Thoughts on Design for Intelligent Manufacturing

David W. Rosen

Engineering ›› 2019, Vol. 5 ›› Issue (4) : 609-614.

PDF(1035 KB)
PDF(1035 KB)
Engineering ›› 2019, Vol. 5 ›› Issue (4) : 609-614. DOI: 10.1016/j.eng.2019.07.011
Views & Comments
RESEARCH ARTICLE

Thoughts on Design for Intelligent Manufacturing

Author information +
History +

Cite this article

Download citation ▾
David W. Rosen. Thoughts on Design for Intelligent Manufacturing. Engineering, 2019, 5(4): 609‒614 https://doi.org/10.1016/j.eng.2019.07.011

References

[1]
Zhou J, Li P, Zhou Y, Wang B, Zang J, Meng L. Toward new-generation intelligent manufacturing. Engineering 2018;4(1):11–20.
[2]
Bralla JG, editor. Design for manufacturability handbook. New York: The McGraw-Hill Companies; 1999.
[3]
Gibson I, Rosen DW, Stucker B. Additive manufacturing technologies: 3D printing, rapid prototyping, and direct digital manufacturing. 2nd ed. New York: Springer-Verlag; 2015.
[4]
Wang B. The future of manufacturing: a new perspective. Engineering 2018;4 (5):722–8.
[5]
Tan AR, McAloone TC, Gall C. Product/service-system development—an explorative case study in a manufacturing company. In: Bocquet JC, editor. Proceedings of the 16th International Conference on Engineering Design; 2007 Aug 28–31; Paris, France; 2007. p. DS42_P_334.
[6]
Maussang N, Zwolinski P, Brissaud D. Product-service system design methodology: from the PSS architecture design to the products specifications. J Eng Des 2009;20(4):349–66.
[7]
Tomiyama T. Service engineering to intensify service contents in product life cycles. In: Proceedings of the Second International Symposium on Environmentally Conscious Design and Inverse Manufacturing; 2001 Dec 11–15; Tokyo, Japan. Piscataway: IEEE; 2001. p. 613–8.
[8]
Yang X, Moore P, Pu JS, Wong CB. A practical methodology for realizing product service systems for consumer products. Comput Ind Eng 2009;56(1):224–35.
[9]
Normes NF X50-151. Expression fonctionnelle du besoin et du cahier des charges fonctionnel. AFNOR standards. Paris: AFNOR Group; 2007. French.
[10]
Digital twin [Internet]. Boston: General Electric Company; c2019 [cited 2019 Mar 18]. Available from: https://www.ge.com/digital/applications/digitaltwin.
[11]
Schleich B, Anwer N, Mathieu L, Wartzack S. Shaping the digital twin for design and production engineering. CIRP Ann Manuf Technol 2017;66(1):141–4.
[12]
Vasantha GVA, Roy R, Lelah A, Brissaud D. A review of product–service systems design methodologies. J Eng Des 2012;23(9):635–59.
[13]
Garrett JJ. The elements of user experience: user-centered design for the web and beyond. 2nd ed. Berkeley: New Riders; 2010.
[14]
Risdiyono PK. Design by customer: concept and applications. J Intell Manuf 2013;24(2):295–311.
[15]
Simpson TW, Bobuk A, Slingerland LA, Brennan S, Logan D, Reichard K. From user requirements to commonality specifications: an integrated approach to product family design. Res Eng Des 2012;23(2):141–53.
[16]
Ulrich K. The role of product architecture in the manufacturing firm. Res Policy 1995;24(3):419–40.
[17]
Kuang J, Jiang P. Product platform design for a product family based on Kansai engineering. J Eng Des 2009;20(6):589–607.
[18]
Jiao J, Simpson TW, Siddique Z. Product family design and platform-based product development: a state-of-the-art review. J Intell Manuf 2007;18:5–29.
[19]
Balling RJ, Sobieszczanski-Sobieski J. Optimization of coupled systems—a critical overview of approaches. AIAA J 1996;34(1):6–17.
[20]
Ferguson S, Kasprzak E, Lewis K. Designing a family of reconfigurable vehicles using multilevel multidisciplinary design optimization. Struct Multidiscipl Optim 2009;39(2):171–86.
[21]
Ponche R, Hascoet JY, Kerbrat O, Mognol P. A new global approach to design for additive manufacturing. Virtual Phys Prototyp 2012;7(2):93–105.
[22]
ISO, ASTM 52910:2017. Additive manufacturing—design—requirements, guidelines and recommendations. ISO standards. Geneva: International Organization for Standardization; 2017.
AI Summary AI Mindmap
PDF(1035 KB)

Accesses

Citations

Detail

Sections
Recommended

/