
FOXP3 and Its Cofactors as Targets of Immunotherapies
Yasuhiro Nagai, Lian Lam, Mark I. Greene, Hongtao Zhang
Engineering ›› 2019, Vol. 5 ›› Issue (1) : 115-121.
FOXP3 and Its Cofactors as Targets of Immunotherapies
Forkhead box P3 (FOXP3) is a “master regulator” of regulatory T cells (Tregs), which are a subset of T cells that can suppress the antigen-specific immune reaction and that play important roles in host tolerance and immune homeostasis. It is well known that FOXP3 forms complexes with several proteins and can be regulated by various post-translational modifications (PTMs) such as acetylation, phosphorylation, ubiquitination, and methylation. As a consequence, the PTMs change the stability of FOXP3 and its capability to regulate gene expression, and eventually affect Treg activity. Although FOXP3 per se is not an ideal drug target, deacetylases, acetyltransferases, kinases, and other enzymes that regulate the PTMs of FOXP3 are potential targets to modulate FOXP3 and Treg activity. However, FOXP3 is not the only substrate for most of these enzymes; thus, unwanted “on target/off FOXP3” side effects must be considered when inhibitors to these enzymes are used. In this review, we summarize recent progress in the study of FOXP3 cofactors and PTM proteins, and potential clinical applications in autoimmunity and cancer immunity.
Treg / Forkhead box P3 (FOXP3) / Post-translational modification / Autoimmune / Cancer
[1] |
Sakaguchi S., Sakaguchi N., Asano M., Itoh M., Toda M.. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor α-chains (CD25). Breakdown of a single mechanism of selftolerance causes various autoimmune diseases. J Immunol. 1995; 155(3): 1151-1164.
|
[2] |
Hori S., Nomura T., Sakaguchi S.. Control of regulatory T cell development by the transcription factor Foxp3. Science. 2003; 299(5609): 1057-1061.
|
[3] |
Ramsdell F., Ziegler S.F.. FOXP3 and scurfy: how it all began. Nat Rev Immunol. 2014; 14(5): 343-349.
|
[4] |
Deng G., Xiao Y., Zhou Z., Nagai Y., Zhang H., Li B.,
|
[5] |
Song X., Li B., Xiao Y., Chen C., Wang Q., Liu Y.,
|
[6] |
Brunkow M.E., Jeffery E.W., Hjerrild K.A., Paeper B., Clark L.B., Yasayko S.A.,
|
[7] |
Chatila T.A., Blaeser F., Ho N., Lederman H.M., Voulgaropoulos C., Helms C.,
|
[8] |
Bennett C.L., Christie J., Ramsdell F., Brunkow M.E., Ferguson P.J., Whitesell L.,
|
[9] |
Barzaghi F., Passerini L., Bacchetta R.. Immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome: a paradigm of immunodeficiency with autoimmunity. Front Immunol. 2012; 3: 211.
|
[10] |
d’Hennezel E., Ben-Shoshan M., Ochs H.D., Torgerson T.R., Russell L.J., Lejtenyi C.,
|
[11] |
Bacchetta R., Barzaghi F., Roncarolo M.G.. From IPEX syndrome to FOXP3 mutation: a lesson on immune dysregulation. Ann N Y Acad Sci. 2018; 1417(1): 5-22.
|
[12] |
Li B., Greene M.I.. FOXP3 actively represses transcription by recruiting the HAT/HDAC complex. Cell Cycle. 2007; 6(12): 1431-1435.
|
[13] |
Rudra D., deRoos P., Chaudhry A., Niec R.E., Arvey A., Samstein R.M.,
|
[14] |
Kwon H.K., Chen H.M., Mathis D., Benoist C.. Different molecular complexes that mediate transcriptional induction and repression by Foxp3. Nat Immunol. 2017; 18(11): 1238-1248.
|
[15] |
Vaeth M., Schliesser U., Müller G., Reissig S., Satoh K., Tuettenberg A.,
|
[16] |
Wu Y., Borde M., Heissmeyer V., Feuerer M., Lapan A.D., Stroud J.C.,
|
[17] |
Ono M., Yaguchi H., Ohkura N., Kitabayashi I., Nagamura Y., Nomura T.,
|
[18] |
Lu L., Barbi J., Pan F.. The regulation of immune tolerance by FOXP3. Nat Rev Immunol. 2017; 17(11): 703-717.
|
[19] |
Rudra D., Egawa T., Chong M.M., Treuting P., Littman D.R., Rudensky A.Y.. RUNX-CBFβ complexes control expression of the transcription factor Foxp3 in regulatory T cells. Nat Immunol. 2009; 10(11): 1170-1177.
|
[20] |
Ruan Q., Kameswaran V., Tone Y., Li L., Liou H.C., Greene M.I.,
|
[21] |
Grinberg-Bleyer Y., Oh H., Desrichard A., Bhatt D.M., Caron R., Chan T.A.,
|
[22] |
Oh H., Grinberg-Bleyer Y., Liao W., Maloney D., Wang P., Wu Z.,
|
[23] |
Zheng Y., Chaudhry A., Kas A., deRoos P., Kim J.M., Chu T.T.,
|
[24] |
Pan F., Yu H., Dang E.V., Barbi J., Pan X., Grosso J.F.,
|
[25] |
Sebastian M., Lopez-Ocasio M., Metidji A., Rieder S.A., Shevach E.M., Thornton A.M.. Helios controls a limited subset of regulatory T cell functions. J Immunol. 2016; 196(1): 144-155.
|
[26] |
Zhou L., Lopes J.E., Chong M.M., Ivanov I.I., Min R., Victora G.D.,
|
[27] |
Kluger M.A., Meyer M.C., Nosko A., Goerke B., Luig M., Wegscheid C.,
|
[28] |
Du J., Huang C., Zhou B., Ziegler S.F.. Isoform-specific inhibition of RORα-mediated transcriptional activation by human FOXP3. J Immunol. 2008; 180(7): 4785-4792.
|
[29] |
Dang E.V., Barbi J., Yang H.Y., Jinasena D., Yu H., Zheng Y.,
|
[30] |
Chaudhry A., Rudra D., Treuting P., Samstein R.M., Liang Y., Kas A.,
|
[31] |
Huang C., Martin S., Pfleger C., Du J., Buckner J.H., Bluestone J.A.,
|
[32] |
Tanaka S., Pfleger C., Lai J.F., Roan F., Sun S.C., Ziegler S.F.. KAP1 regulates regulatory T cell function and proliferation in both FOXP3-dependent and -independent manners. Cell Rep. 2018; 23(3): 796-807.
|
[33] |
Hwang S.S., Jang S.W., Kim M.K., Kim L.K., Kim B.S., Kim H.S.,
|
[34] |
DuPage M., Chopra G., Quiros J., Rosenthal W.L., Morar M.M., Holohan D.,
|
[35] |
Rubtsov Y.P., Rasmussen J.P., Chi E.Y., Fontenot J., Castelli L., Ye X.,
|
[36] |
van Loosdregt J., Coffer P.J.. Post-translational modification networks regulating FOXP3 function. Trends Immunol. 2014; 35(8): 368-378.
|
[37] |
Xiao Y., Nagai Y., Deng G., Ohtani T., Zhu Z., Zhou Z.,
|
[38] |
Liu Y., Wang L., Predina J., Han R., Beier U.H., Wang L.C.,
|
[39] |
Liu Y., Wang L., Han R., Beier U.H., Akimova T., Bhatti T.,
|
[40] |
Wang L., Liu Y., Han R., Beier U.H., Bhatti T.R., Akimova T.,
|
[41] |
de Zoeten E.F., Wang L., Butler K., Beier U.H., Akimova T., Sai H.,
|
[42] |
de Zoeten E.F., Wang L., Sai H., Dillmann W.H., Hancock W.W.. Inhibition of HDAC9 increases T regulatory cell function and prevents colitis in mice. Gastroenterology. 2010; 138(2): 583-594.
|
[43] |
Huang J., Wang L., Dahiya S., Beier U.H., Han R., Samanta A.,
|
[44] |
Beier U.H., Wang L., Bhatti T.R., Liu Y., Han R., Ge G.,
|
[45] |
Deng G., Nagai Y., Xiao Y., Li Z., Dai S., Ohtani T.,
|
[46] |
Chunder N., Wang L., Chen C., Hancock W.W., Wells A.D.. Cyclin-dependent kinase 2 controls peripheral immune tolerance. J Immunol. 2012; 189(12): 5659-5666.
|
[47] |
Zhao Y., Guo H., Qiao G., Zucker M., Langdon W.Y., Zhang J.. E3 ubiquitin ligase Cbl-b regulates thymic-derived CD4+CD25+ regulatory T cell development by targeting Foxp3 for ubiquitination. J Immunol. 2015; 194(4): 1639-1645.
|
[48] |
Wang L., Kumar S., Dahiya S., Wang F., Wu J., Newick K.,
|
[49] |
Li Y., Lu Y., Wang S., Han Z., Zhu F., Ni Y.,
|
[50] |
van Loosdregt J., Vercoulen Y., Guichelaar T., Gent Y.Y., Beekman J.M., van Beekum O.,
|
[51] |
Li B., Samanta A., Song X., Iacono K.T., Bembas K., Tao R.,
|
[52] |
Du T., Nagai Y., Xiao Y., Greene M.I., Zhang H.. Lysosome-dependent p300/FOXP3 degradation and limits Treg cell functions and enhances targeted therapy against cancers. Exp Mol Pathol. 2013; 95(1): 38-45.
|
[53] |
Chan H.M., La Thangue N.B.. p300/CBP proteins: HATs for transcriptional bridges and scaffolds. J Cell Sci. 2001; 114(Pt 13): 2363-2373.
|
[54] |
Bolden J.E., Peart M.J., Johnstone R.W.. Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov. 2006; 5(9): 769-784.
|
[55] |
Li B., Samanta A., Song X., Iacono K.T., Brennan P., Chatila T.A.,
|
[56] |
Fischle W., Dequiedt F., Fillion M., Hendzel M.J., Voelter W., Verdin E.. Human HDAC7 histone deacetylase activity is associated with HDAC3 in vivo. J Biol Chem. 2001; 276(38): 35826-35835.
|
[57] |
Beier U.H., Wang L., Han R., Akimova T., Liu Y., Hancock W.W.. Histone deacetylases 6 and 9 and sirtuin-1 control Foxp3+ regulatory T cell function through shared and isoform-specific mechanisms. Sci Signal. 2012; 5(229): ra45.
|
[58] |
van Loosdregt J., Brunen D., Fleskens V., Pals C.E., Lam E.W., Coffer P.J.. Rapid temporal control of Foxp3 protein degradation by sirtuin-1. PLoS ONE. 2011; 6(4): e19047.
|
[59] |
Xie X., Stubbington M.J., Nissen J.K., Andersen K.G., Hebenstreit D., Teichmann S.A.,
|
[60] |
Samanta A., Li B., Song X., Bembas K., Zhang G., Katsumata M.,
|
[61] |
Morawski P.A., Mehra P., Chen C., Bhatti T., Wells A.D.. Foxp3 protein stability is regulated by cyclin-dependent kinase 2. J Biol Chem. 2013; 288(34): 24494-24502.
|
[62] |
Li Z., Lin F., Zhuo C., Deng G., Chen Z., Yin S.,
|
[63] |
Nie H., Zheng Y., Li R., Guo T.B., He D., Fang L.,
|
[64] |
Basu S., Golovina T., Mikheeva T., June C.H., Riley J.L.. Cutting edge: Foxp3-mediated induction of Pim 2 allows human T regulatory cells to preferentially expand in rapamycin. J Immunol. 2008; 180(9): 5794-5798.
|
[65] |
Nakahira K., Morita A., Kim N.S., Yanagihara I.. Phosphorylation of FOXP3 by LCK downregulates MMP9 expression and represses cell invasion. PLoS ONE. 2013; 8(10): e77099.
|
[66] |
Dikic I., Wakatsuki S., Walters K.J.. Ubiquitin-binding domains—from structures to functions. Nat Rev Mol Cell Biol. 2009; 10(10): 659-671.
|
[67] |
Komander D., Rape M.. The ubiquitin code. Annu Rev Biochem. 2012; 81(1): 203-229.
|
[68] |
Chen L., Wu J., Pier E., Zhao Y., Shen Z.. mTORC2-PKBα/AKT1 serine 473 phosphorylation axis is essential for regulation of FOXP3 stability by chemokine CCL3 in psoriasis. J Invest Dermatol. 2013; 133(2): 418-428.
|
[69] |
Abu-Eid R., Samara R.N., Ozbun L., Abdalla M.Y., Berzofsky J.A., Friedman K.M.,
|
[70] |
Chen Z., Barbi J., Bu S., Yang H.Y., Li Z., Gao Y.,
|
[71] |
van Loosdregt J., Fleskens V., Fu J., Brenkman A.B., Bekker C.P., Pals C.E.,
|
[72] |
Geoghegan V., Guo A., Trudgian D., Thomas B., Acuto O.. Comprehensive identification of arginine methylation in primary T cells reveals regulatory roles in cell signalling. Nat Commun. 2015; 6(1): 6758.
|
[73] |
Stopa N., Krebs J.E., Shechter D.. The PRMT5 arginine methyltransferase: many roles in development, cancer and beyond. Cell Mol Life Sci. 2015; 72(11): 2041-2059.
|
[74] |
Tao J.H., Cheng M., Tang J.P., Liu Q., Pan F., Li X.P.. Foxp3, regulatory T cell, and autoimmune diseases. Inflammation. 2017; 40(1): 328-339.
|
[75] |
Tanaka A., Sakaguchi S.. Regulatory T cells in cancer immunotherapy. Cell Res. 2017; 27(1): 109-118.
|
[76] |
Tao R., Hancock W.W.. Regulating regulatory T cells to achieve transplant tolerance. Hepatobiliary Pancreat Dis Int. 2007; 6(4): 348-357.
|
[77] |
Tao R., de Zoeten E.F., Ozkaynak E., Chen C., Wang L., Porrett P.M.,
|
[78] |
Saouaf S.J., Li B., Zhang G., Shen Y., Furuuchi N., Hancock W.W.,
|
[79] |
Nagai Y., Limberis M.P., Zhang H.. Modulation of Treg function improves adenovirus vector-mediated gene expression in the airway. Gene Ther. 2014; 21(2): 219-224.
|
[80] |
Zhang Z.Y., Schluesener H.J.. HDAC inhibitor MS-275 attenuates the inflammatory reaction in rat experimental autoimmune prostatitis. Prostate. 2012; 72(1): 90-99.
|
[81] |
Wang L., Tao R., Hancock W.W.. Using histone deacetylase inhibitors to enhance Foxp3+ regulatory T-cell function and induce allograft tolerance. Immunol Cell Biol. 2009; 87(3): 195-202.
|
[82] |
Thomas A., Rajan A., Szabo E., Tomita Y., Carter C.A., Scepura B.,
|
[83] |
Terranova-Barberio M., Thomas S., Ali N., Pawlowska N., Park J., Krings G.,
|
[84] |
Murali R., Cheng X., Berezov A., Du X., Schön A., Freire E.,
|
[85] |
Bin Dhuban K., d’Hennezel E., Nagai Y., Xiao Y., Shao S., Istomine R.,
|
[86] |
Wang D., Quiros J., Mahuron K., Pai C.C., Ranzani V., Young A.,
|
[87] |
Li Y., Strick-Marchand H., Lim A.I., Ren J., Masse-Ranson G., Li D.,
|
[88] |
Trotta E., Bessette P.H., Silveria S.L., Ely L.K., Jude K.M., Le D.T.,
|
[89] |
Biswas S., Rao C.M.. Epigenetics in cancer: fundamentals and beyond. Pharmacol Ther. 2017; 173: 118-134.
|
[90] |
Pfister S.X., Ashworth A.. Marked for death: targeting epigenetic changes in cancer. Nat Rev Drug Discov. 2017; 16(4): 241-263.
|
[91] |
Yang Y., Bedford M.T.. Protein arginine methyltransferases and cancer. Nat Rev Cancer. 2013; 13(1): 37-50.
|
[92] |
Lozano T., Villanueva L., Durántez M., Gorraiz M., Ruiz M., Belsúe V.,
|
[93] |
Lozano T., Gorraiz M., Lasarte-Cía A., Ruiz M., Rabal O., Oyarzabal J.,
|
[94] |
Mathur D., Prakash S., Anand P., Kaur H., Agrawal P., Mehta A.,
|
[95] |
Craik D.J., Fairlie D.P., Liras S., Price D.. The future of peptide-based drugs. Chem Biol Drug Des. 2013; 81(1): 136-147.
|
We acknowledge grant supports from the Breast Cancer Research Foundation and the National Institutes of Health to M.I. Greene (RO1CA219034).
Yasuhiro Nagai, Lian Lam, Mark I. Greene, and Hongtao Zhang declare that they have no conflict of interest or financial conflicts to disclose.
/
〈 |
|
〉 |