Polydimethylsiloxane (PDMS) Composite Membrane Fabricated on the Inner Surface of a Ceramic Hollow Fiber: From Single-Channel to Multi-Channel

Ziye Dong, Haipeng Zhu, Yingting Hang, Gongping Liu, Wanqin Jin

Engineering ›› 2020, Vol. 6 ›› Issue (1) : 89-99.

PDF(3131 KB)
PDF(3131 KB)
Engineering ›› 2020, Vol. 6 ›› Issue (1) : 89-99. DOI: 10.1016/j.eng.2019.10.012
Research
Article

Polydimethylsiloxane (PDMS) Composite Membrane Fabricated on the Inner Surface of a Ceramic Hollow Fiber: From Single-Channel to Multi-Channel

Author information +
History +

Abstract

The fabrication of a separation layer on the inner surface of a hollow fiber (HF) substrate to form an HF composite membrane offers exciting opportunities for industrial applications, although challenges remain. This work reports on the fabrication of a polydimethylsiloxane (PDMS) composite membrane on the inner surface of a single-channel or multi-channel ceramic HF via a proposed coating/cross-flow approach. The nanostructures and transport properties of the PDMS HF composite membranes were optimized by controlling the polymer concentration and coating time. The morphology, surface chemistry, interfacial adhesion, and separation performance of the membranes were characterized by field-emission scanning electron microscope (FE-SEM), attenuated total reflection Fourier-transform infrared spectroscopy (ATR-FTIR), the nano-indentation/scratch technique, and pervaporation (PV) recovery of bio-butanol, respectively. The formation mechanism for the deposition of the PDMS layer onto the inner surface of the ceramic HF was studied in detail. The optimized inner surface of the PDMS/ceramic HF composite membranes with a thin and defect-free separation layer exhibited a high flux of ~1800 g·m−2·h−1 and an excellent separation factor of 35–38 for 1 wt% n-butanol-water mixtures at 60 °C. The facile coating/cross- flow methodology proposed here shows great potential for fabricating inner-surface polymer-coated HFs that have broad applications including membranes, adsorbents, composite materials, and more.

Keywords

Ceramic hollow fiber Inner membrane / Pervaporation / Polydimethylsiloxane / Butanol

Cite this article

Download citation ▾
Ziye Dong, Haipeng Zhu, Yingting Hang, Gongping Liu, Wanqin Jin. Polydimethylsiloxane (PDMS) Composite Membrane Fabricated on the Inner Surface of a Ceramic Hollow Fiber: From Single-Channel to Multi-Channel. Engineering, 2020, 6(1): 89‒99 https://doi.org/10.1016/j.eng.2019.10.012

References

[1]
Shao P, Huang RYM. Polymeric membrane pervaporation. J Membr Sci 2007;287(2):162–79.
[2]
Smitha B, Suhanya D, Sridhar S, Ramakrishna M. Separation of organic–organic mixtures by pervaporation—a review. J Membr Sci 2004;241(1):1–21.
[3]
Wang Y, Goh SH, Chung TS, Na P. Polyamide-imide/polyetherimide dual-layer hollow fiber membranes for pervaporation dehydration of C1–C4 alcohols. J Membr Sci 2009;326(1):222–33.
[4]
Macedonio F, Drioli E. Membrane engineering for green process engineering. Engineering 2017;3(3):290–8.
[5]
Wu H, Zhang XF, Xu D, Li B, Jiang ZY. Enhancing the interfacial stability and solvent-resistant property of PDMS/PES composite membrane by introducing a bifunctional aminosilane. J Membr Sci 2009;337(1–2):61–9.
[6]
Vankelecom IFJ, Moermans B, Verschueren G, Jacobs PA. Intrusion of PDMS top layers in porous supports. J Membr Sci 1999;158(1–2):289–97.
[7]
Niemistö J, Kujawski W, Keiski RL. Pervaporation performance of composite poly(dimethyl siloxane) membrane for butanol recovery from model solutions. J Membr Sci 2013;434:55–64.
[8]
Liu G, Wei W, Jin W, Xu N. Polymer/ceramic composite membranes and their application in pervaporation process. Chin J Chem Eng 2012;20(1):62–70.
[9]
Xiangli F, Chen Y, Jin W, Xu N. Polydimethylsiloxane (PDMS)/ceramic composite membrane with high flux for pervaporation of ethanol–water mixtures. Ind Eng Chem Res 2007;46(7):2224–30.
[10]
Liu G, Hou D, Wei W, Xiangli F, Jin W. Pervaporation separation of butanol– water mixtures using polydimethylsiloxane/ceramic composite membrane. Chin J Chem Eng 2011;19(1):40–4.
[11]
Liu G, Xiangli F, Wei W, Liu S, Jin W. Improved performance of PDMS/ceramic composite pervaporation membranes by ZSM-5 homogeneously dispersed in PDMS via a surface graft/coating approach. Chem Eng J 2011;174(2– 3):495–503.
[12]
Liu G, Wei W, Jin W. Pervaporation membranes for biobutanol production. ACS Sustain Chem Eng 2014;2(4):546–60.
[13]
Zhu Y, Xia S, Liu G, Jin W. Preparation of ceramic-supported poly(vinyl alcohol)–chitosan composite membranes and their applications in pervaporation dehydration of organic/water mixtures. J Membr Sci 2010;349 (1–2):341–8.
[14]
Xu R, Liu G, Dong X, Jin W. Pervaporation separation of n-octane/thiophene mixtures using polydimethylsiloxane/ceramic composite membranes. Desalination 2010;258(1–3):106–11.
[15]
Lv B, Liu G, Dong X, Wei W, Jin W. Novel reactive distillation–pervaporation coupled process for ethyl acetate production with water removal from reboiler and acetic acid recycle. Ind Eng Chem Res 2012;51(23):8079–86.
[16]
Liu G, Wei W, Wu H, Dong X, Jiang M, Jin W. Pervaporation performance of PDMS/ceramic composite membrane in acetone butanol ethanol (ABE) fermentation-PV coupled process. J Membr Sci 2011;373(1–2):121–9.
[17]
Wei W, Xia S, Liu G, Dong X, Jin W, Xu N. Effects of polydimethylsiloxane (PDMS) molecular weight on performance of PDMS/ceramic composite membranes. J Membr Sci 2011;375(1–2):334–44.
[18]
Peng N, Widjojo N, Sukitpaneenit P, Teoh MM, Lipscomb GG, Chung TS, et al. Evolution of polymeric hollow fibers as sustainable technologies: past, present, and future. Prog Polym Sci 2012;37(10):1401–24.
[19]
Dong Z, Liu G, Liu S, Liu Z, Jin W. High performance ceramic hollow fiber supported PDMS composite pervaporation membrane for bio-butanol recovery. J Membr Sci 2014;450:38–47.
[20]
Peters TA, Poeth CHS, Benes NE, Buijs HCWM, Vercauteren FF, Keurentjes JTF. Ceramic-supported thin PVA pervaporation membranes combining high flux and high selectivity; contradicting the flux-selectivity paradigm. J Membr Sci 2006;276(1–2):42–50.
[21]
Li Y, Shen J, Guan K, Liu G, Zhou H, Jin W. PEBA/ceramic hollow fiber composite membrane for high-efficiency recovery of bio-butanol via pervaporation. J Membr Sci 2016;510:338–47.
[22]
Liu D, Liu G, Meng L, Dong Z, Huang K, Jin W. Hollow fiber modules with ceramic-supported PDMS composite membranes for pervaporation recovery of bio-butanol. Sep Purif Technol 2015;146:24–32.
[23]
Liu S, Teo WK, Tan X, Li K. Preparation of PDMSvi-Al2O3 composite hollow fibre membranes for VOC recovery from waste gas streams. Sep Purif Technol 2005;46(1–2):110–7.
[24]
Spruck M, Hoefer G, Fili G, Gleinser D, Ruech A, Schmidt-Baldassari M, et al. Preparation and characterization of composite multichannel capillary membranes on the way to nanofiltration. Desalination 2013;314:28–33.
[25]
Lai L, Shao J, Ge Q, Wang Z, Yan Y. The preparation of zeolite NaA membranes on the inner surface of hollow fiber supports. J Membr Sci 2012;409– 410:318–28.
[26]
Huang K, Dong Z, Li Q, Jin W. Growth of a ZIF-8 membrane on the inner-surface of a ceramic hollow fiber via cycling precursors. Chem Commun (Camb) 2013;49(87):10326–8.
[27]
Brown AJ, Brunelli NA, Eum K, Rashidi F, Johnson JR, Koros WJ, et al. Separation membranes. Interfacial microfluidic processing of metal-organic framework hollow fiber membranes. Science 2014;345(6192):72–5.
[28]
Wang NX, Zhang GJ, Ji SL, Fan YQ. Dynamic layer-by-layer self-assembly of organic–inorganic composite hollow fiber membranes. AIChE J 2012;58 (10):3176–82.
[29]
Guo J, Zhang G, Wu W, Ji S, Qin Z, Liu Z. Dynamically formed inner skin hollow fiber polydimethylsiloxane/polysulfone composite membrane for alcohol permselective pervaporation. Chem Eng J 2010;158(3):558–65.
[30]
Meng L, Guo H, Dong Z, Jiang H, Xing W, Jin W. Ceramic hollow fiber membrane distributor for heterogeneous catalysis: effects of membrane structure and operating conditions. Chem Eng J 2013;223:356–63.
[31]
Tan X, Liu S, Li K. Preparation and characterization of inorganic hollow fiber membranes. J Membr Sci 2001;188(1):87–95.
[32]
Hang Y, Liu G, Huang K, Jin W. Mechanical properties and interfacial adhesion of composite membranes probed by in-situ nano-indentation/scratch technique. J Membr Sci 2015;494:205–15.
[33]
Kingsbury BFK, Li K. A morphological study of ceramic hollow fibre membranes. J Membr Sci 2009;328(1–2):134–40.
[34]
Kosaraju PB, Sirkar KK. Interfacially polymerized thin film composite membranes on microporous polypropylene supports for solvent-resistant nanofiltration. J Membr Sci 2008;321(2):155–61.
[35]
Wei W, Xia S, Liu G, Gu X, Jin W, Xu N. Interfacial adhesion between polymer separation layer and ceramic support for composite membrane. AIChE J 2010;56(6):1584–92.
[36]
Wijmans JG, Athayde AL, Daniels R, Ly JH, Kamaruddin HD, Pinnau I. The role of boundary layers in the removal of volatile organic compounds from water by pervaporation. J Membr Sci 1996;109(1):135–46.
[37]
Bai Y, Dong L, Lin J, Zhu Y, Zhang C, Gu J, et al. High performance polydimethylsiloxane pervaporative membranes with hyperbranched polysiloxane as a crosslinker for separation of n-butanol from water. RSC Adv 2015;5(65):52759–68.
[38]
Fouad EA, Feng X. Pervaporative separation of n-butanol from dilute aqueous solutions using silicalite-filled poly(dimethyl siloxane) membranes. J Membr Sci 2009;339(1–2):120–5.
[39]
Qureshi N, Meagher MM, Huang J, Hutkins RW. Acetone butanol ethanol (ABE) recovery by pervaporation using silicalite–silicone composite membrane from fed-batch reactor of Clostridium acetobutylicum. J Membr Sci 2001;187(1– 2):93–102.
[40]
Li SY, Srivastava R, Parnas RS. Separation of 1-butanol by pervaporation using a novel tri-layer PDMS composite membrane. J Membr Sci 2010;363(1– 2):287–94.
[41]
Liu W, Ji SL, Guo HX, Gao J, Qin ZP. In situ cross-linked-PDMS/BPPO membrane for the recovery of butanol by pervaporation. J Appl Polym Sci 2014;131 (6):40004.
[42]
Jonquières A, Fane A. Filled and unfilled composite GFT PDMS membranes for the recovery of butanols from dilute aqueous solutions: influence of alcohol polarity. J Membr Sci 1997;125(2):245–55.
[43]
El-Zanati E, Abdel-Hakim E, El-Ardi O, Fahmy M. Modeling and simulation of butanol separation from aqueous solutions using pervaporation. J Membr Sci 2006;280(1–2):278–83.
[44]
Fadeev AG, Selinskaya YA, Kelley SS, Meagher MM, Litvinova EG, Khotimsky VS, et al. Extraction of butanol from aqueous solutions by pervaporation through poly(1-trimethylsilyl-1-propyne). J Membr Sci 2001;186(2): 205–17.
[45]
Liu F, Liu L, Feng X. Separation of acetone-butanol-ethanol (ABE) from dilute aqueous solutions by pervaporation. Sep Purif Technol 2005;42(3):273–82.
[46]
Thongsukmak A, Sirkar KK. Pervaporation membranes highly selective for solvents present in fermentation broths. J Membr Sci 2007;302(1–2): 45–58.
[47]
Li SG, Tuan VA, Falconer JL, Noble RD. Properties and separation performance of Ge-ZSM-5 membranes. Microporous Mesoporous Mater 2003;58 (2):137–54.
[48]
Kujawa J, Cerneaux S, Kujawski W. Removal of hazardous volatile organic compounds from water by vacuum pervaporation with hydrophobic ceramic membranes. J Membr Sci 2015;474:11–9.
[49]
Kim HJ, Brunelli NA, Brown AJ, Jang KS, Kim WG, Rashidi F, et al. Silylated mesoporous silica membranes on polymeric hollow fiber supports: synthesis and permeation properties. ACS Appl Mater Interfaces 2014;6(20):17877–86.
AI Summary AI Mindmap
PDF(3131 KB)

Accesses

Citations

Detail

Sections
Recommended

/