
Development of High-Pressure Multigrain X-Ray Diffraction for Exploring the Earth’s Interior
Li Zhang, Hongsheng Yuan, Yue Meng, Ho-Kwang Mao
Engineering ›› 2019, Vol. 5 ›› Issue (3) : 441-447.
Development of High-Pressure Multigrain X-Ray Diffraction for Exploring the Earth’s Interior
The lower mantle makes up more than a half of our planet’s volume. Mineralogical and petrological experiments on realistic bulk compositions under high pressure–temperature (P–T) conditions are essential for understanding deep mantle processes. Such high P–T experiments are commonly conducted in a laser-heated diamond anvil cell, producing a multiphase assemblage consisting of 100 nm to submicron crystallite grains. The structures of these lower mantle phases often cannot be preserved upon pressure quenching; thus, in situ characterization is needed. The X-ray diffraction (XRD) pattern of such a multiphase assemblage usually displays a mixture of diffraction spots and rings as a result of the coarse grain size relative to the small X-ray beam size (3–5 μm) available at the synchrotron facilities. Severe peak overlapping from multiple phases renders the powder XRD method inadequate for indexing new phases and minor phases. Consequently, structure determination of new phases in a high P–T multiphase assemblage has been extremely difficult using conventional XRD techniques. Our recent development of multigrain XRD in high-pressure research has enabled the indexation of hundreds of individual crystallite grains simultaneously through the determination of crystallographic orientations for these individual grains. Once indexation is achieved, each grain can be treated as a single crystal. The combined crystallographic information from individual grains can be used to determine the crystal structures of new phases and minor phases simultaneously in a multiphase system. With this new development, we have opened up a new area of crystallography under the high P–T conditions of the deep lower mantle. This paper explains key challenges in studying multiphase systems and demonstrates the unique capabilities of high-pressure multigrain XRD through successful examples of its applications.
High pressure / Synchrotron X-ray / Multigrain / Diamond anvil cell / Minerals / Petrology / Earth’s interior
[1] |
Ricolleau A., Fei Y., Cottrell E., Watson H., Deng L., Zhang L.,
|
[2] |
Irifune T., Shinmei T., McCammon C.A., Miyajima N., Rubie D.C., Frost D.J.. Iron partitioning and density changes of pyrolite in Earth’s lower mantle. Science. 2010; 327(5962): 193-195.
|
[3] |
Hirose K., Fei Y., Ma Y., Mao H.K.. The fate of subducted basaltic crust in the Earth’s lower mantle. Nature. 1999; 397(6714): 53-56.
|
[4] |
Ohira I., Ohtani E., Sakai T., Miyahara M., Hirao N., Ohishi Y.,
|
[5] |
Bertka C.M., Fei Y.. Mineralogy of the Martian interior up to core-mantle boundary pressures. J Geophys Res Solid Earth. 1997; 102(B3): 5251-5264.
|
[6] |
Lavina B., Meng Y.. Unraveling the complexity of iron oxides at high pressure and temperature: Synthesis of Fe5O6. Sci Adv. 2015; 1(5): e1400260.
|
[7] |
Mao H.K., Bell P.M.. High-pressure physics: sustained static generation of 1.36 to 1.72 megabars. Science. 1978; 200: 1145-1147.
|
[8] |
Tateno S., Hirose K., Ohishi Y., Tatsumi Y.. The structure of iron in Earth’s inner core. Science. 2010; 330(6002): 359-361.
|
[9] |
Lay T.. Sharpness of the D″ discontinuity beneath the Cocos Plate: implications for the perovskite to post-perovskite phase transition. Geophys Res Lett. 2008; 35(3): 35.
|
[10] |
Panning M., Romanowicz B.. Inferences on flow at the base of Earth’s mantle based on seismic anisotropy. Science. 2004; 303(5656): 351-353.
|
[11] |
Su W., Woodward R.L., Dziewonski A.M.. Degree 12 model of shear velocity heterogeneity in the mantle. J Geophys Res. 1994; 99(B4): 6945-6980.
|
[12] |
Miletich R., Allan D.R., Kuhs W.F.. High-pressure single-crystal techniques. Rev Mineral Geochem. 2000; 41(1): 445-519.
|
[13] |
Dera P., Zhuravlev K., Prakapenka V., Rivers M.L., Finkelstein G.J., Grubor-Urosevic O.,
|
[14] |
Dubrovinsky L., Boffa-Ballaran T., Glazyrin K., Kurnosov A., Frost D., Merlini M.,
|
[15] |
Frost D.J., Fei Y.. Stability of phase D at high pressure and high temperature. J Geophys Res Solid Earth. 1998; 103(B4): 7463-7474.
|
[16] |
Murakami M., Hirose K., Kawamura K., Sata N., Ohishi Y.. Post-perovskite phase transition in MgSiO3. Science. 2004; 304(5672): 855-858.
|
[17] |
Oganov A.R., Ono S.. Theoretical and experimental evidence for a post-perovskite phase of MgSiO3 in Earth’s D'' layer. Nature. 2004; 430(6998): 445-448.
|
[18] |
Mao W.L., Meng Y., Shen G., Prakapenka V.B., Campbell A.J., Heinz D.L.,
|
[19] |
Nishi M., Irifune T., Tsuchiya J., Tange Y., Nishihara Y., Fujino K.,
|
[20] |
Zhang W., Oganov A.R., Goncharov A.F., Zhu Q., Boulfelfel S.E., Lyakhov A.O.,
|
[21] |
Hirose K., Takafuji N., Sata N., Ohishi Y.. Phase transition and density of subducted MORB crust in the lower mantle. Earth Planet Sci Lett. 2005; 237(1–2): 239-251.
|
[22] |
Shen G., Mao H.K.. High-pressure studies with x-rays using diamond anvil cells, reports on progress in physics. Physical Society. 2017; 80: 016101.
|
[23] |
Duffy T.S.. Synchrotron facilities and the study of the Earth’s deep interior. Rep Prog Phys. 2005; 68(8): 1811-1859.
|
[24] |
Mao H.K., Chen B., Chen J., Li K., Lin J.F., Yang W.,
|
[25] |
Zhang L., Meng Y., Dera P., Yang W., Mao W.L., Mao H.K.. Single-crystal structure determination of (Mg,Fe)SiO3 postperovskite. Proc Natl Acad Sci USA. 2013; 110(16): 6292-6295.
|
[26] |
Nisr C., Ribárik G., Ungár T., Vaughan G.B.M., Cordier P., Merkel S.. High resolution three-dimensional X-ray diffraction study of dislocations in grains of MgGeO3 post-perovskite at 90 GPa. J Geophys Res. 2012; 117(B3): B03201.
|
[27] |
Schmidt S.. GrainSpotter: a fast and robust polycrystalline indexing algorithm. J Appl Cryst. 2014; 47(1): 276-284.
|
[28] |
Sørensen H.O., Schmidt S., Wright J.P., Vaughan G.B.M., Techert S., Garman E.F.,
|
[29] |
Zhang L., Meng Y., Yang W., Wang L., Mao W.L., Zeng Q.S.,
|
[30] |
Zhang L., Popov D., Meng Y., Wang J., Ji C., Li B.,
|
[31] |
Merlini M., Hanfland M., Salamat A., Petitgirard S., Müller H.. The crystal structures of Mg2Fe2C4O13, with tetrahedrally coordinated carbon, and Fe13O19, synthesized at deep mantle conditions. Am Mineral. 2015; 100(8–9): 2001-2004.
|
[32] |
Oxford Diffraction Ltd. CrysAlis Red. Version p171.29.2 [software]; 2006.
|
[33] |
Kabsch W.. XDS. Acta Crystallogr D Biol Crystallogr. 2010; D66: 125-132.
|
[34] |
Dera P.. GSE-ADA data analysis program for monochromatic single crystal diffraction with area detector.
|
[35] |
Sheldrick G.M.. A short history of SHELX. Acta Crystallogr A. 2008; A64: 112-122.
|
[36] |
Zhang L., Yuan H., Meng Y., Mao H.K.. Discovery of a hexagonal ultradense hydrous phase in (Fe,Al)OOH. Proc Natl Acad Sci USA. 2018; 115(12): 2908-2911.
|
[37] |
Lundin S., Catalli K., Santillán J., Shim S.H., Prakapenka V.B., Kunz M.,
|
[38] |
Fei Y., Zhang L., Corgne A., Watson H., Ricolleau A., Meng Y.,
|
[39] |
Zhang L., Meng Y., Mao H.. Unit cell determination of coexisting post-perovskite and H-phase in (Mg,Fe)SiO3 using multigrain XRD: compositional variation across a laser heating spot at 119 GPa. Prog Earth Planet Sci. 2016; 3(1): 13.
|
[40] |
Miyahara M., Sakai T., Ohtani E., Kobayashi Y., Kamada S., Kondo T.,
|
The authors thank the anonymous reviewers for their constructive comments. This work was supported by the National Natural Science Foundation of China (41574080 and U1530402). Portions of this work were performed at High Pressure Collaborative Access Team (HPCAT) (Sector 16), Advanced Photon Source (APS), Argonne National Laboratory. HPCAT operations are supported by the Department of Energy (DOE)/National Nuclear Security Administration (NNSA)’s Office of Experimental Sciences. The APS is a US DOE Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory (DE-AC02-06CH11357). Portions of this work were performed at 15U1, Shanghai Synchrotron Radiation Facility (SSRF).
Li Zhang, Hongsheng Yuan, Yue Meng, and Ho-Kwang Mao declare that they have no conflict of interest or financial conflicts to disclose.
/
〈 |
|
〉 |