FOXP3 and Its Cofactors as Targets of Immunotherapies

Yasuhiro Nagai, Lian Lam, Mark I. Greene, Hongtao Zhang

Engineering ›› 2019, Vol. 5 ›› Issue (1) : 115-121.

PDF(585 KB)
PDF(585 KB)
Engineering ›› 2019, Vol. 5 ›› Issue (1) : 115-121. DOI: 10.1016/j.eng.2019.01.001
Research
Review Immunology—Review

FOXP3 and Its Cofactors as Targets of Immunotherapies

Author information +
History +

Abstract

Forkhead box P3 (FOXP3) is a “master regulator” of regulatory T cells (Tregs), which are a subset of T cells that can suppress the antigen-specific immune reaction and that play important roles in host tolerance and immune homeostasis. It is well known that FOXP3 forms complexes with several proteins and can be regulated by various post-translational modifications (PTMs) such as acetylation, phosphorylation, ubiquitination, and methylation. As a consequence, the PTMs change the stability of FOXP3 and its capability to regulate gene expression, and eventually affect Treg activity. Although FOXP3 per se is not an ideal drug target, deacetylases, acetyltransferases, kinases, and other enzymes that regulate the PTMs of FOXP3 are potential targets to modulate FOXP3 and Treg activity. However, FOXP3 is not the only substrate for most of these enzymes; thus, unwanted “on target/off FOXP3” side effects must be considered when inhibitors to these enzymes are used. In this review, we summarize recent progress in the study of FOXP3 cofactors and PTM proteins, and potential clinical applications in autoimmunity and cancer immunity.

Keywords

Treg / Forkhead box P3 (FOXP3) / Post-translational modification / Autoimmune / Cancer

Cite this article

Download citation ▾
Yasuhiro Nagai, Lian Lam, Mark I. Greene, Hongtao Zhang. FOXP3 and Its Cofactors as Targets of Immunotherapies. Engineering, 2019, 5(1): 115‒121 https://doi.org/10.1016/j.eng.2019.01.001

References

[1]
Sakaguchi S., Sakaguchi N., Asano M., Itoh M., Toda M.. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor α-chains (CD25). Breakdown of a single mechanism of selftolerance causes various autoimmune diseases. J Immunol. 1995; 155(3): 1151-1164.
[2]
Hori S., Nomura T., Sakaguchi S.. Control of regulatory T cell development by the transcription factor Foxp3. Science. 2003; 299(5609): 1057-1061.
[3]
Ramsdell F., Ziegler S.F.. FOXP3 and scurfy: how it all began. Nat Rev Immunol. 2014; 14(5): 343-349.
[4]
Deng G., Xiao Y., Zhou Z., Nagai Y., Zhang H., Li B., . Molecular and biological role of the FOXP3 N-terminal domain in immune regulation by T regulatory/suppressor cells. Exp Mol Pathol. 2012; 93(3): 334-338.
[5]
Song X., Li B., Xiao Y., Chen C., Wang Q., Liu Y., . Structural and biological features of FOXP3 dimerization relevant to regulatory T cell function. Cell Rep. 2012; 1(6): 665-675.
[6]
Brunkow M.E., Jeffery E.W., Hjerrild K.A., Paeper B., Clark L.B., Yasayko S.A., . Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat Genet. 2001; 27(1): 68-73.
[7]
Chatila T.A., Blaeser F., Ho N., Lederman H.M., Voulgaropoulos C., Helms C., . JM2, encoding a fork head-related protein, is mutated in X-linked autoimmunity-allergic disregulation syndrome. J Clin Invest. 2000; 106(12): R75-R81.
[8]
Bennett C.L., Christie J., Ramsdell F., Brunkow M.E., Ferguson P.J., Whitesell L., . The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet. 2001; 27(1): 20-21.
[9]
Barzaghi F., Passerini L., Bacchetta R.. Immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome: a paradigm of immunodeficiency with autoimmunity. Front Immunol. 2012; 3: 211.
[10]
d’Hennezel E., Ben-Shoshan M., Ochs H.D., Torgerson T.R., Russell L.J., Lejtenyi C., . FOXP3 forkhead domain mutation and regulatory T cells in the IPEX syndrome. N Engl J Med. 2009; 361(17): 1710-1713.
[11]
Bacchetta R., Barzaghi F., Roncarolo M.G.. From IPEX syndrome to FOXP3 mutation: a lesson on immune dysregulation. Ann N Y Acad Sci. 2018; 1417(1): 5-22.
[12]
Li B., Greene M.I.. FOXP3 actively represses transcription by recruiting the HAT/HDAC complex. Cell Cycle. 2007; 6(12): 1431-1435.
[13]
Rudra D., deRoos P., Chaudhry A., Niec R.E., Arvey A., Samstein R.M., . Transcription factor Foxp3 and its protein partners form a complex regulatory network. Nat Immunol. 2012; 13(10): 1010-1019.
[14]
Kwon H.K., Chen H.M., Mathis D., Benoist C.. Different molecular complexes that mediate transcriptional induction and repression by Foxp3. Nat Immunol. 2017; 18(11): 1238-1248.
[15]
Vaeth M., Schliesser U., Müller G., Reissig S., Satoh K., Tuettenberg A., . Dependence on nuclear factor of activated T-cells (NFAT) levels discriminates conventional T cells from Foxp3+ regulatory T cells. Proc Natl Acad Sci USA. 2012; 109(40): 16258-16263.
[16]
Wu Y., Borde M., Heissmeyer V., Feuerer M., Lapan A.D., Stroud J.C., . FOXP3 controls regulatory T cell function through cooperation with NFAT. Cell. 2006; 126(2): 375-387.
[17]
Ono M., Yaguchi H., Ohkura N., Kitabayashi I., Nagamura Y., Nomura T., . Foxp3 controls regulatory T-cell function by interacting with AML1/RUNX1. Nature. 2007; 446(7136): 685-689.
[18]
Lu L., Barbi J., Pan F.. The regulation of immune tolerance by FOXP3. Nat Rev Immunol. 2017; 17(11): 703-717.
[19]
Rudra D., Egawa T., Chong M.M., Treuting P., Littman D.R., Rudensky A.Y.. RUNX-CBFβ complexes control expression of the transcription factor Foxp3 in regulatory T cells. Nat Immunol. 2009; 10(11): 1170-1177.
[20]
Ruan Q., Kameswaran V., Tone Y., Li L., Liou H.C., Greene M.I., . Development of Foxp3+ regulatory T cells is driven by the c-Rel enhanceosome. Immunity. 2009; 31(6): 932-940.
[21]
Grinberg-Bleyer Y., Oh H., Desrichard A., Bhatt D.M., Caron R., Chan T.A., . NF-κB c-Rel is crucial for the regulatory T cell immune checkpoint in cancer. Cell. 2017; 170(6): 1096–108.e13
[22]
Oh H., Grinberg-Bleyer Y., Liao W., Maloney D., Wang P., Wu Z., . An NF-κB transcription-factor-dependent lineage-specific transcriptional program promotes regulatory T cell identity and function. Immunity. 2017; 47(3): 450–65.e5
[23]
Zheng Y., Chaudhry A., Kas A., deRoos P., Kim J.M., Chu T.T., . Regulatory T-cell suppressor program co-opts transcription factor IRF4 to control TH2 responses. Nature. 2009; 458(7236): 351-356.
[24]
Pan F., Yu H., Dang E.V., Barbi J., Pan X., Grosso J.F., . Eos mediates Foxp3-dependent gene silencing in CD4+ regulatory T cells. Science. 2009; 325(5944): 1142-1146.
[25]
Sebastian M., Lopez-Ocasio M., Metidji A., Rieder S.A., Shevach E.M., Thornton A.M.. Helios controls a limited subset of regulatory T cell functions. J Immunol. 2016; 196(1): 144-155.
[26]
Zhou L., Lopes J.E., Chong M.M., Ivanov I.I., Min R., Victora G.D., . TGF-β-induced Foxp3 inhibits TH17 cell differentiation by antagonizing RORγt function. Nature. 2008; 453(7192): 236-240.
[27]
Kluger M.A., Meyer M.C., Nosko A., Goerke B., Luig M., Wegscheid C., . RORγt+Foxp3+ cells are an independent bifunctional regulatory T cell lineage and mediate crescentic GN. J Am Soc Nephrol. 2016; 27(2): 454-465.
[28]
Du J., Huang C., Zhou B., Ziegler S.F.. Isoform-specific inhibition of RORα-mediated transcriptional activation by human FOXP3. J Immunol. 2008; 180(7): 4785-4792.
[29]
Dang E.V., Barbi J., Yang H.Y., Jinasena D., Yu H., Zheng Y., . Control of TH17/Treg balance by hypoxia-inducible factor 1. Cell. 2011; 146(5): 772-784.
[30]
Chaudhry A., Rudra D., Treuting P., Samstein R.M., Liang Y., Kas A., . CD4+ regulatory T cells control TH17 responses in a STAT3-dependent manner. Science. 2009; 326(5955): 986-991.
[31]
Huang C., Martin S., Pfleger C., Du J., Buckner J.H., Bluestone J.A., . Cutting edge: a novel, human-specific interacting protein couples FOXP3 to a chromatin-remodeling complex that contains KAP1/TRIM28. J Immunol. 2013; 190(9): 4470-4473.
[32]
Tanaka S., Pfleger C., Lai J.F., Roan F., Sun S.C., Ziegler S.F.. KAP1 regulates regulatory T cell function and proliferation in both FOXP3-dependent and -independent manners. Cell Rep. 2018; 23(3): 796-807.
[33]
Hwang S.S., Jang S.W., Kim M.K., Kim L.K., Kim B.S., Kim H.S., . YY1 inhibits differentiation and function of regulatory T cells by blocking FOXP3 expression and activity. Nat Commun. 2016; 7(1): 10789.
[34]
DuPage M., Chopra G., Quiros J., Rosenthal W.L., Morar M.M., Holohan D., . The chromatin-modifying enzyme EZH2 is critical for the maintenance of regulatory T cell identity after activation. Immunity. 2015; 42(2): 227-238.
[35]
Rubtsov Y.P., Rasmussen J.P., Chi E.Y., Fontenot J., Castelli L., Ye X., . Regulatory T cell-derived interleukin-10 limits inflammation at environmental interfaces. Immunity. 2008; 28(4): 546-558.
[36]
van Loosdregt J., Coffer P.J.. Post-translational modification networks regulating FOXP3 function. Trends Immunol. 2014; 35(8): 368-378.
[37]
Xiao Y., Nagai Y., Deng G., Ohtani T., Zhu Z., Zhou Z., . Dynamic interactions between Tip60 and p300 regulate FOXP3 function through a structural switch defined by a single lysine on Tip60. Cell Rep. 2014; 7(5): 1471-1480.
[38]
Liu Y., Wang L., Predina J., Han R., Beier U.H., Wang L.C., . Inhibition of p300 impairs Foxp3+ T regulatory cell function and promotes antitumor immunity. Nat Med. 2013; 19(9): 1173-1177.
[39]
Liu Y., Wang L., Han R., Beier U.H., Akimova T., Bhatti T., . Two histone/protein acetyltransferases, CBP and p300, are indispensable for Foxp3+ T-regulatory cell development and function. Mol Cell Biol. 2014; 34(21): 3993-4007.
[40]
Wang L., Liu Y., Han R., Beier U.H., Bhatti T.R., Akimova T., . FOXP3+ regulatory T cell development and function require histone/protein deacetylase 3. J Clin Invest. 2015; 125(8): 3304.
[41]
de Zoeten E.F., Wang L., Butler K., Beier U.H., Akimova T., Sai H., . Histone deacetylase 6 and heat shock protein 90 control the functions of Foxp3+ T-regulatory cells. Mol Cell Biol. 2011; 31(10): 2066-2078.
[42]
de Zoeten E.F., Wang L., Sai H., Dillmann W.H., Hancock W.W.. Inhibition of HDAC9 increases T regulatory cell function and prevents colitis in mice. Gastroenterology. 2010; 138(2): 583-594.
[43]
Huang J., Wang L., Dahiya S., Beier U.H., Han R., Samanta A., . Histone/protein deacetylase 11 targeting promotes Foxp3+ Treg function. Sci Rep. 2017; 7(1): 8626.
[44]
Beier U.H., Wang L., Bhatti T.R., Liu Y., Han R., Ge G., . Sirtuin-1 targeting promotes Foxp3+ T-regulatory cell function and prolongs allograft survival. Mol Cell Biol. 2011; 31(5): 1022-1029.
[45]
Deng G., Nagai Y., Xiao Y., Li Z., Dai S., Ohtani T., . Pim-2 kinase influences regulatory T cell function and stability by mediating Foxp3 protein N-terminal phosphorylation. J Biol Chem. 2015; 290(33): 20211-20220.
[46]
Chunder N., Wang L., Chen C., Hancock W.W., Wells A.D.. Cyclin-dependent kinase 2 controls peripheral immune tolerance. J Immunol. 2012; 189(12): 5659-5666.
[47]
Zhao Y., Guo H., Qiao G., Zucker M., Langdon W.Y., Zhang J.. E3 ubiquitin ligase Cbl-b regulates thymic-derived CD4+CD25+ regulatory T cell development by targeting Foxp3 for ubiquitination. J Immunol. 2015; 194(4): 1639-1645.
[48]
Wang L., Kumar S., Dahiya S., Wang F., Wu J., Newick K., . Ubiquitin-specific protease-7 inhibition impairs Tip60-dependent Foxp3+ T-regulatory cell function and promotes antitumor immunity. EBioMedicine. 2016; 13: 99-112.
[49]
Li Y., Lu Y., Wang S., Han Z., Zhu F., Ni Y., . USP21 prevents the generation of T-helper-1-like Treg cells. Nat Commun. 2016; 7(1): 13559.
[50]
van Loosdregt J., Vercoulen Y., Guichelaar T., Gent Y.Y., Beekman J.M., van Beekum O., . Regulation of Treg functionality by acetylation-mediated Foxp3 protein stabilization. Blood. 2010; 115(5): 965-974.
[51]
Li B., Samanta A., Song X., Iacono K.T., Bembas K., Tao R., . FOXP3 interactions with histone acetyltransferase and class II histone deacetylases are required for repression. Proc Natl Acad Sci USA. 2007; 104(11): 4571-4576.
[52]
Du T., Nagai Y., Xiao Y., Greene M.I., Zhang H.. Lysosome-dependent p300/FOXP3 degradation and limits Treg cell functions and enhances targeted therapy against cancers. Exp Mol Pathol. 2013; 95(1): 38-45.
[53]
Chan H.M., La Thangue N.B.. p300/CBP proteins: HATs for transcriptional bridges and scaffolds. J Cell Sci. 2001; 114(Pt 13): 2363-2373.
[54]
Bolden J.E., Peart M.J., Johnstone R.W.. Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov. 2006; 5(9): 769-784.
[55]
Li B., Samanta A., Song X., Iacono K.T., Brennan P., Chatila T.A., . FOXP3 is a homo-oligomer and a component of a supramolecular regulatory complex disabled in the human XLAAD/IPEX autoimmune disease. Int Immunol. 2007; 19(7): 825-835.
[56]
Fischle W., Dequiedt F., Fillion M., Hendzel M.J., Voelter W., Verdin E.. Human HDAC7 histone deacetylase activity is associated with HDAC3 in vivo. J Biol Chem. 2001; 276(38): 35826-35835.
[57]
Beier U.H., Wang L., Han R., Akimova T., Liu Y., Hancock W.W.. Histone deacetylases 6 and 9 and sirtuin-1 control Foxp3+ regulatory T cell function through shared and isoform-specific mechanisms. Sci Signal. 2012; 5(229): ra45.
[58]
van Loosdregt J., Brunen D., Fleskens V., Pals C.E., Lam E.W., Coffer P.J.. Rapid temporal control of Foxp3 protein degradation by sirtuin-1. PLoS ONE. 2011; 6(4): e19047.
[59]
Xie X., Stubbington M.J., Nissen J.K., Andersen K.G., Hebenstreit D., Teichmann S.A., . The regulatory T cell lineage factor Foxp3 regulates gene expression through several distinct mechanisms mostly independent of direct DNA binding. PLoS Genet. 2015; 11(6): e1005251.
[60]
Samanta A., Li B., Song X., Bembas K., Zhang G., Katsumata M., . TGF-β and IL-6 signals modulate chromatin binding and promoter occupancy by acetylated FOXP3. Proc Natl Acad Sci USA. 2008; 105(37): 14023-14027.
[61]
Morawski P.A., Mehra P., Chen C., Bhatti T., Wells A.D.. Foxp3 protein stability is regulated by cyclin-dependent kinase 2. J Biol Chem. 2013; 288(34): 24494-24502.
[62]
Li Z., Lin F., Zhuo C., Deng G., Chen Z., Yin S., . Pim1 kinase phosphorylates the human transcription factor FOXP3 at serine 422 to negatively regulate its activity under inflammation. J Biol Chem. 2014; 289(39): 26872-26881.
[63]
Nie H., Zheng Y., Li R., Guo T.B., He D., Fang L., . Phosphorylation of FOXP3 controls regulatory T cell function and is inhibited by TNF-α in rheumatoid arthritis. Nat Med. 2013; 19(3): 322-328.
[64]
Basu S., Golovina T., Mikheeva T., June C.H., Riley J.L.. Cutting edge: Foxp3-mediated induction of Pim 2 allows human T regulatory cells to preferentially expand in rapamycin. J Immunol. 2008; 180(9): 5794-5798.
[65]
Nakahira K., Morita A., Kim N.S., Yanagihara I.. Phosphorylation of FOXP3 by LCK downregulates MMP9 expression and represses cell invasion. PLoS ONE. 2013; 8(10): e77099.
[66]
Dikic I., Wakatsuki S., Walters K.J.. Ubiquitin-binding domains—from structures to functions. Nat Rev Mol Cell Biol. 2009; 10(10): 659-671.
[67]
Komander D., Rape M.. The ubiquitin code. Annu Rev Biochem. 2012; 81(1): 203-229.
[68]
Chen L., Wu J., Pier E., Zhao Y., Shen Z.. mTORC2-PKBα/AKT1 serine 473 phosphorylation axis is essential for regulation of FOXP3 stability by chemokine CCL3 in psoriasis. J Invest Dermatol. 2013; 133(2): 418-428.
[69]
Abu-Eid R., Samara R.N., Ozbun L., Abdalla M.Y., Berzofsky J.A., Friedman K.M., . Selective inhibition of regulatory T cells by targeting the PI3K-AKT pathway. Cancer Immunol Res. 2014; 2(11): 1080-1089.
[70]
Chen Z., Barbi J., Bu S., Yang H.Y., Li Z., Gao Y., . The ubiquitin ligase Stub1 negatively modulates regulatory T cell suppressive activity by promoting degradation of the transcription factor Foxp3. Immunity. 2013; 39(2): 272-285.
[71]
van Loosdregt J., Fleskens V., Fu J., Brenkman A.B., Bekker C.P., Pals C.E., . Stabilization of the transcription factor Foxp3 by the deubiquitinase USP7 increases Treg-cell-suppressive capacity. Immunity. 2013; 39(2): 259-271.
[72]
Geoghegan V., Guo A., Trudgian D., Thomas B., Acuto O.. Comprehensive identification of arginine methylation in primary T cells reveals regulatory roles in cell signalling. Nat Commun. 2015; 6(1): 6758.
[73]
Stopa N., Krebs J.E., Shechter D.. The PRMT5 arginine methyltransferase: many roles in development, cancer and beyond. Cell Mol Life Sci. 2015; 72(11): 2041-2059.
[74]
Tao J.H., Cheng M., Tang J.P., Liu Q., Pan F., Li X.P.. Foxp3, regulatory T cell, and autoimmune diseases. Inflammation. 2017; 40(1): 328-339.
[75]
Tanaka A., Sakaguchi S.. Regulatory T cells in cancer immunotherapy. Cell Res. 2017; 27(1): 109-118.
[76]
Tao R., Hancock W.W.. Regulating regulatory T cells to achieve transplant tolerance. Hepatobiliary Pancreat Dis Int. 2007; 6(4): 348-357.
[77]
Tao R., de Zoeten E.F., Ozkaynak E., Chen C., Wang L., Porrett P.M., . Deacetylase inhibition promotes the generation and function of regulatory T cells. Nat Med. 2007; 13(11): 1299-1307.
[78]
Saouaf S.J., Li B., Zhang G., Shen Y., Furuuchi N., Hancock W.W., . Deacetylase inhibition increases regulatory T cell function and decreases incidence and severity of collagen-induced arthritis. Exp Mol Pathol. 2009; 87(2): 99-104.
[79]
Nagai Y., Limberis M.P., Zhang H.. Modulation of Treg function improves adenovirus vector-mediated gene expression in the airway. Gene Ther. 2014; 21(2): 219-224.
[80]
Zhang Z.Y., Schluesener H.J.. HDAC inhibitor MS-275 attenuates the inflammatory reaction in rat experimental autoimmune prostatitis. Prostate. 2012; 72(1): 90-99.
[81]
Wang L., Tao R., Hancock W.W.. Using histone deacetylase inhibitors to enhance Foxp3+ regulatory T-cell function and induce allograft tolerance. Immunol Cell Biol. 2009; 87(3): 195-202.
[82]
Thomas A., Rajan A., Szabo E., Tomita Y., Carter C.A., Scepura B., . A phase I/II trial of belinostat in combination with cisplatin, doxorubicin, and cyclophosphamide in thymic epithelial tumors: a clinical and translational study. Clin Cancer Res. 2014; 20(21): 5392-5402.
[83]
Terranova-Barberio M., Thomas S., Ali N., Pawlowska N., Park J., Krings G., . HDAC inhibition potentiates immunotherapy in triple negative breast cancer. Oncotarget. 2017; 8(69): 114156-114172.
[84]
Murali R., Cheng X., Berezov A., Du X., Schön A., Freire E., . Disabling TNF receptor signaling by induced conformational perturbation of tryptophan-107. Proc Natl Acad Sci USA. 2005; 102(31): 10970-10975.
[85]
Bin Dhuban K., d’Hennezel E., Nagai Y., Xiao Y., Shao S., Istomine R., . Suppression by human FOXP3+ regulatory T cells requires FOXP3–Tip60 interactions. Sci Immunol. 2017; 2(12): eaai9297.
[86]
Wang D., Quiros J., Mahuron K., Pai C.C., Ranzani V., Young A., . Targeting EZH2 reprograms intratumoral regulatory T cells to enhance cancer immunity. Cell Rep. 2018; 23(11): 3262-3274.
[87]
Li Y., Strick-Marchand H., Lim A.I., Ren J., Masse-Ranson G., Li D., . Regulatory T cells control toxicity in a humanized model of IL-2 therapy. Nat Commun. 2017; 8(1): 1762.
[88]
Trotta E., Bessette P.H., Silveria S.L., Ely L.K., Jude K.M., Le D.T., . A human anti-IL-2 antibody that potentiates regulatory T cells by a structure-based mechanism. Nat Med. 2018; 24(7): 1005-1014.
[89]
Biswas S., Rao C.M.. Epigenetics in cancer: fundamentals and beyond. Pharmacol Ther. 2017; 173: 118-134.
[90]
Pfister S.X., Ashworth A.. Marked for death: targeting epigenetic changes in cancer. Nat Rev Drug Discov. 2017; 16(4): 241-263.
[91]
Yang Y., Bedford M.T.. Protein arginine methyltransferases and cancer. Nat Rev Cancer. 2013; 13(1): 37-50.
[92]
Lozano T., Villanueva L., Durántez M., Gorraiz M., Ruiz M., Belsúe V., . Inhibition of FOXP3/NFAT interaction enhances T cell function after TCR stimulation. J Immunol. 2015; 195(7): 3180-3189.
[93]
Lozano T., Gorraiz M., Lasarte-Cía A., Ruiz M., Rabal O., Oyarzabal J., . Blockage of FOXP3 transcription factor dimerization and FOXP3/AML1 interaction inhibits T regulatory cell activity: sequence optimization of a peptide inhibitor. Oncotarget. 2017; 8(42): 71709-71724.
[94]
Mathur D., Prakash S., Anand P., Kaur H., Agrawal P., Mehta A., . PEPlife: a repository of the half-life of peptides. Sci Rep. 2016; 6: 36617.
[95]
Craik D.J., Fairlie D.P., Liras S., Price D.. The future of peptide-based drugs. Chem Biol Drug Des. 2013; 81(1): 136-147.
Acknowledgement

We acknowledge grant supports from the Breast Cancer Research Foundation and the National Institutes of Health to M.I. Greene (RO1CA219034).

Compliance with ethics guidelines

Yasuhiro Nagai, Lian Lam, Mark I. Greene, and Hongtao Zhang declare that they have no conflict of interest or financial conflicts to disclose.

RIGHTS & PERMISSIONS

2019 THE AUTHORS
AI Summary AI Mindmap
PDF(585 KB)

Accesses

Citations

Detail

Sections
Recommended

/