morgenthal G, Rodehorst V. Unmanned aerial systems (UAS)— case studies of vision based monitoring of ageing structures. In: Proceedings of the International Symposium Non-Destructive Testing in Civil Engineering; 2015 Sep 15–17; Berlin, Germany; 2015.
|
[139] |
Khaloo A., Lattanzi D.. Automatic detection of structural deficiencies using 4D hue-assisted analysis of color point clouds. In:
|
[140] |
Jafari B., Khaloo A., Lattanzi D.. Deformation tracking in 3D point clouds via statistical sampling of direct cloud-to-cloud distances. J Nondestruct Eval. 2017; 36: 65.
|
[141] |
Ghahremani K., Khaloo A., Mohamadi S., Lattanzi D.. Damage detection and finite-element model updating of structural components through point cloud analysis. J Aerosp Eng. 2018; 31(5): 04018068.
|
[142] |
Radke R.J., Andra S., Al-Kofahi O., Roysam B.. Image change detection algorithms: a systematic survey. IEEE Trans Image Process. 2005; 14(3): 294-307.
|
[143] |
Hussain M., Chen D., Cheng A., Wei H., Stanley D.. Change detection from remotely sensed images: from pixel-based to object-based approaches. ISPRS J Photogramm Remote Sens. 2013; 80: 91-106.
|
[144] |
Tewkesbury A.P., Comber A.J., Tate N.J., Lamb A., Fisher P.F.. A critical synthesis of remotely sensed optical image change detection techniques. Remote Sens Environ. 2015; 160: 1-14.
|
[145] |
Sakurada K., Okatani T., Deguchi K.. Detecting changes in 3D structure of a scene from multi-view images captured by a vehicle-mounted camera. In: Proceedings of 2013 IEEE Conference on Computer Vision and Pattern Recognition; 2013 Jun 23–28; Portland, OR, USA. Piscataway: IEEE; 2013. p. 137-144.
|
[146] |
Alcantarilla PF, Stent S, Ros G, Arroyo R, Gherardi R. Street-view change detection with deconvolutional networks. In: Proceedings of 2016 Robotics: Science and Systems Conference; 2016 Jun 18–22; Ann Arbor, MI, USA; 2016.
|
[147] |
Stent S., Gherardi R., Stenger B., Soga K., Cipolla R.. Visual change detection on tunnel linings. Mach Vis Appl. 2016; 27(3): 319-330.
|
[148] |
Kiziltas S., Akinci B., Ergen E., Tang P., Gordon C.. Technological assessment and process implications of field data capture technologies for construction and facility/infrastructure management. Electron J Inf Technol Constr. 2008; 13: 134-154.
|
[149] |
Golparvar-Fard M., Peña-Mora F., Savarese S.. D4AR—a 4-dimensional augmented reality model for automating construction progress monitoring data collection, processing and communication. J Inf Technol Constr. 2009; 14: 129-153.
|
[150] |
Huber D. ARIA: the Aerial Robotic Infrastructure Analyst. SPIE Newsroom [Internet] 2014 Jun 9 [cited 2019 Feb 24]. Available from: http://spie.org/newsroom/5472-aria-the-aerial-robotic-infrastructure-analyst?SSO=1.
|
[151] |
Earthsense.co [Internet]. Champaign: EarthSense, Inc.; [cited 2019 Feb 25]. Available from: https://www.earthsense.co.
|
[152] |
Zhu Z., Brilakis I.. Concrete column recognition in images and videos. J Comput Civ Eng. 2010; 24(6): 478-487.
|
[153] |
Koch C., Paal S.G., Rashidi A., Zhu Z., König M., Brilakis I.. Achievements and challenges in machine vision-based inspection of large concrete structures. Adv Struct Eng. 2014; 17(3): 303-318.
|
[154] |
Xiong X., Adan A., Akinci B., Huber D.. Automatic creation of semantically rich 3D building models from laser scanner data. Autom Construct. 2013; 31: 325-337.
|
[155] |
Perez-Perez Y., Golparvar-Fard M., El-Rayes K.. Semantic and geometric labeling for enhanced 3D point cloud segmentation. In:
|
[156] |
Armeni I., Sener O., Zamir A.R., Jiang H., Brilakis I., Fischer M.,
|
[157] |
Golparvar-Fard M., Bohn J., Teizer J., Savarese S., Peña-Mora F.. Evaluation of image-based modeling and laser scanning accuracy for emerging automated performance monitoring techniques. Autom Construct. 2011; 20(8): 1143-1155.
|
[158] |
Golparvar-Fard M., Peña-Mora F., Savarese S.. Monitoring changes of 3D building elements from unordered photo collections. In: Proceedings of 2011 IEEE International Conference on Computer Vision Workshops; 2011 Nov 6–13; Barcelona, Spain. Piscataway: IEEE; 2011. p. 249-256.
|
[159] |
Lu R., Brilakis I., Middleton C.R.. Detection of structural components in point clouds of existing RC bridges. Comput Civ Infrastruct Eng. 2019; 34(3): 191-212.
|
[160] |
Yeum CM, Choi J, Dyke SJ. Automated region-of-interest localization and classification for vision-based visual assessment of civil infrastructure. Struct Health Monit. Epub 2018 Mar 27.
|
[161] |
Gao Y., Mosalam K.M.. Deep transfer learning for image-based structural damage recognition. Comput Civ Infrastruct Eng. 2018; 33(9): 748-768.
|
[162] |
Liang X. Image-based post-disaster inspection of reinforced concrete bridge systems using deep learning with Bayesian optimization. Comput Civ Infrastruct Eng. Epub 2018 December 5.
|
[163] |
Narazaki Y, Hoskere V, Hoang TA, Spencer BF Jr. Vision-based automated bridge component recognition integrated with high-level scene understanding. In: Proceedings of the 13th International Workshop on Advanced Smart Materials and Smart Structures Technology; 2017 Jul 22–23; Tokyo, Japan; 2017.
|
[164] |
Narazaki Y, Hoskere V, Hoang TA, Spencer BF Jr. Vision-based automated bridge component recognition with high-level scene consistency. Comput Civ Infrastruct Eng. In Press.
|
[165] |
Narazaki Y, Hoskere V, Hoang TA, Spencer BF. Automated vision-based bridge component extraction using multiscale convolutional neural networks. In: Proceedings of the 3rd Huixian International Forum on Earthquake Engineering for Young Researchers; 2017 Aug 11–12; Urbana, IL, USA; 2017.
|
[166] |
German S., Jeon J.S., Zhu Z., Bearman C., Brilakis I., DesRoches R.,
|
[167] |
German S., Brilakis I., Desroches R.. Rapid entropy-based detection and properties measurement of concrete spalling with machine vision for post-earthquake safety assessments. Adv Eng Informatics. 2012; 26(4): 846-858.
|
[168] |
Anil E.B., Akinci B., Garrett J.H., Kurc O.. Information requirements for earthquake damage assessment of structural walls. Adv Eng Inform. 2016; 30(1): 54-64.
|
[169] |
Anil E.B., Akinci B., Kurc O., Garrett J.H.. Building-information-modeling–based earthquake damage assessment for reinforced concrete walls. J Comput Civ Eng. 2016; 30(4): 04015076.
|
[170] |
Wei Y., Kasireddy V., Akinci B., Smith I., Domer B.. 3D imaging in construction and infrastructure management: technological assessment and future research directions3D imaging in construction and infrastructure management: technological assessment and future research directions. In: Advanced computing strategies for engineering: proceedings of the 25th EG-ICE International Workshop 2018; 2018 Jun 10–13; Lausanne, Switzerland. Cham: Springer; 2018. p. 37-60.
|
[171] |
Farrar C.R., James G.H.III. System identification from ambient vibration measurements on a bridge. J Sound Vibrat. 1997; 205(1): 1-18.
|
[172] |
Lynch JP, Sundararajan A, Law KH, Kiremidjian AS, Carryer E, Sohn H. Field validation of a wireless structural monitoring system on the Alamosa Canyon Bridge. In: Liu SC, editor. Proceedings volume 5057: Smart Structures and Materials 2003: smart systems and nondestructive evaluation for civil infrastructures; 2003 Mar 2–6; San Diego, CA, USA; 2003.
|
[173] |
Jin G., Sain M.K., Spencer B.F.Jr.. Frequency domain system identification for controlled civil engineering structures. IEEE Trans Contr Syst Technol. 2005; 13(6): 1055-1062.
|
[174] |
Jang S., Jo H., Cho S., Mechitov K., Rice J.A., Sim S.H.,
|
[175] |
Rice J.A., Mechitov K., Sim S.H., Nagayama T., Jang S., Kim R.,
|
[176] |
Moreu F., Kim R., Lei S., Diaz-Fañas G., Dai F., Cho S.,
|
[177] |
Cho S., Giles R.K., Spencer B.F.Jr.. System identification of a historic swing truss bridge using a wireless sensor network employing orientation correction. Struct Contr Health Monit. 2015; 22(2): 255-272.
|
[178] |
Sim S.H., Spencer B.F.Jr, Zhang M., Xie H.. Automated decentralized modal analysis using smart sensors. Struct Contr Health Monit. 2010; 17(8): 872-894.
|
[179] |
Horn B.K.P., Schunck B.G.. Determining optical flow. Artif Intell. 1981; 17(1–3): 185-203.
|
[180] |
Bruhn A., Weickert J., Schnörr C.. Lucas/Kanade meets Horn/Schunck: combining local and global optic flow methods. Int J Comput Vis. 2005; 61(3): 211-231.
|
[181] |
Liu C.. Beyond pixels: exploring new representations and applications for motion analysis [dissertation].
|
[182] |
Baker S., Scharstein D., Lewis J.P., Roth S., Black M.J., Szeliski R.. A database and evaluation methodology for optical flow. Int J Comput Vis. 2011; 92(1): 1-31.
|
[183] |
Sutton M.A., Orteu J.J., Schreier H.W.. Image correlation for shape, motion and deformation measurements: basic concepts, theory and applications.
|
[184] |
The VIC-2D™ system [Internet]. Irmo: Correlated Solutions, Inc.; [cited 2019 Feb 24]. Available from: https://www.correlatedsolutions.com/vic-2d/.
|
[185] |
GOM Correlate: evaluation software for 3D testing [Interent]. Braunschweig: GOM GmbH; [cited 2019 Feb 24]. Available from: https://www.gom.com/3d-software/gom-correlate.html.
|
[186] |
Pan B., Qian K., Xie H., Asundi A.. Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review. Meas Sci Technol. 2009; 20(6): 062001.
|
[187] |
Hoult N.A., Take W.A., Lee C., Dutton M.. Experimental accuracy of two dimensional strain measurements using digital image correlation. Eng Struct. 2013; 46: 718-726.
|
[188] |
Dutton M., Take W.A., Hoult N.A.. Curvature monitoring of beams using digital image correlation. J Bridge Eng. 2014; 19(3): 05013001.
|
[189] |
Ellenberg A., Branco L., Krick A., Bartoli I., Kontsos A.. Use of unmanned aerial vehicle for quantitative infrastructure evaluation. J Infrastruct Syst. 2015; 21(3): 04014054.
|
[190] |
McCormick N., Lord J.. Digital image correlation for structural measurements. Proc Inst Civ Eng-Civ Eng. 2012; 165(4): 185-190.
|
[191] |
Yoneyama S., Kitagawa A., Iwata S., Tani K., Kikuta H.. Bridge deflection measurement using digital image correlation. Exp Tech. 2007; 31(1): 34-40.
|
[192] |
Yoneyama S., Ueda H.. Bridge deflection measurement using digital image correlation with camera movement correction. Mater Trans. 2012; 53(2): 285-290.
|
[193] |
Helfrick M.N., Niezrecki C., Avitabile P., Schmidt T.. 3D digital image correlation methods for full-field vibration measurement. Mech Syst Signal Process. 2011; 25(3): 917-927.
|
[194] |
Reagan D.. Unmanned aerial vehicle measurement using three-dimensional digital image correlation to perform bridge structural health monitoring [dissertation].
|
[195] |
Mahal M., Blanksvärd T., Täljsten B., Sas G.. Using digital image correlation to evaluate fatigue behavior of strengthened reinforced concrete beams. Eng Struct. 2015; 105: 277-288.
|
[196] |
Ghorbani R., Matta F., Sutton M.A.. Full-field deformation measurement and crack mapping on confined masonry walls using digital image correlation. Exp Mech. 2015; 55(1): 227-243.
|
[197] |
Tomasi C, Kanade T. Detection and tracking of point features. Technical report. Pittsburgh: Carnegie Mellon University; 1991 Apr. Report No.: CMU-CS-91-132.
|
[198] |
Lewis J.P.. Fast normalized cross-correlation. Vis. Interface. 1995; 10: 120-123.
|
[199] |
Ye X.W., Dong C.Z., Liu T.. A review of machine vision-based structural health monitoring: methodologies and applications. J Sens. 2016; 2016: 7103039.
|
[200] |
Feng D., Feng M.Q.. Computer vision for SHM of civil infrastructure: from dynamic response measurement to damage detection—a review. Eng Struct. 2018; 156: 105-117.
|
[201] |
Nogueira FMA, Barbosa FS, Barra LPS. Evaluation of structural natural frequencies using image processing. In: Proceedings of 2005 International Conference on Experimental Vibration Analysis for Civil Engineering Structures; 2005 Oct 26–28; Bordeaux, France; 2005.
|
[202] |
Chang C.C., Xiao X.H.. An integrated visual-inertial technique for structural displacement and velocity measurement. Smart Struct Syst. 2010; 6(9): 1025-1039.
|
[203] |
Fukuda Y., Feng M.Q., Narita Y., Kaneko S., Tanaka T.. Vision-based displacement sensor for monitoring dynamic response using robust object search algorithm. IEEE Sens J. 2013; 13(12): 4725-4732.
|
[204] |
Min JH, Gelo NJ, Jo H. Real-time image processing for non-contact monitoring of dynamic displacements using smartphone technologies. In: Lynch JP, editor. Proceedings volume 9803: sensors and smart structures technologies for civil, mechanical, and aerospace systems 2016; 2016 Mar 20–24; Las Vegas, NV, USA; 2016. p. 98031B.
|
[205] |
Dong C.Z., Ye X.W., Jin T.. Identification of structural dynamic characteristics based on machine vision technology. Measurement. 2018; 126: 405-416.
|
[206] |
Celik O., Dong C.Z., Catbas F.N.. Measurement of human loads using computer vision. In:
|
[207] |
Lee J., Lee K.C., Cho S., Sim S.H.. Computer vision-based structural displacement measurement robust to light-induced image degradation for in-service bridges. Sensors (Basel). 2017; 17(10): 2317.
|
[208] |
Park J.W., Moon D.S., Yoon H., Gomez F., Spencer B.F.Jr, Kim J.R.. Visual-inertial displacement sensing using data fusion of vision-based displacement with acceleration. Struct Contr Health Monit. 2018; 25(3): e2122.
|
[209] |
Schumacher T., Shariati A.. Monitoring of structures and mechanical systems using virtual visual sensors for video analysis: fundamental concept and proof of feasibility. Sensors (Basel). 2013; 13(12): 16551-16564.
|
[210] |
Yoon H., Elanwar H., Choi H., Golparvar-Fard M., Spencer B.F.Jr.. Target-free approach for vision-based structural system identification using consumer-grade cameras. Struct Contr Health Monit. 2016; 23(12): 1405-1416.
|
[211] |
Ye X.W., Yi T.H., Dong C.Z., Liu T., Bai H.. Multi-point displacement monitoring of bridges using a vision-based approach. Wind Struct. 2015; 20(2): 315-326.
|
[212] |
Abdelbarr M., Chen Y.L., Jahanshahi M.R., Masri S.F., Shen W.M., Qidwai U.A.. 3D dynamic displacement-field measurement for structural health monitoring using inexpensive RGB-D based sensor. Smart Mater Struct. 2017; 26(12): 125016.
|
[213] |
Ye X.W., Yi T.H., Dong C.Z., Liu T.. Vision-based structural displacement measurement: system performance evaluation and influence factor analysis. Measurement. 2016; 88: 372-384.
|
[214] |
Feng D., Feng M.Q.. Vision-based multipoint displacement measurement for structural health monitoring. Struct Contr Health Monit. 2016; 23(5): 876-890.
|
[215] |
Yoon H., Hoskere V., Park J.W., Spencer B.F.Jr.. Cross-correlation-based structural system identification using unmanned aerial vehicles. Sensors (Basel). 2017; 17(9): 2075.
|
[216] |
Chen J.G., Wadhwa N., Cha Y.J., Durand F., Freeman W.T., Buyukozturk O.. Modal identification of simple structures with high-speed video using motion magnification. J Sound Vibrat. 2015; 345: 58-71.
|
[217] |
Cha Y.J., Chen J.G., Büyüköztürk O.. Output-only computer vision based damage detection using phase-based optical flow and unscented Kalman filters. Eng Struct. 2017; 132: 300-313.
|
[218] |
Yang Y., Dorn C., Mancini T., Talken Z., Kenyon G., Farrar C.,
|
[219] |
Yang Y., Dorn C., Mancini T., Talken Z., Kenyon G., Farrar C.,
|
[220] |
Zaurin R., Khuc T., Catbas F.N.. Hybrid sensor-camera monitoring for damage detection: case study of a real bridge. J Bridge Eng. 2016; 21(6): 05016002.
|
[221] |
Pan B., Tian L., Song X.. Real-time, non-contact and targetless measurement of vertical deflection of bridges using off-axis digital image correlation. NDT E Int. 2016; 79: 73-80.
|
[222] |
Xu Y., Brownjohn J., Kong D.. A non-contact vision-based system for multipoint displacement monitoring in a cable-stayed footbridge. Struct Contr Health Monit. 2018; 25(5): e2155.
|
[223] |
Kim S.W., Kim N.S.. Dynamic characteristics of suspension bridge hanger cables using digital image processing. NDT E Int. 2013; 59: 25-33.
|
[224] |
Chen J.G.. Video camera-based vibration measurement of infrastructure [dissertation].
|
[225] |
Yoon H.. Enabling smart city resilience : post-disaster response and structural health monitoring [dissertation].
|
[226] |
Mas D., Ferrer B., Acevedo P., Espinosa J.. Methods and algorithms for video-based multi-point frequency measuring and mapping. Measurement. 2016; 85: 164-174.
|
[227] |
Chen Z., Li H., Bao Y., Li N., Jin Y.. Identification of spatio-temporal distribution of vehicle loads on long-span bridges using computer vision technology. Struct Contr Health Monit. 2016; 23(3): 517-534.
|
[228] |
Hoskere V, Park JW, Yoon H, Spencer BF Jr. Vision-based modal survey of civil infrastructure using unmanned aerial vehicles. J Struct Eng. In press.
|
[229] |
Ros G., Sellart L., Materzynska J., Vazquez D., Lopez A.M.. The SYNTHIA dataset: a large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition; 2016 Jun 27–30; Las Vegas, NV, USA. Piscataway: IEEE; 2016. p. 3234-3243.
|
[230] |
Blender.org [Internet]. Amsterdam: Stichting Blender Foundation; [cited 2018 Aug 1]. Available from: https://www.blender.org/.
|
[231] |
Hoskere V, Narazaki Y, Spencer BF Jr, Smith MD. Deep learning-based damage detection of miter gates using synthetic imagery from computer graphics. In: Proceedings of the 12th International Workshop on Structural Health Monitoring; 2019 Sep 10–12; Stanford, CA, USA; 2019. In press.
|
[232] |
Hoskere V, Narazaki Y, Spencer BF Jr. Learning to detect important visual changes for structural inspections using physics-based graphics models. In: 9th International Conference on Structural Health Monitoring of Intelligent Infrastructure; 2019 Aug 4–7; Louis, MO, USA; 2019. In press.
|
[233] |
Narazaki Y, Hoskere V, Hoang TA, Spencer BF Jr. Automated bridge component recognition using video data. In: Proceedings of the 7th World Conference on Structural Control and Monitoring; 2018 Jul 22–25; Qingdao, China; 2018.
|
[234] |
Shi X., Chen Z., Wang H., Yeung D.Y., Wong W., Woo W.. Convolutional LSTM network: a machine learning approach for precipitation nowcasting. In: Proceedings of the 28th International Conference on Neural Information Processing Systems: volume 1; 2015 Dec 7–12; Montreal, QC, Canada. Cambridge: MIT Press; 2015. p. 802-810.
|
[235] |
Unity3d.com [Internet]. San Francisco: Unity Technologies; c2019 [cited 2019 Feb 24]. Available from: https://unity3d.com/.
|
This research was supported in part by funding from the US Army Corps of Engineers under a project entitled “Cybermodeling: A Digital Surrogate Approach for Optimal Risk-Based Operations and Infrastructure” (W912HZ-17-2-0024).
Billie F. Spencer Jr., Vedhus Hoskere, and Yasutaka Narazaki declare that they have no conflict of interest or financial conflicts to disclose.
/
〈 |
|
〉 |