
Quality Control and Nonclinical Research on CAR-T Cell Products: General Principles and Key Issues
Yonghong Li, Yan Huo, Lei Yu, Junzhi Wang
Engineering ›› 2019, Vol. 5 ›› Issue (1) : 122-131.
Quality Control and Nonclinical Research on CAR-T Cell Products: General Principles and Key Issues
Adoptive cell therapy using chimeric antigen receptor T (CAR-T) cells, which is a promising cancer immunotherapy strategy, has been developing very rapidly in recent years. CAR-T cells are genetically modified T cells that can specifically recognize tumor specific antigens on the surface of tumor cells, and then effectively kill tumor cells. At present, exciting results are being achieved in clinical applications of CAR-T cells for patients with hematological malignancies. The research and development of CAR-T cells for various targets and for the treatment of solid tumors have become a hot topic worldwide, so an increasing number of investigational new drug applications (INDAs) and new drug applications (NDAs) of CAR-T cell products are expected to be submitted in future. The quality control and nonclinical research of these products are of great significance in ensuring the safety and effectiveness of these products; however, they also present great challenges and difficulties. This article discusses the general principles of and key issues regarding the quality control and nonclinical research of CAR-T cell products based on their product characteristics and on relevant guidelines for gene and cell therapy products.
Chimeric antigen receptor T cells / Quality control / Nonclinical research / Safety / Efficacy / Clinical trials / Cancer immunotherapy
[1] |
Landoni E., Savoldo B.. Treating hematological malignancies with cell therapy: where are we now?. Expert Opin Biol Ther. 2018; 18(1): 65-75.
|
[2] |
Li S., Yang Z., Shen J., Shan J., Qian C.. Adoptive therapy with CAR redirected T cells for hematological malignancies. Sci China Life Sci. 2016; 59(4): 370-378.
|
[3] |
Maude S.L., Laetsch T.W., Buechner J., Rives S., Boyer M., Bittencourt H.,
|
[4] |
Neelapu S.S., Locke F.L., Bartlett N.L., Lekakis L.J., Miklos D.B., Jacobson C.A.,
|
[5] |
Zhang E., Gu J., Xu H.. Prospects for chimeric antigen receptor-modified T cell therapy for solid tumors. Mol Cancer. 2018; 17(1): 7.
|
[6] |
Gauthier J., Yakoub-Agha I.. Chimeric antigen-receptor T-cell therapy for hematological malignancies and solid tumors: clinical data to date, current limitations and perspectives. Curr Res Transl Med. 2017; 65(3): 93-102.
|
[7] |
Geyer M.B., Brentjens R.J.. Review: current clinical applications of chimeric antigen receptor (CAR) modified T cells. Cytotherapy. 2016; 18(11): 1393-1409.
|
[8] |
Oluwole O.O., Davila M.L.. At the bedside: clinical review of chimeric antigen receptor (CAR) T cell therapy for B cell malignancies. J Leukoc Biol. 2016; 100(6): 1265-1272.
|
[9] |
Zhang B.L., Qin D.Y., Mo Z.M., Li Y., Wei W., Wang Y.S.,
|
[10] |
Newick K., O'Brien S., Moon E., Albelda S.M.. CAR T cell therapy for solid tumors. Annu Rev Med. 2017; 68: 139-152.
|
[11] |
Mirzaei H.R., Rodriguez A., Shepphird J., Brown C.E., Badie B.. Chimeric antigen receptors T cell therapy in solid tumor: challenges and clinical applications. Front Immunol. 2017; 8: 1850.
|
[12] |
US Department of Health and Human Services, Food and Drug Administration, Center for Biologics Evaluation and Research. Guidance for human somatic cell therapy and gene therapy. Hum Gene Ther. 2001; 12(3): 303-314.
|
[13] |
European Medicines Agency. Guideline on quality, non-clinical and clinical aspects of medicinal products containing genetically modified cells.
|
[14] |
European Medicines Agency. Guideline on human cell-based medicinal products.
|
[15] |
China Food and Drug Administration. Technical guideline on human cell therapy research and quality control of preparation. Chinese
|
[16] |
China Food and Drug Administration. Technical guideline on cell therapy product research and evaluation (trial). Chinese
|
[17] |
Petricciani J., Hayakawa T., Stacey G., Trouvin J.H., Knezevic I.. Scientific considerations for the regulatory evaluation of cell therapy products. Biologicals. 2017; 50: 20-26.
|
[18] |
Plavsic M.. Q5D: derivation and characterization of cell substrates used for production of biotechnological/biological products. In:
|
[19] |
World Health Organization. Recommendations for the evaluation of animal cell cultures as substrates for the manufacture of biological medicinal products and for the characterization of cell banks.
|
[20] |
The United States Pharmacopeial Convention. Ancillary materials for cell, gene and tissue engineered products. In: The United States pharmacopeia and the national formulary: general chapter <1043>. Rockville: The United States Pharmacopeial Convention; 2012. p. 6850-6858.
|
[21] |
Armstrong A.. Advances in assay technologies for CAR T-cell therapies. BioPharm Int. 2016; 28(2): 32-37.
|
[22] |
Piscopo NJ, Mueller KP, Das A, Hematti P, Murphy WL, Palecek SP, et al. Bioengineering solutions for manufacturing challenges in CAR T cells.Biotechnol J. Epub 2017 Sep 18.
|
[23] |
Gee A.P.. Manufacturing genetically modified T cells for clinical trials. Cancer Gene Ther. 2015; 22(2): 67-71.
|
[24] |
Hollyman D., Stefanski J., Przybylowski M., Bartido S., Borquez-Ojeda O., Taylor C.,
|
[25] |
Tumaini B., Lee D.W., Lin T., Castiello L., Stroncek D.F., Mackall C.,
|
[26] |
Center for Drug Evaluation of the China Food and Drug Administration. Current considerations for non-clinical research and evaluation of CAR-T products. Chinese
|
[27] |
National Institutes for Food and Drug Control. Notice on the publication of “Considerations for quality control testing and non-clinical research of CAR-T cell therapy products”. Chinese
|
[28] |
Siegler E.L., Wang P.. Preclinical models in chimeric antigen receptor-engineered T-cell therapy. Hum Gene Ther. 2018; 29(5): 534-546.
|
[29] |
Hudecek M., Sommermeyer D., Kosasih P.L., Silva-Benedict A., Liu L., Rader C.,
|
[30] |
Cooper L.J., Al-Kadhimi Z., Serrano L.M., Pfeiffer T., Olivares S., Castro A.,
|
[31] |
Haso W., Lee D.W., Shah N.N., Stetler-Stevenson M., Yuan C.M., Pastan I.H.,
|
[32] |
Hudecek M., Lupo-Stanghellini M.T., Kosasih P.L., Sommermeyer D., Jensen M.C., Rader C.,
|
[33] |
Tammana S., Huang X., Wong M., Milone M.C., Ma L., Levine B.L.,
|
[34] |
Fesnak A.D., June C.H., Levine B.L.. Engineered T cells: the promise and challenges of cancer immunotherapy. Nat Rev Cancer. 2016; 16(9): 566-581.
|
[35] |
Jackson H.J., Rafiq S., Brentjens R.J.. Driving CAR T-cells forward. Nat Rev Clin Oncol. 2016; 13(6): 370-383.
|
[36] |
Sadelain M., Brentjens R., Rivière I.. The basic principles of chimeric antigen receptor design. Cancer Discov. 2013; 3(4): 388-398.
|
[37] |
Sommermeyer D., Hudecek M., Kosasih P.L., Gogishvili T., Maloney D.G., Turtle C.J.,
|
[38] |
Ghosh A., Smith M., James S.E., Davila M.L., Velardi E., Argyropoulos K.V.,
|
[39] |
Liu L., Sommermeyer D., Cabanov A., Kosasih P., Hill T., Riddell S.R.. Inclusion of Strep-tag II in design of antigen receptors for T-cell immunotherapy. Nat Biotechnol. 2016; 34(4): 430-434.
|
[40] |
Almåsbak H., Walseng E., Kristian A., Myhre M.R., Suso E.M., Munthe L.A.,
|
[41] |
Li Y.H., Rao C.M., Zhao Y., Gao K., Yuan L.Y., Han C.M.,
|
[42] |
Li Y.H., Zang Y.C., Yuan L.Y., Shi X.C., Rao C.M., Wang J.Z.. Study on quality control methods and requirements of recombinant plasmid DNA expressing human plasminogen kringle 5. Chin J Pharm Anal. 2008; 28(5): 661-666. Chinese
|
[43] |
Fu Z.H., Gao K., Li Y.H., Li X., Tai L., Wang L.,
|
[44] |
Wang X., Rivière I.. Manufacture of tumor- and virus-specific T lymphocytes for adoptive cell therapies. Cancer Gene Ther. 2015; 22(2): 85-94.
|
[45] |
Singh H., Figliola M.J., Dawson M.J., Olivares S., Zhang L., Yang G.,
|
[46] |
Center for Biologics Evaluation and Research [CBER] (United States). Guidance for industry: supplemental guidance on testing for replication-competent retrovirus in retroviral vector based gene therapy products and during follow-up of patients in clinical trials using retroviral vectors. Hum Gene Ther. 2001; 12(3): 315-320.
|
[47] |
Cornetta K., Yao J., Jasti A., Koop S., Douglas M., Hsu D.,
|
[48] |
Long Z., Li L.P., Grooms T., Lockey C., Nader K., Mychkovsky I.,
|
[49] |
Martineau D., Klump W.M., McCormack J.E., DePolo N.J., Kamantigue E., Petrowski M.,
|
[50] |
Printz M., Reynolds J., Mento S.J., Jolly D., Kowal K., Sajjadi N.. Recombinant retroviral vector interferes with the detection of amphotropic replication competent retrovirus in standard culture assays. Gene Ther. 1995; 2(2): 143-150.
|
[51] |
Forestell S.P., Dando J.S., Böhnlein E., Rigg R.J.. Improved detection of replication-competent retrovirus. J Virol Methods. 1996; 60(2): 171-178.
|
[52] |
Miller A.D., Bonham L., Alfano J., Kiem H.P., Reynolds T., Wolgamot G.. A novel murine retrovirus identified during testing for helper virus in human gene transfer trials. J Virol. 1996; 70(3): 1804-1809.
|
[53] |
Escarpe P., Zayek N., Chin P., Borellini F., Zufferey R., Veres G.,
|
[54] |
Farley D.C., McCloskey L., Thorne B.A., Tareen S.U., Nicolai C.J., Campbell D.J.,
|
[55] |
Corre G., Dessainte M., Marteau J.B., Dalle B., Fenard D., Galy A.. “RCL-pooling assay”: a simplified method for the detection of replication-competent lentiviruses in vector batches using sequential pooling. Hum Gene Ther. 2016; 27(2): 202-210.
|
[56] |
Bear A.S., Morgan R.A., Cornetta K., June C.H., Binder-Scholl G., Dudley M.E.,
|
[57] |
McGarrity G.J., Hoyah G., Winemiller A., Andre K., Stein D., Blick G.,
|
[58] |
Marcucci K.T., Jadlowsky J.K., Hwang W.T., Suhoski-Davis M., Gonzalez V.E., Kulikovskaya I.,
|
[59] |
Cornetta K., Duffy L., Turtle C.J., Jensen M., Forman S., Binder-Scholl G.,
|
[60] |
Hocquet D., Sauget M., Roussel S., Malugani C., Pouthier F., Morel P.,
|
[61] |
Volokhov D.V., Graham L.J., Brorson K.A., Chizhikov V.E.. Mycoplasma testing of cell substrates and biologics: review of alternative non-microbiological techniques. Mol Cell Probes. 2011; 25(2–3): 69-77.
|
[62] |
Uphoff C.C., Drexler H.G.. Eradication of mycoplasma contaminations from cell cultures. Curr Protoc Mol Biol. 2014; 106: 28.5.1–12
|
[63] |
Skrdlant L.M., Armstrong R.J., Keidaisch B.M., Lorente M.F., DiGiusto D.L.. Detection of replication competent lentivirus using a qPCR assay for VSV-G. Mol Ther Methods Clin Dev. 2017; 8: 1-7.
|
[64] |
Mallet L., Gisonni-Lex L.. Need for new technologies for detection of adventitious agents in vaccines and other biological products. PDA J Pharm Sci Technol. 2014; 68(6): 556-562.
|
[65] |
Mee E.T., Preston M.D., Minor P.D., Schepelmann S., CS533 Study Participants. Development of a candidate reference material for adventitious virus detection in vaccine and biologicals manufacturing by deep sequencing. Vaccine. 2016; 34(17): 2035-2043.
|
[66] |
McClenahan S.D., Uhlenhaut C., Krause P.R.. Evaluation of cells and biological reagents for adventitious agents using degenerate primer PCR and massively parallel sequencing. Vaccine. 2014; 32(52): 7115-7121.
|
[67] |
US Department of Health and Human Services, Food and Drug Administration, Center for Biologics Evaluation and Research. Guidance for industry—potency tests for cellular and gene therapy products.
|
[68] |
Bravery C.A., Carmen J., Fong T., Oprea W., Hoogendoorn K.H., Woda J.,
|
[69] |
Xiong W., Chen Y., Kang X., Chen Z., Zheng P., Hsu Y.H.,
|
[70] |
Levine B.L., Miskin J., Wonnacott K., Keir C.. Global manufacturing of CAR T cell therapy. Mol Ther Methods Clin Dev. 2016; 4: 92-101.
|
[71] |
Revzin A., Maverakis E., Chang H.C.. Biosensors for immune cell analysis—a perspective. Biomicrofluidics. 2012; 6(2): 021301.
|
[72] |
Baradez M.O., Marshall D.. The use of multidimensional image-based analysis to accurately monitor cell growth in 3D bioreactor culture. PLoS ONE. 2011; 6(10): e26104.
|
[73] |
Aghaeepour N., Finak G., Hoos H., Mosmann T.R., Brinkman R., Gottardo R.,
|
[74] |
Kuystermans D., Avesh M., Al-Rubeai M.. Online flow cytometry for monitoring apoptosis in mammalian cell cultures as an application for process analytical technology. Cytotechnology. 2016; 68(3): 399-408.
|
[75] |
Locasale J.W., Cantley L.C.. Metabolic flux and the regulation of mammalian cell growth. Cell Metab. 2011; 14(4): 443-451.
|
[76] |
Lipsitz Y.Y., Timmins N.E., Zandstra P.W.. Quality cell therapy manufacturing by design. Nat Biotechnol. 2016; 34(4): 393-400.
|
[77] |
Fesnak A.D., Hanley P.J., Levine B.L.. Considerations in T cell therapy product development for B cell leukemia and lymphoma immunotherapy. Curr Hematol Malig Rep. 2017; 12(4): 335-343.
|
[78] |
Lock D., Mockel-Tenbrinck N., Drechsel K., Barth C., Mauer D., Schaser T.,
|
[79] |
Zhao Y., Stepto H., Schneider C.K.. Organization lentiviral vector standard: toward the production control and standardization of lentivirus-based gene therapy products. Hum Gene Ther Methods. 2017; 28(4): 205-214.
|
[80] |
Wang Y.S., Tian Z.G.. Construction and application of humanized immune system mice. Chin J Immunol. 2016; 32(3): 289-298. Chinese
|
[81] |
Siegler E.L., Wang P.. Preclinical models in chimeric antigen receptor-engineered T cell therapy. Hum Gene Ther. 2018; 29(5): 534-546.
|
[82] |
Cheadle E.J., Hawkins R.E., Batha H., O'Neill A.L., Dovedi S.J., Gilham D.E.. Natural expression of the CD19 antigen impacts the long-term engraftment but not antitumor activity of CD19-specific engineered T cells. J Immunol. 2010; 184(4): 1885-1896.
|
[83] |
Bonifant C.L., Jackson H.J., Brentjens R.J., Curran K.J.. Toxicity and management in CAR T-cell therapy. Mol Ther Oncolytics. 2016; 3: 16011.
|
/
〈 |
|
〉 |