Applications for Nanoscale X-Ray Imaging at High Pressure

Wendy L. Mao, Yu Lin, Yijin Liu, Jin Liu

Engineering ›› 2019, Vol. 5 ›› Issue (3) : 479-489.

PDF(2578 KB)
PDF(2578 KB)
Engineering ›› 2019, Vol. 5 ›› Issue (3) : 479-489. DOI: 10.1016/j.eng.2019.01.006
Research
Research Deep Matter & Energy—Article

Applications for Nanoscale X-Ray Imaging at High Pressure

Author information +
History +

Abstract

Coupling nanoscale transmission X-ray microscopy (nanoTXM) with a diamond anvil cell (DAC) has exciting potential as a powerful three-dimensional probe for non-destructive imaging at high spatial resolution of materials under extreme conditions. In this article, we discuss current developments in high-resolution X-ray imaging and its application in high-pressure nanoTXM experiments in a DAC with third-generation synchrotron X-ray sources, including technical considerations for preparing successful measurements. We then present results from a number of recent in situ high-pressure measurements investigating equations of state (EOS) in amorphous or poorly crystalline materials and in pressure-induced phase transitions and electronic changes. These results illustrate the potential this technique holds for addressing a wide range of research areas, ranging from condensed matter physics and solid-state chemistry to materials science and planetary interiors. Future directions for this exciting technique and opportunities to improve its capabilities for broader application in high-pressure science are discussed.

Keywords

X-ray imaging / High pressure / Diamond anvil cell

Cite this article

Download citation ▾
Wendy L. Mao, Yu Lin, Yijin Liu, Jin Liu. Applications for Nanoscale X-ray Imaging at High Pressure. Engineering, 2019, 5(3): 479‒489 https://doi.org/10.1016/j.eng.2019.01.006

References

[1]
Dubrovinsky L., Dubrovinskaia N., Bykova E., Bykov M., Prakapenka V., Prescher C., . The most incompressible metal osmium at static pressures above 750 gigapascals. Nature. 2015; 525(7568): 226-229.
[2]
Mao H.K., Mao W.L.. Theory and practice—diamond-anvil cells and probes for high P-T mineral physics studies. In: editor. Treatise on geophysics: mineral physics. Amsterdam: Elsevier; 2007. p. 231-268.
[3]
Frankel R.I.. Centennial of Röntgen’s discovery of X-rays. West J Med. 1996; 164(6): 497-501.
[4]
Du Plessis A., Le Roux S.G., Guelpa A.. Comparison of medical and industrial X-ray computed tomography for non-destructive testing. Case Stud Nondestr Test Eval. 2016; 6: 17-25.
[5]
Landis E.N., Keane D.T.. X-ray microtomography. Mater Charact. 2010; 61(12): 1305-1316.
[6]
Liu Y., Kiss A.M., Larsson D.H., Yang F., Pianetta P.. To get the most out of high resolution X-ray tomography: a review of the post-reconstruction analysis. Spectrochim Acta B At Spectrosc. 2016; 117: 29-41.
[7]
Bautz W., Kalender W., Godfrey N.. Hounsfield and his effect on radiology. Radiologe. 2005; 45(4): 350-355. German
[8]
Sakdinawat A., Attwood D.. Nanoscale X-ray imaging. Nat Photonics. 2010; 4(12): 840-848.
[9]
Chang C., Sakdinawat A.. Ultra-high aspect ratio high-resolution nanofabrication for hard X-ray diffractive optics. Nat Commun. 2014; 5(1): 4243.
[10]
Shi C.Y., Zhang L., Yang W., Liu Y., Wang J., Meng Y., . Formation of an interconnected network of iron melt at Earth’s lower mantle conditions. Nat Geosci. 2013; 6(11): 971-975.
[11]
Larabell C.A., Nugent K.A.. Imaging cellular architecture with X-rays. Curr Opin Struct Biol. 2010; 20(5): 623-631.
[12]
Wei C., Xia S., Huang H., Mao Y., Pianetta P., Liu Y.. Mesoscale battery science: the behavior of electrode particles caught on a multispectral X-ray camera. Acc Chem Res. 2018; 51(10): 2484-2492.
[13]
Andrews J.C., Weckhuysen B.M.. Hard X-ray spectroscopic nano-imaging of hierarchical functional materials at work. Chem Phys Chem. 2013; 14(16): 3655-3666.
[14]
Meirer F., Cabana J., Liu Y., Mehta A., Andrews J.C., Pianetta P.. Three-dimensional imaging of chemical phase transformations at the nanoscale with full-field transmission X-ray microscopy. J Synchrotron Radiat. 2011; 18: 773-781.
[15]
Liu Y., Meirer F., Wang J., Requena G., Williams P., Nelson J., . 3D elemental sensitive imaging using transmission X-ray microscopy. Anal Bioanal Chem. 2012; 404(5): 1297-1301.
[16]
Andrews J.C., Almeida E., Van der Meulen M.C., Alwood J.S., Lee C., Liu Y., . Nanoscale X-ray microscopic imaging of mammalian mineralized tissue. Microsc Microanal. 2010; 16(3): 327-336.
[17]
Liu Y., Meirer F., Williams P.A., Wang J., Andrews J.C., Pianetta P.. TXM-Wizard: a program for advanced data collection and evaluation in full-field transmission X-ray microscopy. J Synchrotron Radiat. 2012; 19(Pt 2): 281-287.
[18]
Gürsoy D., De Carlo F., Xiao X., Jacobsen C.. TomoPy: a framework for the analysis of synchrotron tomographic data. J Synchrotron Radiat. 2014; 21: 1188-1193.
[19]
Yang X., De Carlo F., Phatak C., Gürsoy D.. A convolutional neural network approach to calibrating the rotation axis for X-ray computed tomography. J Synchrotron Radiat. 2017; 24: 469-475.
[20]
Yang Y., Yang F., Hingerl F.F., Xiao X., Liu Y., Wu Z., . Registration of the rotation axis in X-ray tomography. J Synchrotron Radiat. 2015; 22(2): 452-457.
[21]
Guizar-Sicairos M., Boon J.J., Mader K., Diaz A., Menzel A., Bunk O.. Quantitative interior X-ray nanotomography by a hybrid imaging technique. Optica. 2015; 2(3): 259-266.
[22]
Gürsoy D., Hong Y.P., He K., Hujsak K., Yoo S., Chen S., . Rapid alignment of nanotomography data using joint iterative reconstruction and reprojection. Sci Rep. 2017; 7(1): 11818.
[23]
Yu H., Xia S., Wei C., Mao Y., Larsson D., Xiao X., . Automatic projection image registration for nanoscale X-ray tomographic reconstruction. J Synchrotron Radiat. 2018; 25: 1819-1826.
[24]
Liu Y., Wang J., Azuma M., Mao W.L., Yang W.. Five-dimensional visualization of phase transition in BiNiO3 under high pressure. Appl Phys Lett. 2014; 104(4): 043108.
[25]
Wang J.Y., Yang W., Wang S., Xiao X., De Carlo F., Liu Y., . High pressure nano-tomography using an iterative method. J Appl Phys. 2012; 111(11): 112626.
[26]
Duan X., Yang F., Antono E., Yang W., Pianetta P., Ermon S., . Unsupervised data mining in nanoscale X-ray spectro-microscopic study of NdFeB magnet. Sci Rep. 2016; 6(1): 34406.
[27]
Xu Y., Hu E., Zhang K., Wang X., Borzenets V., Sun Z., . In situ visualization of state-of-charge heterogeneity within a LiCoO2 particle that evolves upon cycling at different rates. ACS Energy Lett. 2017; 2(5): 1240-1245.
[28]
Lin Y., Zeng Q., Yang W., Mao W.L.. Pressure-induced densification in GeO2 glass: a transmission X-ray microscopy study. Appl Phys Lett. 2013; 103(26): 261909.
[29]
Zeng Q., Kono Y., Lin Y., Zeng Z., Wang J., Sinogeikin S.V., . Universal fractional noncubic power law for density of metallic glasses. Phys Rev Lett. 2014; 112(18): 185502.
[30]
Liu H., Wang L., Xiao X., De Carlo F., Feng J., Mao H.K., . Anomalous high-pressure behavior of amorphous selenium from synchrotron X-ray diffraction and microtomography. Proc Natl Acad Sci USA. 2008; 105(36): 13229-13234.
[31]
Zeng Q., Lin Y., Liu Y., Zeng Z., Shi C.Y., Zhang B., . General 2.5 power law of metallic glasses. Proc Natl Acad Sci USA. 2016; 113(7): 1714-1718.
[32]
Chen D.Z., Shi C.Y., An Q., Zeng Q., Mao W.L., Goddard W.A.3rd, . Fractal atomic-level percolation in metallic glasses. Science. 2015; 349(6254): 1306-1310.
[33]
Lin Y., Zhang L., Mao H.K., Chow P., Xiao Y., Baldini M., . Amorphous diamond: a high-pressure superhard carbon allotrope. Phys Rev Lett. 2011; 107(17): 175504.
[34]
Lee S.K., Lin J.F., Cai Y.Q., Hiraoka N., Eng P.J., Okuchi T., . X-ray Raman scattering study of MgSiO3 glass at high pressure: implication for triclustered MgSiO3 melt in Earth’s mantle. Proc Natl Acad Sci USA. 2008; 105(23): 7925-7929.
[35]
Murakami M., Goncharov A.F., Hirao N., Masuda R., Mitsui T., Thomas S.M., . High-pressure radiative conductivity of dense silicate glasses with potential implications for dark magmas. Nat Commun. 2014; 5(1): 5428.
[36]
Petitgirard S., Malfait W.J., Sinmyo R., Kupenko I., Hennet L., Harries D., . Fate of MgSiO3 melts at core-mantle boundary conditions. Proc Natl Acad Sci USA. 2015; 112(46): 14186-14190.
[37]
Sato T., Funamori N.. High-pressure structural transformation of SiO2 glass up to 100 GPa. Phys Rev B Condens Matter Mater Phys. 2010; 82(18): 184102.
[38]
Wu M., Liang Y., Jiang J.Z., Tse J.S.. Structure and properties of dense silica glass. Sci Rep. 2012; 2(1): 398.
[39]
Zha C., Hemley R.J., Mao H., Duffy T.S., Meade C.. Acoustic velocities and refractive index of SiO2 glass to 57.5 GPa by Brillouin scattering. Phys Rev B Condens Matter. 1994; 50(18): 13105-13112.
[40]
Sato T., Funamori N.. Sixfold-coordinated amorphous polymorph of SiO2 under high pressure. Phys Rev Lett. 2008; 101(25): 255502.
[41]
Murakami M., Bass J.D.. Spectroscopic evidence for ultrahigh-pressure polymorphism in SiO2 glass. Phys Rev Lett. 2010; 104(2): 025504.
[42]
Williams Q., Jeanloz R.. Spectroscopic evidence for pressure-induced coordination changes in silicate glasses and melts. Science. 1988; 239(4842): 902-905.
[43]
Stixrude L., Karki B.. Structure and freezing of MgSiO3 liquid in Earth’s lower mantle. Science. 2005; 310(5746): 297-299.
[44]
Shen G., Mei Q., Prakapenka V.B., Lazor P., Sinogeikin S., Meng Y., . Effect of helium on structure and compression behavior of SiO2 glass. Proc Natl Acad Sci USA. 2011; 108(15): 6004-6007.
[45]
Clark A.N., Lesher C.E., Jacobsen S.D., Wang Y.. Anomalous density and elastic properties of basalt at high pressure: reevaluating of the effect of melt fraction on seismic velocity in the Earth’s crust and upper mantle. J Geophys Res Solid Earth. 2016; 121(6): 4232-4248.
[46]
Ghosh D.B., Karki B.B., Stixrude L.. First-principles molecular dynamics simulations of MgSiO3 glass: structure, density, and elasticity at high pressure. Am Mineral. 2014; 99(7): 1304-1314.
[47]
Jiang H., Xu R., Chen C.C., Yang W., Fan J., Tao X., . Three-dimensional coherent X-ray diffraction imaging of molten iron in mantle olivine at nanoscale resolution. Phys Rev Lett. 2013; 110(20): 205501.
[48]
Miao J., Ishikawa T., Robinson I.K., Murnane M.M.. Beyond crystallography: diffractive imaging using coherent X-ray light sources. Science. 2015; 348(6234): 530-535.
[49]
Yang W., Huang X., Harder R., Clark J.N., Robinson I.K., Mao H.K.. Coherent diffraction imaging of nanoscale strain evolution in a single crystal under high pressure. Nat Commun. 2013; 4(1): 1680.
[50]
Eriksson M., Van der Veen J.F., Quitmann C.. Diffraction-limited storage rings—a window to the science of tomorrow. J Synchrotron Radiat. 2014; 21: 837-842.
[51]
McNeil B.W.J., Thompson N.R.. X-ray free-electron lasers. Nat Photonics. 2010; 4(12): 814-821.
Acknowledgements

This work was supported by the Department of Energy (DOE) through the Stanford Institute for Materials & Energy Sciences (DE-AC02-76SF00515).

Compliance with ethics guidelines

Wendy L. Mao, Yu Lin, Yijin Liu, and Jin Liu declare that they have no conflict of interest or financial conflicts to disclose.

RIGHTS & PERMISSIONS

2019 THE AUTHORS
AI Summary AI Mindmap
PDF(2578 KB)

Accesses

Citations

Detail

Sections
Recommended

/